Radiomic Features at Contrast-Enhanced CT Predict Virus-Driven Liver Fibrosis: A Multi-Institutional Study

Liver fibrosis is a major cause of morbidity and mortality among in patients with chronic hepatitis. Radiomics, particularly of the spleen, may improve diagnostic accuracy and treatment strategies. External validations are necessary to ensure reliability and generalizability. In this retrospective s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical and translational gastroenterology 2024-10, Vol.15 (10), p.e1
Hauptverfasser: Wang, Jincheng, Tang, Shengnan, Wu, Jin, Xu, Shanshan, Sun, Qikai, Zhou, Zheyu, Xu, Xiaoliang, Liu, Yang, Liu, Qiaoyu, Mao, Yingfan, He, Jian, Zhang, Xudong, Yin, Yin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page e1
container_title Clinical and translational gastroenterology
container_volume 15
creator Wang, Jincheng
Tang, Shengnan
Wu, Jin
Xu, Shanshan
Sun, Qikai
Zhou, Zheyu
Xu, Xiaoliang
Liu, Yang
Liu, Qiaoyu
Mao, Yingfan
He, Jian
Zhang, Xudong
Yin, Yin
description Liver fibrosis is a major cause of morbidity and mortality among in patients with chronic hepatitis. Radiomics, particularly of the spleen, may improve diagnostic accuracy and treatment strategies. External validations are necessary to ensure reliability and generalizability. In this retrospective study, we developed 3 radiomics models using contrast-enhanced computed tomography scans from 167 patients with liver fibrosis (training group) between January 2020 and December 2021. Radiomic features were extracted from arterial venous, portal venous, and equilibrium phase images. Recursive feature selection random forest and the least absolute shrinkage and selection operator logistic regression were used for feature selection and dimensionality reduction. Performance was assessed by area under the curve, C-index, calibration plots, and decision curve analysis. External validation was performed on 114 patients from 2 institutions. Twenty-five radiomic features were significantly associated with fibrosis stage, with 80% of the top 10 features originating from portal venous phase spleen images. The radiomics models showed good performance in the validation cohort (C-indices 0.723-0.808) and excellent calibration. Decision curve analysis indicated clinical benefits, with machine learning-based radiomics models (Random Forest score and support vector machine based radiomics score) providing more significant advantages. Radiomic features offer significant benefits over existing serum indices for staging virus-driven liver fibrosis, underscoring the value of radiomics in enhancing diagnostic accuracy. Specifically, radiomics analysis of the spleen presents additional noninvasive options for assessing fibrosis, highlighting its potential in improving patient management and outcomes.
doi_str_mv 10.14309/ctg.0000000000000712
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11500785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060749365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-2c75802530475e05e58c838897c6f18b99022c886157b8131c5b6c0e24b12d6b3</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMoVtSfoATcuJmax2Qm40aktipUFF-4C5lMqinTieZR6L831SrVLJIL-e7h3nMAOMCoj3OKqhMVXvto_ZSYbIAdghnLKM9fNtfqHtj3frqEckR4VW2DHuUcYczJDpjey8bYmVFwpGWITnsoAxzYLjjpQzbs3mSndAMHj_DO6caoAJ-Niz67cGauOzhOt4MjUzvrjT-F5_AmtsFk150PJsRgbCdb-BBis9gDWxPZer2_enfB02j4OLjKxreX14PzcaYo5iEjqmQcEUZRXjKNmGZc8TRwVapignldVYgQxXmBWVlzTLFidaGQJnmNSVPUdBecfeu-x3qmG6WXu7Ti3ZmZdAthpRF_fzrzJl7tXGDMkpGcJYXjlYKzH1H7IGbGK922stM2ekFRgcq8osUSPfqHTm10aedEYZI8LpJeotg3pZJN3unJ7zQYia9ERUpU_E809R2ur_Lb9ZMf_QSUlpuE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121186853</pqid></control><display><type>article</type><title>Radiomic Features at Contrast-Enhanced CT Predict Virus-Driven Liver