Statistical methods for discrimination of STR genotypes using high resolution melt curve data

Despite the improvements in forensic DNA quantification methods that allow for the early detection of low template/challenged DNA samples, complicating stochastic effects are not revealed until the final stage of the DNA analysis workflow. An assay that would provide genotyping information at the ea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of legal medicine 2024-11, Vol.138 (6), p.2281-2288
Hauptverfasser: Cloudy, Darianne C., Boone, Edward L., Kuehnert, Kristi, Smith, Chastyn, Cox, Jordan O., Seashols-Williams, Sarah J., Green, Tracey Dawson
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2288
container_issue 6
container_start_page 2281
container_title International journal of legal medicine
container_volume 138
creator Cloudy, Darianne C.
Boone, Edward L.
Kuehnert, Kristi
Smith, Chastyn
Cox, Jordan O.
Seashols-Williams, Sarah J.
Green, Tracey Dawson
description Despite the improvements in forensic DNA quantification methods that allow for the early detection of low template/challenged DNA samples, complicating stochastic effects are not revealed until the final stage of the DNA analysis workflow. An assay that would provide genotyping information at the earlier stage of quantification would allow examiners to make critical adjustments prior to STR amplification allowing for potentially exclusionary information to be immediately reported. Specifically, qPCR instruments often have dissociation curve and/or high-resolution melt curve (HRM) capabilities; this, coupled with statistical prediction analysis, could provide additional information regarding STR genotypes present. Thus, this study aimed to evaluate Qiagen’s principal component analysis (PCA)-based ScreenClust ® HRM ® software and a linear discriminant analysis (LDA)-based technique for their abilities to accurately predict genotypes and similar groups of genotypes from HRM data. Melt curves from single source samples were generated from STR D5S818 and D18S51 amplicons using a Rotor-Gene ® Q qPCR instrument and EvaGreen ® intercalating dye. When used to predict D5S818 genotypes for unknown samples, LDA analysis outperformed the PCA-based method whether predictions were for individual genotypes (58.92% accuracy) or for geno-groups (81.00% accuracy). However, when a locus with increased heterogeneity was tested (D18S51), PCA-based prediction accuracy rates improved to rates similar to those obtained using LDA (45.10% and 63.46%, respectively). This study provides foundational data documenting the performance of prediction modeling for STR genotyping based on qPCR-HRM data. In order to expand the forensic applicability of this HRM assay, the method could be tested with a more commonly utilized qPCR platform.
doi_str_mv 10.1007/s00414-024-03289-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11490427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118388764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-7cd0954e58fc7a0b6e542f4ad02a92e433a8641beea65d9a2a8e76e6fc578a593</originalsourceid><addsrcrecordid>eNp9kctrFTEYxYMo9lr9B1xIwI2b0bwfK5FSH1AQbF1KyM18MzdlZnJNMqX97429tT4WLkIC5_ed5OQg9JyS15QQ_aYQIqjoCGuLM2O76wdoQwXXHZVWPUQbYtvZGqaP0JNSLgmhWmn5GB1xY62WVG3Qt_Pqayw1Bj_hGeou9QUPKeM-lpDjHJcmpwWnAZ9ffMEjLKne7KHgtcRlxLs47nCGkqb1Fpthqjis-Qpw76t_ih4Nfirw7G4_Rl_fn16cfOzOPn_4dPLurAuCqdrp0BMrBUgzBO3JVoEUbBC-J8xbBoJzb5SgWwCvZG898wa0AjUEqY2Xlh-jtwff_bqdoQ-w1Ownt28BfL5xyUf3t7LEnRvTlaNUWCKYbg6v7hxy-r5CqW5uHwDT5BdIa3GcaGukktY09OU_6GVa89LyOU6p4cZoJRrFDlTIqZQMw_1rKHE_63OH-lyrz93W567b0Is_c9yP_OqrAfwAlCYtI-Tfd__H9gcdeqiM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118388764</pqid></control><display><type>article</type><title>Statistical