Structural analysis of noncanonical translation initiation complexes

Translation initiation is a highly regulated, multi-step process that is critical for efficient and accurate protein synthesis. In bacteria, initiation begins when mRNA, initiation factors, and a dedicated initiator fMet-tRNAfMet bind the small (30S) ribosomal subunit. Specific binding of fMet-tRNAf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2024-10, Vol.300 (10), p.107743, Article 107743
Hauptverfasser: Mattingly, Jacob M., Nguyen, Ha An, Roy, Bappaditya, Fredrick, Kurt, Dunham, Christine M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 107743
container_title The Journal of biological chemistry
container_volume 300
creator Mattingly, Jacob M.
Nguyen, Ha An
Roy, Bappaditya
Fredrick, Kurt
Dunham, Christine M.
description Translation initiation is a highly regulated, multi-step process that is critical for efficient and accurate protein synthesis. In bacteria, initiation begins when mRNA, initiation factors, and a dedicated initiator fMet-tRNAfMet bind the small (30S) ribosomal subunit. Specific binding of fMet-tRNAfMet in the peptidyl (P) site is mediated by the inspection of the fMet moiety by initiation factor IF2 and of three conserved G-C base pairs in the tRNA anticodon stem by the 30S head domain. Tandem A-minor interactions form between 16S ribosomal RNA nucleotides A1339 and G1338 and tRNA base pairs G30-C40 and G29-C41, respectively. Swapping the G30-C40 pair of tRNAfMet with C-G (called tRNAfMet M1) reduces discrimination against the noncanonical start codon CUG in vitro, suggesting crosstalk between the gripping of the anticodon stem and recognition of the start codon. Here, we solved electron cryomicroscopy structures of Escherichia coli 70S initiation complexes containing the fMet-tRNAfMet M1 variant paired to the noncanonical CUG start codon, in the presence or absence of IF2 and the non-hydrolyzable GTP analog GDPCP, alongside structures of 70S initiation complexes containing this tRNAfMet variant paired to the canonical bacterial start codons AUG, GUG, and UUG. We find that the M1 mutation weakens A-minor interactions between tRNAfMet and 16S nucleotides A1339 and G1338, with IF2 strengthening the interaction of G1338 with the tRNA minor groove. These structures suggest how even slight changes to the recognition of the fMet-tRNAfMet anticodon stem by the ribosome can impact the start codon selection.
doi_str_mv 10.1016/j.jbc.2024.107743
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11497404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925824022440</els_id><sourcerecordid>3100273220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-1d3d87e9bb9ab6e741b7d36d61f23f030118cc97b8d5d9ee61e486bf15b1ee7b3</originalsourceid><addsrcrecordid>eNp9kE1PGzEQhi3UCgLlB_RS5djLBo_trHfVQ1WFr0qRONBK3Cx_zBZHGzvYu4j8-xotIHqpD_ZY877vjB5CPgNdAIX6bLPYGLtglInyl1LwAzID2vCKL-HuA5lRyqBq2bI5Isc5b2g5ooVDcsRbxljd0Bk5vx3SaIcx6X6ug-732ed57OYhBqvL5W1pDEmH3OvBxzD3wQ9-Km3c7np8wvyJfOx0n_H05T0hvy8vfq2uq_XN1c_Vj3VlORdDBY67RmJrTKtNjVKAkY7XroaO8Y5yCtBY20rTuKVrEWtA0dSmg6UBRGn4Cfk-5e5Gs0VnMZTNerVLfqvTXkXt1b-d4O_Vn_ioAEQrBRUl4etLQooPI-ZBbX222Pc6YByz4lCYSc4YLVKYpDbFnBN2b3OAqmf8aqMKfvWMX034i-fL-wXfHK-8i-DbJMCC6dFjUtl6DBadT2gH5aL_T_xfIWGX5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100273220</pqid></control><display><type>article</type><title>Structural analysis of noncanonical translation initiation complexes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Mattingly, Jacob M. ; Nguyen, Ha An ; Roy, Bappaditya ; Fredrick, Kurt ; Dunham, Christine M.</creator><creatorcontrib>Mattingly, Jacob M. ; Nguyen, Ha An ; Roy, Bappaditya ; Fredrick, Kurt ; Dunham, Christine M.