Fibrosis: A Multi-Institutional Study</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Wang, Jincheng ; Tang, Shengnan ; Wu, Jin ; Xu, Shanshan ; Sun, Qikai ; Zhou, Zheyu ; Xu, Xiaoliang ; Liu, Yang ; Liu, Qiaoyu ; Mao, Yingfan ; He, Jian ; Zhang, Xudong ; Yin, Yin</creator><creatorcontrib>Wang, Jincheng ; Tang, Shengnan ; Wu, Jin ; Xu, Shanshan ; Sun, Qikai ; Zhou, Zheyu ; Xu, Xiaoliang ; Liu, Yang ; Liu, Qiaoyu ; Mao, Yingfan ; He, Jian ; Zhang, Xudong ; Yin, Yin</creatorcontrib><description>Liver fibrosis is a major cause of morbidity and mortality among in patients with chronic hepatitis. Radiomics, particularly of the spleen, may improve diagnostic accuracy and treatment strategies. External validations are necessary to ensure reliability and generalizability. In this retrospective study, we developed 3 radiomics models using contrast-enhanced computed tomography scans from 167 patients with liver fibrosis (training group) between January 2020 and December 2021. Radiomic features were extracted from arterial venous, portal venous, and equilibrium phase images. Recursive feature selection random forest and the least absolute shrinkage and selection operator logistic regression were used for feature selection and dimensionality reduction. Performance was assessed by area under the curve, C-index, calibration plots, and decision curve analysis. External validation was performed on 114 patients from 2 institutions. Twenty-five radiomic features were significantly associated with fibrosis stage, with 80% of the top 10 features originating from portal venous phase spleen images. The radiomics models showed good performance in the validation cohort (C-indices 0.723-0.808) and excellent calibration. Decision curve analysis indicated clinical benefits, with machine learning-based radiomics models (Random Forest score and support vector machine based radiomics score) providing more significant advantages. Radiomic features offer significant benefits over existing serum indices for staging virus-driven liver fibrosis, underscoring the value of radiomics in enhancing diagnostic accuracy. Specifically, radiomics analysis of the spleen presents additional noninvasive options for assessing fibrosis, highlighting its potential in improving patient management and outcomes.</description><identifier>ISSN: 2155-384X</identifier><identifier>EISSN: 2155-384X</identifier><identifier>DOI: 10.14309/ctg.0000000000000712</identifier><identifier>PMID: 38801182</identifier><language>eng</language><publisher>United States: Wolters Kluwer Health Medical Research, Lippincott Williams &amp; Wilkins</publisher><subject>Abdomen ; Adult ; Aged ; Biomarkers ; Biopsy ; Contrast Media ; Female ; Hepatitis B ; Hepatitis C ; Humans ; Liver ; Liver - diagnostic imaging ; Liver - pathology ; Liver cancer ; Liver cirrhosis ; Liver Cirrhosis - diagnostic imaging ; Liver Cirrhosis - pathology ; Liver Cirrhosis - virology ; Liver diseases ; Machine Learning ; Magnetic resonance imaging ; Male ; Medical imaging ; Middle Aged ; Radiomics ; Regression analysis ; Reproducibility ; Reproducibility of Results ; Retrospective Studies ; Spleen ; Spleen - diagnostic imaging ; Spleen - pathology ; Tomography, X-Ray Computed</subject><ispartof>Clinical and translational gastroenterology, 2024-10, Vol.15 (10), p.e1</ispartof><rights>Copyright © 2024 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of The American College of Gastroenterology.</rights><rights>2024 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of The American College of Gastroenterology. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of The American College of Gastroenterology 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c318t-2c75802530475e05e58c838897c6f18b99022c886157b8131c5b6c0e24b12d6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500785/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500785/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38801182$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jincheng</creatorcontrib><creatorcontrib>Tang, Shengnan</creatorcontrib><creatorcontrib>Wu, Jin</creatorcontrib><creatorcontrib>Xu, Shanshan</creatorcontrib><creatorcontrib>Sun, Qikai</creatorcontrib><creatorcontrib>Zhou, Zheyu</creatorcontrib><creatorcontrib>Xu, Xiaoliang</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Liu, Qiaoyu</creatorcontrib><creatorcontrib>Mao, Yingfan</creatorcontrib><creatorcontrib>He, Jian</creatorcontrib><creatorcontrib>Zhang, Xudong</creatorcontrib><creatorcontrib>Yin, Yin</creatorcontrib><title>Radiomic Features at Contrast-Enhanced CT Predict Virus-Driven Liver Fibrosis: A Multi-Institutional Study</title><title>Clinical and translational gastroenterology</title><addtitle>Clin Transl Gastroenterol</addtitle><description>Liver fibrosis is a major cause of morbidity and mortality among in patients with chronic hepatitis. Radiomics, particularly of the spleen, may improve diagnostic accuracy and treatment strategies. External validations are necessary to ensure reliability and generalizability. In this retrospective study, we developed 3 radiomics models using contrast-enhanced computed tomography scans from 167 patients with liver fibrosis (training group) between January 2020 and December 2021. Radiomic features were extracted from arterial venous, portal venous, and equilibrium phase images. Recursive feature selection random forest and the least absolute shrinkage and selection operator logistic regression were used for feature selection and dimensionality reduction. Performance was assessed by area under the curve, C-index, calibration plots, and decision curve analysis. External validation was performed on 114 patients from 2 institutions. Twenty-five radiomic features were significantly associated with fibrosis stage, with 80% of the top 10 features originating from portal venous phase spleen images. The radiomics models showed good performance in the validation cohort (C-indices 0.723-0.808) and excellent calibration. Decision curve analysis indicated clinical benefits, with machine learning-based radiomics models (Random Forest score and support vector machine based radiomics score) providing more significant advantages. Radiomic features offer significant benefits over existing serum indices for staging virus-driven liver fibrosis, underscoring the value of radiomics in enhancing diagnostic accuracy. Specifically, radiomics analysis of the spleen presents additional noninvasive options for assessing fibrosis, highlighting its potential in improving patient management and outcomes.</description><subject>Abdomen</subject><subject>Adult</subject><subject>Aged</subject><subject>Biomarkers</subject><subject>Biopsy</subject><subject>Contrast Media</subject><subject>Female</subject><subject>Hepatitis B</subject><subject>Hepatitis C</subject><subject>Humans</subject><subject>Liver</subject><subject>Liver - diagnostic imaging</subject><subject>Liver - pathology</subject><subject>Liver cancer</subject><subject>Liver cirrhosis</subject><subject>Liver Cirrhosis - diagnostic imaging</subject><subject>Liver Cirrhosis - pathology</subject><subject>Liver Cirrhosis - virology</subject><subject>Liver diseases</subject><subject>Machine Learning</subject><subject>Magnetic resonance imaging</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Middle Aged</subject><subject>Radiomics</subject><subject>Regression analysis</subject><subject>Reproducibility</subject><subject>Reproducibility of Results</subject><subject>Retrospective Studies</subject><subject>Spleen</subject><subject>Spleen - diagnostic