Structural analysis of noncanonical translation initiation complexes
Translation initiation is a highly regulated, multi-step process that is critical for efficient and accurate protein synthesis. In bacteria, initiation begins when mRNA, initiation factors, and a dedicated initiator fMet-tRNAfMet bind the small (30S) ribosomal subunit. Specific binding of fMet-tRNAf...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2024-10, Vol.300 (10), p.107743, Article 107743 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 107743 |
container_title | The Journal of biological chemistry |
container_volume | 300 |
creator | Mattingly, Jacob M. Nguyen, Ha An Roy, Bappaditya Fredrick, Kurt Dunham, Christine M. |
description | Translation initiation is a highly regulated, multi-step process that is critical for efficient and accurate protein synthesis. In bacteria, initiation begins when mRNA, initiation factors, and a dedicated initiator fMet-tRNAfMet bind the small (30S) ribosomal subunit. Specific binding of fMet-tRNAfMet in the peptidyl (P) site is mediated by the inspection of the fMet moiety by initiation factor IF2 and of three conserved G-C base pairs in the tRNA anticodon stem by the 30S head domain. Tandem A-minor interactions form between 16S ribosomal RNA nucleotides A1339 and G1338 and tRNA base pairs G30-C40 and G29-C41, respectively. Swapping the G30-C40 pair of tRNAfMet with C-G (called tRNAfMet M1) reduces discrimination against the noncanonical start codon CUG in vitro, suggesting crosstalk between the gripping of the anticodon stem and recognition of the start codon. Here, we solved electron cryomicroscopy structures of Escherichia coli 70S initiation complexes containing the fMet-tRNAfMet M1 variant paired to the noncanonical CUG start codon, in the presence or absence of IF2 and the non-hydrolyzable GTP analog GDPCP, alongside structures of 70S initiation complexes containing this tRNAfMet variant paired to the canonical bacterial start codons AUG, GUG, and UUG. We find that the M1 mutation weakens A-minor interactions between tRNAfMet and 16S nucleotides A1339 and G1338, with IF2 strengthening the interaction of G1338 with the tRNA minor groove. These structures suggest how even slight changes to the recognition of the fMet-tRNAfMet anticodon stem by the ribosome can impact the start codon selection. |
doi_str_mv | 10.1016/j.jbc.2024.107743 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11497404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925824022440</els_id><sourcerecordid>3100273220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-1d3d87e9bb9ab6e741b7d36d61f23f030118cc97b8d5d9ee61e486bf15b1ee7b3</originalsourceid><addsrcrecordid>eNp9kE1PGzEQhi3UCgLlB_RS5djLBo_trHfVQ1WFr0qRONBK3Cx_zBZHGzvYu4j8-xotIHqpD_ZY877vjB5CPgNdAIX6bLPYGLtglInyl1LwAzID2vCKL-HuA5lRyqBq2bI5Isc5b2g5ooVDcsRbxljd0Bk5vx3SaIcx6X6ug-732ed57OYhBqvL5W1pDEmH3OvBxzD3wQ9-Km3c7np8wvyJfOx0n_H05T0hvy8vfq2uq_XN1c_Vj3VlORdDBY67RmJrTKtNjVKAkY7XroaO8Y5yCtBY20rTuKVrEWtA0dSmg6UBRGn4Cfk-5e5Gs0VnMZTNerVLfqvTXkXt1b-d4O_Vn_ioAEQrBRUl4etLQooPI-ZBbX222Pc6YByz4lCYSc4YLVKYpDbFnBN2b3OAqmf8aqMKfvWMX034i-fL-wXfHK-8i-DbJMCC6dFjUtl6DBadT2gH5aL_T_xfIWGX5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100273220</pqid></control><display><type>article</type><title>Structural analysis of noncanonical translation initiation complexes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Mattingly, Jacob M. ; Nguyen, Ha An ; Roy, Bappaditya ; Fredrick, Kurt ; Dunham, Christine M.</creator><creatorcontrib>Mattingly, Jacob M. ; Nguyen, Ha An ; Roy, Bappaditya ; Fredrick, Kurt ; Dunham, Christine M.