Radiomic Features at Contrast-Enhanced CT Predict Virus-Driven Liver Fibrosis: A Multi-Institutional Study
Liver fibrosis is a major cause of morbidity and mortality among in patients with chronic hepatitis. Radiomics, particularly of the spleen, may improve diagnostic accuracy and treatment strategies. External validations are necessary to ensure reliability and generalizability. In this retrospective s...
Gespeichert in:
Veröffentlicht in: | Clinical and translational gastroenterology 2024-10, Vol.15 (10), p.e1 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | e1 |
container_title | Clinical and translational gastroenterology |
container_volume | 15 |
creator | Wang, Jincheng Tang, Shengnan Wu, Jin Xu, Shanshan Sun, Qikai Zhou, Zheyu Xu, Xiaoliang Liu, Yang Liu, Qiaoyu Mao, Yingfan He, Jian Zhang, Xudong Yin, Yin |
description | Liver fibrosis is a major cause of morbidity and mortality among in patients with chronic hepatitis. Radiomics, particularly of the spleen, may improve diagnostic accuracy and treatment strategies. External validations are necessary to ensure reliability and generalizability.
In this retrospective study, we developed 3 radiomics models using contrast-enhanced computed tomography scans from 167 patients with liver fibrosis (training group) between January 2020 and December 2021. Radiomic features were extracted from arterial venous, portal venous, and equilibrium phase images. Recursive feature selection random forest and the least absolute shrinkage and selection operator logistic regression were used for feature selection and dimensionality reduction. Performance was assessed by area under the curve, C-index, calibration plots, and decision curve analysis. External validation was performed on 114 patients from 2 institutions.
Twenty-five radiomic features were significantly associated with fibrosis stage, with 80% of the top 10 features originating from portal venous phase spleen images. The radiomics models showed good performance in the validation cohort (C-indices 0.723-0.808) and excellent calibration. Decision curve analysis indicated clinical benefits, with machine learning-based radiomics models (Random Forest score and support vector machine based radiomics score) providing more significant advantages.
Radiomic features offer significant benefits over existing serum indices for staging virus-driven liver fibrosis, underscoring the value of radiomics in enhancing diagnostic accuracy. Specifically, radiomics analysis of the spleen presents additional noninvasive options for assessing fibrosis, highlighting its potential in improving patient management and outcomes. |
doi_str_mv | 10.14309/ctg.0000000000000712 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11500785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060749365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-2c75802530475e05e58c838897c6f18b99022c886157b8131c5b6c0e24b12d6b3</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMoVtSfoATcuJmax2Qm40aktipUFF-4C5lMqinTieZR6L831SrVLJIL-e7h3nMAOMCoj3OKqhMVXvto_ZSYbIAdghnLKM9fNtfqHtj3frqEckR4VW2DHuUcYczJDpjey8bYmVFwpGWITnsoAxzYLjjpQzbs3mSndAMHj_DO6caoAJ-Niz67cGauOzhOt4MjUzvrjT-F5_AmtsFk150PJsRgbCdb-BBis9gDWxPZer2_enfB02j4OLjKxreX14PzcaYo5iEjqmQcEUZRXjKNmGZc8TRwVapignldVYgQxXmBWVlzTLFidaGQJnmNSVPUdBecfeu-x3qmG6WXu7Ti3ZmZdAthpRF_fzrzJl7tXGDMkpGcJYXjlYKzH1H7IGbGK922stM2ekFRgcq8osUSPfqHTm10aedEYZI8LpJeotg3pZJN3unJ7zQYia9ERUpU_E809R2ur_Lb9ZMf_QSUlpuE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121186853</pqid></control><display><type>article</type><title>Radiomic Features at Contrast-Enhanced CT Predict Virus-Driven Liver Fibrosis: A Multi-Institutional Study</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Wang, Jincheng ; Tang, Shengnan ; Wu, Jin ; Xu, Shanshan ; Sun, Qikai ; Zhou, Zheyu ; Xu, Xiaoliang ; Liu, Yang ; Liu, Qiaoyu ; Mao, Yingfan ; He, Jian ; Zhang, Xudong ; Yin, Yin</creator><creatorcontrib>Wang, Jincheng ; Tang, Shengnan ; Wu, Jin ; Xu, Shanshan ; Sun, Qikai ; Zhou, Zheyu ; Xu, Xiaoliang ; Liu, Yang ; Liu, Qiaoyu ; Mao, Yingfan ; He, Jian ; Zhang, Xudong ; Yin, Yin</creatorcontrib><description>Liver fibrosis is a major cause of morbidity and mortality among in patients with chronic hepatitis. Radiomics, particularly of the spleen, may improve diagnostic accuracy and treatment strategies. External validations are necessary to ensure reliability and generalizability.