imaging</subject><subject>Spleen - pathology</subject><subject>Tomography, X-Ray Computed</subject><issn>2155-384X</issn><issn>2155-384X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkUtLAzEUhYMoVtSfoATcuJmax2Qm40aktipUFF-4C5lMqinTieZR6L831SrVLJIL-e7h3nMAOMCoj3OKqhMVXvto_ZSYbIAdghnLKM9fNtfqHtj3frqEckR4VW2DHuUcYczJDpjey8bYmVFwpGWITnsoAxzYLjjpQzbs3mSndAMHj_DO6caoAJ-Niz67cGauOzhOt4MjUzvrjT-F5_AmtsFk150PJsRgbCdb-BBis9gDWxPZer2_enfB02j4OLjKxreX14PzcaYo5iEjqmQcEUZRXjKNmGZc8TRwVapignldVYgQxXmBWVlzTLFidaGQJnmNSVPUdBecfeu-x3qmG6WXu7Ti3ZmZdAthpRF_fzrzJl7tXGDMkpGcJYXjlYKzH1H7IGbGK922stM2ekFRgcq8osUSPfqHTm10aedEYZI8LpJeotg3pZJN3unJ7zQYia9ERUpU_E809R2ur_Lb9ZMf_QSUlpuE</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Wang, Jincheng</creator><creator>Tang, Shengnan</creator><creator>Wu, Jin</creator><creator>Xu, Shanshan</creator><creator>Sun, Qikai</creator><creator>Zhou, Zheyu</creator><creator>Xu, Xiaoliang</creator><creator>Liu, Yang</creator><creator>Liu, Qiaoyu</creator><creator>Mao, Yingfan</creator><creator>He, Jian</creator><creator>Zhang, Xudong</creator><creator>Yin, Yin</creator><general>Wolters Kluwer Health Medical Research, Lippincott Williams &amp; Wilkins</general><general>Wolters Kluwer</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20241001</creationdate><title>Radiomic Features at Contrast-Enhanced CT Predict Virus-Driven Liver Fibrosis: A Multi-Institutional Study</title><author>Wang, Jincheng ; Tang, Shengnan ; Wu, Jin ; Xu, Shanshan ; Sun, Qikai ; Zhou, Zheyu ; Xu, Xiaoliang ; Liu, Yang ; Liu, Qiaoyu ; Mao, Yingfan ; He, Jian ; Zhang, Xudong ; Yin, Yin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-2c75802530475e05e58c838897c6f18b99022c886157b8131c5b6c0e24b12d6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abdomen</topic><topic>Adult</topic><topic>Aged</topic><topic>Biomarkers</topic><topic>Biopsy</topic><topic>Contrast Media</topic><topic>Female</topic><topic>Hepatitis B</topic><topic>Hepatitis C</topic><topic>Humans</topic><topic>Liver</topic><topic>Liver - diagnostic imaging</topic><topic>Liver - pathology</topic><topic>Liver cancer</topic><topic>Liver cirrhosis</topic><topic>Liver Cirrhosis - diagnostic imaging</topic><topic>Liver Cirrhosis - pathology</topic><topic>Liver Cirrhosis - virology</topic><topic>Liver diseases</topic><topic>Machine Learning</topic><topic>Magnetic resonance imaging</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Middle Aged</topic><topic>Radiomics</topic><topic>Regression analysis</topic><topic>Reproducibility</topic><topic>Reproducibility of Results</topic><topic>Retrospective Studies</topic><topic>Spleen</topic><topic>Spleen - diagnostic imaging</topic><topic>Spleen - pathology</topic><topic>Tomography, X-Ray Computed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jincheng</creatorcontrib><creatorcontrib>Tang, Shengnan</creatorcontrib><creatorcontrib>Wu, Jin</creatorcontrib><creatorcontrib>Xu, Shanshan</creatorcontrib><creatorcontrib>Sun, Qikai</creatorcontrib><creatorcontrib>Zhou, Zheyu</creatorcontrib><creatorcontrib>Xu, Xiaoliang</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Liu, Qiaoyu</creatorcontrib><creatorcontrib>Mao, Yingfan</creatorcontrib><creatorcontrib>He, Jian</creatorcontrib><creatorcontrib>Zhang, Xudong</creatorcontrib><creatorcontrib>Yin, Yin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical and translational gastroenterology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jincheng</au><au>Tang, Shengnan</au><au>Wu, Jin</au><au>Xu, Shanshan</au><au>Sun, Qikai</au><au>Zhou, Zheyu</au><au>Xu, Xiaoliang</au><au>Liu, Yang</au><au>Liu, Qiaoyu</au><au>Mao, Yingfan</au><au>He, Jian</au><au>Zhang, Xudong</au><au>Yin, Yin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiomic Features at Contrast-Enhanced CT Predict Virus-Driven Liver Fibrosis: A