</creatorcontrib><description>Translation initiation is a highly regulated, multi-step process that is critical for efficient and accurate protein synthesis. In bacteria, initiation begins when mRNA, initiation factors, and a dedicated initiator fMet-tRNAfMet bind the small (30S) ribosomal subunit. Specific binding of fMet-tRNAfMet in the peptidyl (P) site is mediated by the inspection of the fMet moiety by initiation factor IF2 and of three conserved G-C base pairs in the tRNA anticodon stem by the 30S head domain. Tandem A-minor interactions form between 16S ribosomal RNA nucleotides A1339 and G1338 and tRNA base pairs G30-C40 and G29-C41, respectively. Swapping the G30-C40 pair of tRNAfMet with C-G (called tRNAfMet M1) reduces discrimination against the noncanonical start codon CUG in vitro, suggesting crosstalk between the gripping of the anticodon stem and recognition of the start codon. Here, we solved electron cryomicroscopy structures of Escherichia coli 70S initiation complexes containing the fMet-tRNAfMet M1 variant paired to the noncanonical CUG start codon, in the presence or absence of IF2 and the non-hydrolyzable GTP analog GDPCP, alongside structures of 70S initiation complexes containing this tRNAfMet variant paired to the canonical bacterial start codons AUG, GUG, and UUG. We find that the M1 mutation weakens A-minor interactions between tRNAfMet and 16S nucleotides A1339 and G1338, with IF2 strengthening the interaction of G1338 with the tRNA minor groove. These structures suggest how even slight changes to the recognition of the fMet-tRNAfMet anticodon stem by the ribosome can impact the start codon selection.</description><identifier>ISSN: 0021-9258</identifier><identifier>ISSN: 1083-351X</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2024.107743</identifier><identifier>PMID: 39222680</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>16S rRNA ; A-minor motif ; Anticodon - chemistry ; Anticodon - metabolism ; Codon, Initiator - metabolism ; Cryoelectron Microscopy ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Peptide Chain Initiation, Translational ; protein synthesis ; Ribosome Subunits, Small, Bacterial - chemistry ; Ribosome Subunits, Small, Bacterial - metabolism ; RNA, Ribosomal, 16S - chemistry ; RNA, Ribosomal, 16S - genetics ; RNA, Ribosomal, 16S - metabolism ; RNA, Transfer, Met - chemistry ; RNA, Transfer, Met - genetics ; RNA, Transfer, Met - metabolism ; translation initiation ; tRNAfMet</subject><ispartof>The Journal of biological chemistry, 2024-10, Vol.300 (10), p.107743, Article 107743</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2024 The Authors 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c334t-1d3d87e9bb9ab6e741b7d36d61f23f030118cc97b8d5d9ee61e486bf15b1ee7b3</cites><orcidid>0000-0003-2620-2893 ; 0000-0003-0202-915X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497404/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497404/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39222680$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mattingly, Jacob M.</creatorcontrib><creatorcontrib>Nguyen, Ha An</creatorcontrib><creatorcontrib>Roy, Bappaditya</creatorcontrib><creatorcontrib>Fredrick, Kurt</creatorcontrib><creatorcontrib>Dunham, Christine M.</creatorcontrib><title>Structural analysis of noncanonical translation initiation complexes</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Translation initiation is a highly regulated, multi-step process that is critical for efficient and accurate protein synthesis. In bacteria, initiation begins when mRNA, initiation factors, and a dedicated initiator fMet-tRNAfMet bind the small (30S) ribosomal subunit. Specific binding of fMet-tRNAfMet in the peptidyl (P) site is mediated by the inspection of the fMet moiety by initiation factor IF2 and of three conserved G-C base pairs in the tRNA anticodon stem by the 30S head domain. Tandem A-minor interactions form between 16S ribosomal RNA nucleotides A1339 and G1338 and tRNA base pairs G30-C40 and G29-C41, respectively. Swapping the G30-C40 pair of tRNAfMet with C-G (called tRNAfMet M1) reduces discrimination against the noncanonical start codon