In this retrospective study, we developed 3 radiomics models using contrast-enhanced computed tomography scans from 167 patients with liver fibrosis (training group) between January 2020 and December 2021. Radiomic features were extracted from arterial venous, portal venous, and equilibrium phase images. Recursive feature selection random forest and the least absolute shrinkage and selection operator logistic regression were used for feature selection and dimensionality reduction. Performance was assessed by area under the curve, C-index, calibration plots, and decision curve analysis. External validation was performed on 114 patients from 2 institutions.
Twenty-five radiomic features were significantly associated with fibrosis stage, with 80% of the top 10 features originating from portal venous phase spleen images. The radiomics models showed good performance in the validation cohort (C-indices 0.723-0.808) and excellent calibration. Decision curve analysis indicated clinical benefits, with machine learning-based radiomics models (Random Forest score and support vector machine based radiomics score) providing more significant advantages.
Radiomic features offer significant benefits over existing serum indices for staging virus-driven liver fibrosis, underscoring the value of radiomics in enhancing diagnostic accuracy. Specifically, radiomics analysis of the spleen presents additional noninvasive options for assessing fibrosis, highlighting its potential in improving patient management and outcomes.</description><identifier>ISSN: 2155-384X</identifier><identifier>EISSN: 2155-384X</identifier><identifier>DOI: 10.14309/ctg.0000000000000712</identifier><identifier>PMID: 38801182</identifier><language>eng</language><publisher>United States: Wolters Kluwer Health Medical Research, Lippincott Williams & Wilkins</publisher><subject>Abdomen ; Adult ; Aged ; Biomarkers ; Biopsy ; Contrast Media ; Female ; Hepatitis B ; Hepatitis C ; Humans ; Liver ; Liver - diagnostic imaging ; Liver - pathology ; Liver cancer ; Liver cirrhosis ; Liver Cirrhosis - diagnostic imaging ; Liver Cirrhosis - pathology ; Liver Cirrhosis - virology ; Liver diseases ; Machine Learning ; Magnetic resonance imaging ; Male ; Medical imaging ; Middle Aged ; Radiomics ; Regression analysis ; Reproducibility ; Reproducibility of Results ; Retrospective Studies ; Spleen ; Spleen - diagnostic imaging ; Spleen - pathology ; Tomography, X-Ray Computed</subject><ispartof>Clinical and translational gastroenterology, 2024-10, Vol.15 (10), p.e1</ispartof><rights>Copyright © 2024 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of The American College of Gastroenterology.</rights><rights>2024 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of The American College of Gastroenterology. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of The American College of Gastroenterology 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c318t-2c75802530475e05e58c838897c6f18b99022c886157b8131c5b6c0e24b12d6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500785/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500785/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38801182$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jincheng</creatorcontrib><creatorcontrib>Tang, Shengnan</creatorcontrib><creatorcontrib>Wu, Jin</creatorcontrib><creatorcontrib>Xu, Shanshan</creatorcontrib><creatorcontrib>Sun, Qikai</creatorcontrib><creatorcontrib>Zhou, Zheyu</creatorcontrib><creatorcontrib>Xu, Xiaoliang</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Liu, Qiaoyu</creatorcontrib><creatorcontrib>Mao, Yingfan</creatorcontrib><creatorcontrib>He, Jian</creatorcontrib><creatorcontrib>Zhang, Xudong</creatorcontrib><creatorcontrib>Yin, Yin</creatorcontrib><title>Radiomic Features at Contrast-Enhanced CT Predict Virus-Driven Liver Fibrosis: A Multi-Institutional Study</title><title>Clinical and translational gastroenterology</title><addtitle>Clin Transl Gastroenterol</addtitle><description>Liver fibrosis is a major cause of morbidity and mortality among in patients with chronic hepatitis. Radiomics, particularly of the spleen, may improve diagnostic accuracy and treatment strategies. External validations are necessary to ensure reliability and generalizability.
In this retrospective study, we developed 3 radiomics models using contrast-enhanced computed tomography scans from 167 patients with liver fibrosis (training group) between January 2020 and December 2021. Radiomic features were extracted from arterial venous, portal venous, and equilibrium phase images. Recursive feature selection random forest and the least absolute shrinkage and selection operator logistic regression were used for feature selection and dimensionality reduction. Performance was assessed by area under the curve, C-index, calibration plots, and decision curve analysis. External validation was performed on 114 patients from 2 institutions.
Twenty-five radiomic features were significantly associated with fibrosis stage, with 80% of the top 10 features originating from portal venous phase spleen images. The radiomics models showed good performance in the validation cohort (C-indices 0.723-0.808) and excellent calibration. Decision curve analysis indicated clinical benefits, with machine learning-based radiomics models (Random Forest score and support vector machine based radiomics score) providing more significant advantages.