Multi-Institutional Study</atitle><jtitle>Clinical and translational gastroenterology</jtitle><addtitle>Clin Transl Gastroenterol</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>15</volume><issue>10</issue><spage>e1</spage><pages>e1-</pages><issn>2155-384X</issn><eissn>2155-384X</eissn><abstract>Liver fibrosis is a major cause of morbidity and mortality among in patients with chronic hepatitis. Radiomics, particularly of the spleen, may improve diagnostic accuracy and treatment strategies. External validations are necessary to ensure reliability and generalizability. In this retrospective study, we developed 3 radiomics models using contrast-enhanced computed tomography scans from 167 patients with liver fibrosis (training group) between January 2020 and December 2021. Radiomic features were extracted from arterial venous, portal venous, and equilibrium phase images. Recursive feature selection random forest and the least absolute shrinkage and selection operator logistic regression were used for feature selection and dimensionality reduction. Performance was assessed by area under the curve, C-index, calibration plots, and decision curve analysis. External validation was performed on 114 patients from 2 institutions. Twenty-five radiomic features were significantly associated with fibrosis stage, with 80% of the top 10 features originating from portal venous phase spleen images. The radiomics models showed good performance in the validation cohort (C-indices 0.723-0.808) and excellent calibration. Decision curve analysis indicated clinical benefits, with machine learning-based radiomics models (Random Forest score and support vector machine based radiomics score) providing more significant advantages. Radiomic features offer significant benefits over existing serum indices for staging virus-driven liver fibrosis, underscoring the value of radiomics in enhancing diagnostic accuracy. Specifically, radiomics analysis of the spleen presents additional noninvasive options for assessing fibrosis, highlighting its potential in improving patient management and outcomes.</abstract><cop>United States</cop><pub>Wolters Kluwer Health Medical Research, Lippincott Williams &amp; Wilkins</pub><pmid>38801182</pmid><doi>10.14309/ctg.0000000000000712</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2155-384X
ispartof Clinical and translational gastroenterology, 2024-10, Vol.15 (10), p.e1
issn 2155-384X
2155-384X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11500785
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Abdomen
Adult
Aged
Biomarkers
Biopsy
Contrast Media
Female
Hepatitis B
Hepatitis C
Humans
Liver
Liver - diagnostic imaging
Liver - pathology
Liver cancer
Liver cirrhosis
Liver Cirrhosis - diagnostic imaging
Liver Cirrhosis - pathology
Liver Cirrhosis - virology
Liver diseases
Machine Learning
Magnetic resonance imaging
Male
Medical imaging
Middle Aged
Radiomics
Regression analysis
Reproducibility
Reproducibility of Results
Retrospective Studies
Spleen
Spleen - diagnostic imaging
Spleen - pathology
Tomography, X-Ray Computed
title Radiomic Features at Contrast-Enhanced CT Predict Virus-Driven Liver Fibrosis: A Multi-Institutional Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A49%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiomic%20Features%20at%20Contrast-Enhanced%20CT%20Predict%20Virus-Driven%20Liver%20Fibrosis:%20A%20Multi-Institutional%20Study&rft.jtitle=Clinical%20and%20translational%20gastroenterology&rft.au=Wang,%20Jincheng&rft.date=2024-10-01&rft.volume=15&rft.issue=10&rft.spage=e1&rft.pages=e1-&rft.issn=2155-384X&rft.eissn=2155-384X&rft_id=info:doi/10.14309/ctg.0000000000000712&rft_dat=%3Cproquest_pubme%3E3060749365%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3121186853&rft_id=info:pmid/38801182&rfr_iscdi=true