CUG in vitro, suggesting crosstalk between the gripping of the anticodon stem and recognition of the start codon. Here, we solved electron cryomicroscopy structures of Escherichia coli 70S initiation complexes containing the fMet-tRNAfMet M1 variant paired to the noncanonical CUG start codon, in the presence or absence of IF2 and the non-hydrolyzable GTP analog GDPCP, alongside structures of 70S initiation complexes containing this tRNAfMet variant paired to the canonical bacterial start codons AUG, GUG, and UUG. We find that the M1 mutation weakens A-minor interactions between tRNAfMet and 16S nucleotides A1339 and G1338, with IF2 strengthening the interaction of G1338 with the tRNA minor groove. These structures suggest how even slight changes to the recognition of the fMet-tRNAfMet anticodon stem by the ribosome can impact the start codon selection.</description><subject>16S rRNA</subject><subject>A-minor motif</subject><subject>Anticodon - chemistry</subject><subject>Anticodon - metabolism</subject><subject>Codon, Initiator - metabolism</subject><subject>Cryoelectron Microscopy</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Peptide Chain Initiation, Translational</subject><subject>protein synthesis</subject><subject>Ribosome Subunits, Small, Bacterial - chemistry</subject><subject>Ribosome Subunits, Small, Bacterial - metabolism</subject><subject>RNA, Ribosomal, 16S - chemistry</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>RNA, Ribosomal, 16S - metabolism</subject><subject>RNA, Transfer, Met - chemistry</subject><subject>RNA, Transfer, Met - genetics</subject><subject>RNA, Transfer, Met - metabolism</subject><subject>translation initiation</subject><subject>tRNAfMet</subject><issn>0021-9258</issn><issn>1083-351X</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1PGzEQhi3UCgLlB_RS5djLBo_trHfVQ1WFr0qRONBK3Cx_zBZHGzvYu4j8-xotIHqpD_ZY877vjB5CPgNdAIX6bLPYGLtglInyl1LwAzID2vCKL-HuA5lRyqBq2bI5Isc5b2g5ooVDcsRbxljd0Bk5vx3SaIcx6X6ug-732ed57OYhBqvL5W1pDEmH3OvBxzD3wQ9-Km3c7np8wvyJfOx0n_H05T0hvy8vfq2uq_XN1c_Vj3VlORdDBY67RmJrTKtNjVKAkY7XroaO8Y5yCtBY20rTuKVrEWtA0dSmg6UBRGn4Cfk-5e5Gs0VnMZTNerVLfqvTXkXt1b-d4O_Vn_ioAEQrBRUl4etLQooPI-ZBbX222Pc6YByz4lCYSc4YLVKYpDbFnBN2b3OAqmf8aqMKfvWMX034i-fL-wXfHK-8i-DbJMCC6dFjUtl6DBadT2gH5aL_T_xfIWGX5w</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Mattingly, Jacob M.</creator><creator>Nguyen, Ha An</creator><creator>Roy, Bappaditya</creator><creator>Fredrick, Kurt</creator><creator>Dunham, Christine M.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2620-2893</orcidid><orcidid>https://orcid.org/0000-0003-0202-915X</orcidid></search><sort><creationdate>20241001</creationdate><title>Structural analysis of noncanonical translation initiation complexes</title><author>Mattingly, Jacob M. ; Nguyen, Ha An ; Roy, Bappaditya ; Fredrick, Kurt ; Dunham, Christine M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-1d3d87e9bb9ab6e741b7d36d61f23f030118cc97b8d5d9ee61e486bf15b1ee7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>16S rRNA</topic><topic>A-minor motif</topic><topic>Anticodon - chemistry</topic><topic>Anticodon - metabolism</topic><topic>Codon, Initiator - metabolism</topic><topic>Cryoelectron Microscopy</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Peptide Chain Initiation, Translational</topic><topic>protein synthesis</topic><topic>Ribosome Subunits, Small, Bacterial - chemistry</topic><topic>Ribosome Subunits, Small, Bacterial - metabolism</topic><topic>RNA, Ribosomal, 16S - chemistry</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>RNA, Ribosomal, 16S - metabolism</topic><topic>RNA, Transfer, Met - chemistry</topic><topic>RNA, Transfer, Met - genetics</topic><topic>RNA, Transfer, Met - metabolism</topic><topic>translation initiation</topic><topic>tRNAfMet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mattingly, Jacob M.