Radiomic features offer significant benefits over existing serum indices for staging virus-driven liver fibrosis, underscoring the value of radiomics in enhancing diagnostic accuracy. Specifically, radiomics analysis of the spleen presents additional noninvasive options for assessing fibrosis, highlighting its potential in improving patient management and outcomes.</description><subject>Abdomen</subject><subject>Adult</subject><subject>Aged</subject><subject>Biomarkers</subject><subject>Biopsy</subject><subject>Contrast Media</subject><subject>Female</subject><subject>Hepatitis B</subject><subject>Hepatitis C</subject><subject>Humans</subject><subject>Liver</subject><subject>Liver - diagnostic imaging</subject><subject>Liver - pathology</subject><subject>Liver cancer</subject><subject>Liver cirrhosis</subject><subject>Liver Cirrhosis - diagnostic imaging</subject><subject>Liver Cirrhosis - pathology</subject><subject>Liver Cirrhosis - virology</subject><subject>Liver diseases</subject><subject>Machine Learning</subject><subject>Magnetic resonance imaging</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Middle Aged</subject><subject>Radiomics</subject><subject>Regression analysis</subject><subject>Reproducibility</subject><subject>Reproducibility of Results</subject><subject>Retrospective Studies</subject><subject>Spleen</subject><subject>Spleen - diagnostic imaging</subject><subject>Spleen - pathology</subject><subject>Tomography, X-Ray Computed</subject><issn>2155-384X</issn><issn>2155-384X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkUtLAzEUhYMoVtSfoATcuJmax2Qm40aktipUFF-4C5lMqinTieZR6L831SrVLJIL-e7h3nMAOMCoj3OKqhMVXvto_ZSYbIAdghnLKM9fNtfqHtj3frqEckR4VW2DHuUcYczJDpjey8bYmVFwpGWITnsoAxzYLjjpQzbs3mSndAMHj_DO6caoAJ-Niz67cGauOzhOt4MjUzvrjT-F5_AmtsFk150PJsRgbCdb-BBis9gDWxPZer2_enfB02j4OLjKxreX14PzcaYo5iEjqmQcEUZRXjKNmGZc8TRwVapignldVYgQxXmBWVlzTLFidaGQJnmNSVPUdBecfeu-x3qmG6WXu7Ti3ZmZdAthpRF_fzrzJl7tXGDMkpGcJYXjlYKzH1H7IGbGK922stM2ekFRgcq8osUSPfqHTm10aedEYZI8LpJeotg3pZJN3unJ7zQYia9ERUpU_E809R2ur_Lb9ZMf_QSUlpuE</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Wang, Jincheng</creator><creator>Tang, Shengnan</creator><creator>Wu, Jin</creator><creator>Xu, Shanshan</creator><creator>Sun, Qikai</creator><creator>Zhou, Zheyu</creator><creator>Xu, Xiaoliang</creator><creator>Liu, Yang</creator><creator>Liu, Qiaoyu</creator><creator>Mao, Yingfan</creator><creator>He, Jian</creator><creator>Zhang, Xudong</creator><creator>Yin, Yin</creator><general>Wolters Kluwer Health Medical Research, Lippincott Williams & Wilkins</general><general>Wolters Kluwer</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20241001</creationdate><title>Radiomic Features at Contrast-Enhanced CT Predict Virus-Driven Liver Fibrosis: A Multi-Institutional Study</title><author>Wang, Jincheng ; Tang, Shengnan ; Wu, Jin ; Xu, Shanshan ; Sun, Qikai ; Zhou, Zheyu ; Xu, Xiaoliang ; Liu, Yang ; Liu, Qiaoyu ; Mao, Yingfan ; He, Jian ; Zhang, Xudong ; Yin, Yin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-2c75802530475e05e58c838897c6f18b99022c886157b8131c5b6c0e24b12d6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abdomen</topic><topic>Adult</topic><topic>Aged</topic><topic>Biomarkers</topic><topic>Biopsy</topic><topic>Contrast Media</topic><topic>Female</topic><topic>Hepatitis B</topic><topic>Hepatitis C</topic><topic>Humans</topic><topic>Liver</topic><topic>Liver - diagnostic imaging</topic><topic>Liver - pathology</topic><topic>Liver cancer</topic><topic>Liver cirrhosis</topic><topic>Liver Cirrhosis - diagnostic imaging</topic><topic>Liver Cirrhosis - pathology</topic><topic>Liver Cirrhosis - virology</topic><topic>Liver diseases</topic><topic>Machine Learning</topic><topic>Magnetic resonance imaging</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Middle Aged</topic><topic>Radiomics</topic><topic>Regression analysis</topic><topic>Reproducibility</topic><topic>Reproducibility of Results</topic><topic>Retrospective Studies</topic><topic>Spleen</topic><topic>Spleen - diagnostic imaging</topic><topic>Spleen - pathology</topic><topic>Tomography, X-Ray Computed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jincheng</creatorcontrib><creatorcontrib>Tang, Shengnan</creatorcontrib><creatorcontrib>Wu, Jin</creatorcontrib><creatorcontrib>Xu, Shanshan</creatorcontrib><creatorcontrib>Sun, Qikai</creatorcontrib><creatorcontrib>Zhou, Zheyu</creatorcontrib><creatorcontrib>Xu, Xiaoliang</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Liu, Qiaoyu</creatorcontrib><creatorcontrib>Mao, Yingfan</creatorcontrib><creatorcontrib>He, Jian</creatorcontrib><creatorcontrib>Zhang, Xudong</creatorcontrib><creatorcontrib>Yin, Yin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical and translational gastroenterology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jincheng</au><au>Tang, Shengnan</au><au>Wu, Jin</au><au>Xu, Shanshan</au><au>Sun, Qikai</au><au>Zhou, Zheyu</au><au>Xu, Xiaoliang</au><au>Liu, Yang</au><au>Liu, Qiaoyu</au><au>Mao, Yingfan</au><au>He, Jian</au><au>Zhang, Xudong</au><au>Yin, Yin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiomic Features at Contrast-Enhanced CT Predict Virus-Driven Liver Fibrosis: A Multi-Institutional Study</atitle><jtitle>Clinical and translational gastroenterology</jtitle><addtitle>Clin Transl Gastroenterol</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>15</volume><issue>10</issue><spage>e1</spage><pages>e1-</pages><issn>2155-384X</issn><eissn>2155-384X</eissn><abstract>Liver fibrosis is a major cause of morbidity and mortality among in patients with chronic hepatitis. Radiomics, particularly of the spleen, may improve diagnostic accuracy and treatment strategies. External validations are necessary to ensure reliability and generalizability.
In this retrospective study, we developed 3 radiomics models using contrast-enhanced computed tomography scans from 167 patients with liver fibrosis (training group) between January 2020 and December 2021. Radiomic features were extracted from arterial venous, portal venous, and equilibrium phase images. Recursive feature selection random forest and the least absolute shrinkage and selection operator logistic regression were used for feature selection and dimensionality reduction. Performance was assessed by area under the curve, C-index, calibration plots, and decision curve analysis. External validation was performed on 114 patients from 2 institutions.
Twenty-five radiomic features were significantly associated with fibrosis stage, with 80% of the top 10 features originating from portal venous phase spleen images. The radiomics models showed good performance in the validation cohort (C-indices 0.723-0.808) and excellent calibration. Decision curve analysis indicated clinical benefits, with machine learning-based radiomics models (Random Forest score and support vector machine based radiomics score) providing more significant advantages.
Radiomic features offer significant benefits over existing serum indices for staging virus-driven liver fibrosis, underscoring the value of radiomics in enhancing diagnostic accuracy. Specifically, radiomics analysis of the spleen presents additional noninvasive options for assessing fibrosis, highlighting its potential in improving patient management and outcomes.</abstract><cop>United States</cop><pub>Wolters Kluwer Health Medical Research, Lippincott Williams & Wilkins</pub><pmid>38801182</pmid><doi>10.14309/ctg.0000000000000712</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2155-384X |
ispartof | Clinical and translational gastroenterology, 2024-10, Vol.15 (10), p.e1 |
issn | 2155-384X 2155-384X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11500785 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Abdomen Adult Aged Biomarkers Biopsy Contrast Media Female Hepatitis B Hepatitis C Humans Liver Liver - diagnostic imaging Liver - pathology Liver cancer Liver cirrhosis Liver Cirrhosis - diagnostic imaging Liver Cirrhosis - pathology Liver Cirrhosis - virology Liver diseases Machine Learning Magnetic resonance imaging Male Medical imaging Middle Aged Radiomics Regression analysis Reproducibility Reproducibility of Results Retrospective Studies Spleen Spleen - diagnostic imaging Spleen - pathology Tomography, X-Ray Computed |
title | Radiomic Features at Contrast-Enhanced CT Predict Virus-Driven Liver Fibrosis: A Multi-Institutional Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A49%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiomic%20Features%20at%20Contrast-Enhanced%20CT%20Predict%20Virus-Driven%20Liver%20Fibrosis:%20A%20Multi-Institutional%20Study&rft.jtitle=Clinical%20and%20translational%20gastroenterology&rft.au=Wang,%20Jincheng&rft.date=2024-10-01&rft.volume=15&rft.issue=10&rft.spage=e1&rft.pages=e1-&rft.issn=2155-384X&rft.eissn=2155-384X&rft_id=info:doi/10.14309/ctg.0000000000000712&rft_dat=%3Cproquest_pubme%3E3060749365%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121186853&rft_id=info:pmid/38801182&rfr_iscdi=true |