methods for discrimination of STR genotypes using high resolution melt curve data</title><source>Springer Nature - Complete Springer Journals</source><creator>Cloudy, Darianne C. ; Boone, Edward L. ; Kuehnert, Kristi ; Smith, Chastyn ; Cox, Jordan O. ; Seashols-Williams, Sarah J. ; Green, Tracey Dawson</creator><creatorcontrib>Cloudy, Darianne C. ; Boone, Edward L. ; Kuehnert, Kristi ; Smith, Chastyn ; Cox, Jordan O. ; Seashols-Williams, Sarah J. ; Green, Tracey Dawson</creatorcontrib><description>Despite the improvements in forensic DNA quantification methods that allow for the early detection of low template/challenged DNA samples, complicating stochastic effects are not revealed until the final stage of the DNA analysis workflow. An assay that would provide genotyping information at the earlier stage of quantification would allow examiners to make critical adjustments prior to STR amplification allowing for potentially exclusionary information to be immediately reported. Specifically, qPCR instruments often have dissociation curve and/or high-resolution melt curve (HRM) capabilities; this, coupled with statistical prediction analysis, could provide additional information regarding STR genotypes present. Thus, this study aimed to evaluate Qiagen’s principal component analysis (PCA)-based ScreenClust ® HRM ® software and a linear discriminant analysis (LDA)-based technique for their abilities to accurately predict genotypes and similar groups of genotypes from HRM data. Melt curves from single source samples were generated from STR D5S818 and D18S51 amplicons using a Rotor-Gene ® Q qPCR instrument and EvaGreen ® intercalating dye. When used to predict D5S818 genotypes for unknown samples, LDA analysis outperformed the PCA-based method whether predictions were for individual genotypes (58.92% accuracy) or for geno-groups (81.00% accuracy). However, when a locus with increased heterogeneity was tested (D18S51), PCA-based prediction accuracy rates improved to rates similar to those obtained using LDA (45.10% and 63.46%, respectively). This study provides foundational data documenting the performance of prediction modeling for STR genotyping based on qPCR-HRM data. In order to expand the forensic applicability of this HRM assay, the method could be tested with a more commonly utilized qPCR platform.</description><identifier>ISSN: 0937-9827</identifier><identifier>ISSN: 1437-1596</identifier><identifier>EISSN: 1437-1596</identifier><identifier>DOI: 10.1007/s00414-024-03289-x</identifier><identifier>PMID: 38997516</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Data analysis ; Deoxyribonucleic acid ; Discriminant analysis ; DNA ; Forensic chemistry ; Forensic Medicine ; Genetic testing ; Genotype &amp; phenotype ; Heterogeneity ; High resolution ; Medical Law ; Medicine ; Medicine &amp; Public Health ; Original ; Original Article ; Prediction models ; Principal components analysis ; Samples ; Statistical analysis ; Statistical methods ; Workflow</subject><ispartof>International journal of legal medicine, 2024-11, Vol.138 (6), p.2281-2288</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c426t-7cd0954e58fc7a0b6e542f4ad02a92e433a8641beea65d9a2a8e76e6fc578a593</cites><orcidid>0000-0003-0093-8261 ; 0009-0008-1125-6622 ; 0000-0003-0755-6899 ; 0000-0003-1353-6034 ; 0000-0003-4761-6657 ; 0009-0008-5669-9654 ; 0000-0003-4483-9185</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00414-024-03289-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00414-024-03289-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38997516$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cloudy, Darianne C.</creatorcontrib><creatorcontrib>Boone, Edward L.