</creatorcontrib><description>Translation initiation is a highly regulated, multi-step process that is critical for efficient and accurate protein synthesis. In bacteria, initiation begins when mRNA, initiation factors, and a dedicated initiator fMet-tRNAfMet bind the small (30S) ribosomal subunit. Specific binding of fMet-tRNAfMet in the peptidyl (P) site is mediated by the inspection of the fMet moiety by initiation factor IF2 and of three conserved G-C base pairs in the tRNA anticodon stem by the 30S head domain. Tandem A-minor interactions form between 16S ribosomal RNA nucleotides A1339 and G1338 and tRNA base pairs G30-C40 and G29-C41, respectively. Swapping the G30-C40 pair of tRNAfMet with C-G (called tRNAfMet M1) reduces discrimination against the noncanonical start codon CUG in vitro, suggesting crosstalk between the gripping of the anticodon stem and recognition of the start codon. Here, we solved electron cryomicroscopy structures of Escherichia coli 70S initiation complexes containing the fMet-tRNAfMet M1 variant paired to the noncanonical CUG start codon, in the presence or absence of IF2 and the non-hydrolyzable GTP analog GDPCP, alongside structures of 70S initiation complexes containing this tRNAfMet variant paired to the canonical bacterial start codons AUG, GUG, and UUG. We find that the M1 mutation weakens A-minor interactions between tRNAfMet and 16S nucleotides A1339 and G1338, with IF2 strengthening the interaction of G1338 with the tRNA minor groove. These structures suggest how even slight changes to the recognition of the fMet-tRNAfMet anticodon stem by the ribosome can impact the start codon selection.</description><identifier>ISSN: 0021-9258</identifier><identifier>ISSN: 1083-351X</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2024.107743</identifier><identifier>PMID: 39222680</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>16S rRNA ; A-minor motif ; Anticodon - chemistry ; Anticodon - metabolism ; Codon, Initiator - metabolism ; Cryoelectron Microscopy ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Peptide Chain Initiation, Translational ; protein synthesis ; Ribosome Subunits, Small, Bacterial - chemistry ; Ribosome Subunits, Small, Bacterial - metabolism ; RNA, Ribosomal, 16S - chemistry ; RNA, Ribosomal, 16S - genetics ; RNA, Ribosomal, 16S - metabolism ; RNA, Transfer, Met - chemistry ; RNA, Transfer, Met - genetics ; RNA, Transfer, Met - metabolism ; translation initiation ; tRNAfMet</subject><ispartof>The Journal of biological chemistry, 2024-10, Vol.300 (10), p.107743, Article 107743</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2024 The Authors 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c334t-1d3d87e9bb9ab6e741b7d36d61f23f030118cc97b8d5d9ee61e486bf15b1ee7b3</cites><orcidid>0000-0003-2620-2893 ; 0000-0003-0202-915X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497404/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497404/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39222680$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mattingly, Jacob M.</creatorcontrib><creatorcontrib>Nguyen, Ha An</creatorcontrib><creatorcontrib>Roy, Bappaditya</creatorcontrib><creatorcontrib>Fredrick, Kurt</creatorcontrib><creatorcontrib>Dunham, Christine M.</creatorcontrib><title>Structural analysis of noncanonical translation initiation complexes</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Translation initiation is a highly regulated, multi-step process that is critical for efficient and accurate protein synthesis. In bacteria, initiation begins when mRNA, initiation factors, and a dedicated initiator fMet-tRNAfMet bind the small (30S) ribosomal subunit. Specific binding of fMet-tRNAfMet in the peptidyl (P) site is mediated by the inspection of the fMet moiety by initiation factor IF2 and of three conserved G-C base pairs in the tRNA anticodon stem by the 30S head domain. Tandem A-minor interactions form between 16S ribosomal RNA nucleotides A1339 and G1338 and tRNA base pairs G30-C40 and G29-C41, respectively. Swapping the G30-C40 pair of tRNAfMet with C-G (called tRNAfMet M1) reduces