</creatorcontrib><creatorcontrib>Nguyen, Ha An</creatorcontrib><creatorcontrib>Roy, Bappaditya</creatorcontrib><creatorcontrib>Fredrick, Kurt</creatorcontrib><creatorcontrib>Dunham, Christine M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mattingly, Jacob M.</au><au>Nguyen, Ha An</au><au>Roy, Bappaditya</au><au>Fredrick, Kurt</au><au>Dunham, Christine M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural analysis of noncanonical translation initiation complexes</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>300</volume><issue>10</issue><spage>107743</spage><pages>107743-</pages><artnum>107743</artnum><issn>0021-9258</issn><issn>1083-351X</issn><eissn>1083-351X</eissn><abstract>Translation initiation is a highly regulated, multi-step process that is critical for efficient and accurate protein synthesis. In bacteria, initiation begins when mRNA, initiation factors, and a dedicated initiator fMet-tRNAfMet bind the small (30S) ribosomal subunit. Specific binding of fMet-tRNAfMet in the peptidyl (P) site is mediated by the inspection of the fMet moiety by initiation factor IF2 and of three conserved G-C base pairs in the tRNA anticodon stem by the 30S head domain. Tandem A-minor interactions form between 16S ribosomal RNA nucleotides A1339 and G1338 and tRNA base pairs G30-C40 and G29-C41, respectively. Swapping the G30-C40 pair of tRNAfMet with C-G (called tRNAfMet M1) reduces discrimination against the noncanonical start codon CUG in vitro, suggesting crosstalk between the gripping of the anticodon stem and recognition of the start codon. Here, we solved electron cryomicroscopy structures of Escherichia coli 70S initiation complexes containing the fMet-tRNAfMet M1 variant paired to the noncanonical CUG start codon, in the presence or absence of IF2 and the non-hydrolyzable GTP analog GDPCP, alongside structures of 70S initiation complexes containing this tRNAfMet variant paired to the canonical bacterial start codons AUG, GUG, and UUG. We find that the M1 mutation weakens A-minor interactions between tRNAfMet and 16S nucleotides A1339 and G1338, with IF2 strengthening the interaction of G1338 with the tRNA minor groove. These structures suggest how even slight changes to the recognition of the fMet-tRNAfMet anticodon stem by the ribosome can impact the start codon selection.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39222680</pmid><doi>10.1016/j.jbc.2024.107743</doi><orcidid>https://orcid.org/0000-0003-2620-2893</orcidid><orcidid>https://orcid.org/0000-0003-0202-915X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2024-10, Vol.300 (10), p.107743, Article 107743 |
issn | 0021-9258 1083-351X 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11497404 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | 16S rRNA A-minor motif Anticodon - chemistry Anticodon - metabolism Codon, Initiator - metabolism Cryoelectron Microscopy Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Peptide Chain Initiation, Translational protein synthesis Ribosome Subunits, Small, Bacterial - chemistry Ribosome Subunits, Small, Bacterial - metabolism RNA, Ribosomal, 16S - chemistry RNA, Ribosomal, 16S - genetics RNA, Ribosomal, 16S - metabolism RNA, Transfer, Met - chemistry RNA, Transfer, Met - genetics RNA, Transfer, Met - metabolism translation initiation tRNAfMet |
title | Structural analysis of noncanonical translation initiation complexes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20analysis%20of%20noncanonical%20translation%20initiation%20complexes&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Mattingly,%20Jacob%20M.&rft.date=2024-10-01&rft.volume=300&rft.issue=10&rft.spage=107743&rft.pages=107743-&rft.artnum=107743&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2024.107743&rft_dat=%3Cproquest_pubme%3E3100273220%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100273220&rft_id=info:pmid/39222680&rft_els_id=S0021925824022440&rfr_iscdi=true |