discrimination against the noncanonical start codon CUG in vitro, suggesting crosstalk between the gripping of the anticodon stem and recognition of the start codon. Here, we solved electron cryomicroscopy structures of Escherichia coli 70S initiation complexes containing the fMet-tRNAfMet M1 variant paired to the noncanonical CUG start codon, in the presence or absence of IF2 and the non-hydrolyzable GTP analog GDPCP, alongside structures of 70S initiation complexes containing this tRNAfMet variant paired to the canonical bacterial start codons AUG, GUG, and UUG. We find that the M1 mutation weakens A-minor interactions between tRNAfMet and 16S nucleotides A1339 and G1338, with IF2 strengthening the interaction of G1338 with the tRNA minor groove. These structures suggest how even slight changes to the recognition of the fMet-tRNAfMet anticodon stem by the ribosome can impact the start codon selection.</description><subject>16S rRNA</subject><subject>A-minor motif</subject><subject>Anticodon - chemistry</subject><subject>Anticodon - metabolism</subject><subject>Codon, Initiator - metabolism</subject><subject>Cryoelectron Microscopy</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Peptide Chain Initiation, Translational</subject><subject>protein synthesis</subject><subject>Ribosome Subunits, Small, Bacterial - chemistry</subject><subject>Ribosome Subunits, Small, Bacterial - metabolism</subject><subject>RNA, Ribosomal, 16S - chemistry</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>RNA, Ribosomal, 16S - metabolism</subject><subject>RNA, Transfer, Met - chemistry</subject><subject>RNA, Transfer, Met - genetics</subject><subject>RNA, Transfer, Met - metabolism</subject><subject>translation initiation</subject><subject>tRNAfMet</subject><issn>0021-9258</issn><issn>1083-351X</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1PGzEQhi3UCgLlB_RS5djLBo_trHfVQ1WFr0qRONBK3Cx_zBZHGzvYu4j8-xotIHqpD_ZY877vjB5CPgNdAIX6bLPYGLtglInyl1LwAzID2vCKL-HuA5lRyqBq2bI5Isc5b2g5ooVDcsRbxljd0Bk5vx3SaIcx6X6ug-732ed57OYhBqvL5W1pDEmH3OvBxzD3wQ9-Km3c7np8wvyJfOx0n_H05T0hvy8vfq2uq_XN1c_Vj3VlORdDBY67RmJrTKtNjVKAkY7XroaO8Y5yCtBY20rTuKVrEWtA0dSmg6UBRGn4Cfk-5e5Gs0VnMZTNerVLfqvTXkXt1b-d4O_Vn_ioAEQrBRUl4etLQooPI-ZBbX222Pc6YByz4lCYSc4YLVKYpDbFnBN2b3OAqmf8aqMKfvWMX034i-fL-wXfHK-8i-DbJMCC6dFjUtl6DBadT2gH5aL_T_xfIWGX5w</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Mattingly, Jacob M.</creator><creator>Nguyen, Ha An</creator><creator>Roy, Bappaditya</creator><creator>Fredrick, Kurt</creator><creator>Dunham, Christine M.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2620-2893</orcidid><orcidid>https://orcid.org/0000-0003-0202-915X</orcidid></search><sort><creationdate>20241001</creationdate><title>Structural analysis of noncanonical translation initiation complexes</title><author>Mattingly, Jacob M. ; Nguyen, Ha An ; Roy, Bappaditya ; Fredrick, Kurt ; Dunham, Christine M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-1d3d87e9bb9ab6e741b7d36d61f23f030118cc97b8d5d9ee61e486bf15b1ee7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>16S rRNA</topic><topic>A-minor motif</topic><topic>Anticodon - chemistry</topic><topic>Anticodon - metabolism</topic><topic>Codon, Initiator - metabolism</topic><topic>Cryoelectron Microscopy</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Peptide Chain Initiation, Translational</topic><topic>protein synthesis</topic><topic>Ribosome Subunits, Small, Bacterial - chemistry</topic><topic>Ribosome Subunits, Small, Bacterial - metabolism</topic><topic>RNA, Ribosomal, 16S - chemistry</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>RNA, Ribosomal, 16S - metabolism</topic><topic>RNA, Transfer, Met - chemistry</topic><topic>RNA, Transfer, Met - genetics</topic><topic>RNA, Transfer, Met - metabolism</topic><topic>translation initiation</topic><topic>tRNAfMet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mattingly, Jacob M.</creatorcontrib><creatorcontrib>Nguyen, Ha An</creatorcontrib><creatorcontrib>Roy, Bappaditya</creatorcontrib><creatorcontrib>Fredrick, Kurt</creatorcontrib><creatorcontrib>Dunham, Christine M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mattingly, Jacob M.</au><au>Nguyen, Ha An</au><au>Roy, Bappaditya</au><au>Fredrick, Kurt</au><au>Dunham, Christine M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural analysis of noncanonical translation initiation complexes</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>300</volume><issue>10</issue><spage>107743</spage><pages>107743-</pages><artnum>107743</artnum><issn>0021-9258</issn><issn>1083-351X</issn><eissn>1083-351X</eissn><abstract>Translation initiation is a highly regulated, multi-step process that is critical for efficient and accurate protein synthesis. In bacteria, initiation begins when mRNA, initiation factors, and a dedicated initiator fMet-tRNAfMet bind the small (30S) ribosomal subunit. Specific binding of fMet-tRNAfMet in the peptidyl (P) site is mediated by the inspection of the fMet moiety by initiation factor IF2 and of three conserved G-C base pairs in the tRNA anticodon stem by the 30S head domain. Tandem A-minor interactions form between 16S ribosomal RNA nucleotides A1339 and G1338 and tRNA base pairs G30-C40 and G29-C41, respectively. Swapping the G30-C40 pair of tRNAfMet with C-G (called tRNAfMet M1) reduces discrimination against the noncanonical start codon CUG in vitro, suggesting crosstalk between the gripping of the anticodon stem and recognition of the start codon. Here, we solved electron cryomicroscopy structures of Escherichia coli 70S initiation complexes containing the fMet-tRNAfMet M1 variant paired to the noncanonical CUG start codon, in the presence or absence of IF2 and the non-hydrolyzable GTP analog GDPCP, alongside structures of 70S initiation complexes containing this tRNAfMet variant paired to the canonical bacterial start codons AUG, GUG, and UUG. We find that the M1 mutation weakens A-minor interactions between tRNAfMet and 16S nucleotides A1339 and G1338, with IF2 strengthening the interaction of G1338 with the tRNA minor groove. These structures suggest how even slight changes to the recognition of the fMet-tRNAfMet anticodon stem by the ribosome can impact the start codon selection.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39222680</pmid><doi>10.1016/j.jbc.2024.107743</doi><orcidid>https://orcid.org/0000-0003-2620-2893</orcidid><orcidid>https://orcid.org/0000-0003-0202-915X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2024-10, Vol.300 (10), p.107743, Article 107743
issn 0021-9258
1083-351X
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11497404
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects 16S rRNA
A-minor motif
Anticodon - chemistry
Anticodon - metabolism
Codon, Initiator - metabolism
Cryoelectron Microscopy
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Peptide Chain Initiation, Translational
protein synthesis
Ribosome Subunits, Small, Bacterial - chemistry
Ribosome Subunits, Small, Bacterial - metabolism
RNA, Ribosomal, 16S - chemistry
RNA, Ribosomal, 16S - genetics
RNA, Ribosomal, 16S - metabolism
RNA, Transfer, Met - chemistry
RNA, Transfer, Met - genetics
RNA, Transfer, Met - metabolism
translation initiation
tRNAfMet
title Structural analysis of noncanonical translation initiation complexes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20analysis%20of%20noncanonical%20translation%20initiation%20complexes&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Mattingly,%20Jacob%20M.&rft.date=2024-10-01&rft.volume=300&rft.issue=10&rft.spage=107743&rft.pages=107743-&rft.artnum=107743&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2024.107743&rft_dat=%3Cproquest_pubme%3E3100273220%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100273220&rft_id=info:pmid/39222680&rft_els_id=S0021925824022440&rfr_iscdi=true