</creatorcontrib><creatorcontrib>Kuehnert, Kristi</creatorcontrib><creatorcontrib>Smith, Chastyn</creatorcontrib><creatorcontrib>Cox, Jordan O.</creatorcontrib><creatorcontrib>Seashols-Williams, Sarah J.</creatorcontrib><creatorcontrib>Green, Tracey Dawson</creatorcontrib><title>Statistical methods for discrimination of STR genotypes using high resolution melt curve data</title><title>International journal of legal medicine</title><addtitle>Int J Legal Med</addtitle><addtitle>Int J Legal Med</addtitle><description>Despite the improvements in forensic DNA quantification methods that allow for the early detection of low template/challenged DNA samples, complicating stochastic effects are not revealed until the final stage of the DNA analysis workflow. An assay that would provide genotyping information at the earlier stage of quantification would allow examiners to make critical adjustments prior to STR amplification allowing for potentially exclusionary information to be immediately reported. Specifically, qPCR instruments often have dissociation curve and/or high-resolution melt curve (HRM) capabilities; this, coupled with statistical prediction analysis, could provide additional information regarding STR genotypes present. Thus, this study aimed to evaluate Qiagen’s principal component analysis (PCA)-based ScreenClust ® HRM ® software and a linear discriminant analysis (LDA)-based technique for their abilities to accurately predict genotypes and similar groups of genotypes from HRM data. Melt curves from single source samples were generated from STR D5S818 and D18S51 amplicons using a Rotor-Gene ® Q qPCR instrument and EvaGreen ® intercalating dye. When used to predict D5S818 genotypes for unknown samples, LDA analysis outperformed the PCA-based method whether predictions were for individual genotypes (58.92% accuracy) or for geno-groups (81.00% accuracy). However, when a locus with increased heterogeneity was tested (D18S51), PCA-based prediction accuracy rates improved to rates similar to those obtained using LDA (45.10% and 63.46%, respectively). This study provides foundational data documenting the performance of prediction modeling for STR genotyping based on qPCR-HRM data. In order to expand the forensic applicability of this HRM assay, the method could be tested with a more commonly utilized qPCR platform.</description><subject>Accuracy</subject><subject>Data analysis</subject><subject>Deoxyribonucleic acid</subject><subject>Discriminant analysis</subject><subject>DNA</subject><subject>Forensic chemistry</subject><subject>Forensic Medicine</subject><subject>Genetic testing</subject><subject>Genotype &amp; phenotype</subject><subject>Heterogeneity</subject><subject>High resolution</subject><subject>Medical Law</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Original</subject><subject>Original Article</subject><subject>Prediction models</subject><subject>Principal components analysis</subject><subject>Samples</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Workflow</subject><issn>0937-9827</issn><issn>1437-1596</issn><issn>1437-1596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kctrFTEYxYMo9lr9B1xIwI2b0bwfK5FSH1AQbF1KyM18MzdlZnJNMqX97429tT4WLkIC5_ed5OQg9JyS15QQ_aYQIqjoCGuLM2O76wdoQwXXHZVWPUQbYtvZGqaP0JNSLgmhWmn5GB1xY62WVG3Qt_Pqayw1Bj_hGeou9QUPKeM-lpDjHJcmpwWnAZ9ffMEjLKne7KHgtcRlxLs47nCGkqb1Fpthqjis-Qpw76t_ih4Nfirw7G4_Rl_fn16cfOzOPn_4dPLurAuCqdrp0BMrBUgzBO3JVoEUbBC-J8xbBoJzb5SgWwCvZG898wa0AjUEqY2Xlh-jtwff_bqdoQ-w1Ownt28BfL5xyUf3t7LEnRvTlaNUWCKYbg6v7hxy-r5CqW5uHwDT5BdIa3GcaGukktY09OU_6GVa89LyOU6p4cZoJRrFDlTIqZQMw_1rKHE_63OH-lyrz93W567b0Is_c9yP_OqrAfwAlCYtI-Tfd__H9gcdeqiM</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Cloudy, Darianne C.</creator><creator>Boone, Edward L.</creator><creator>Kuehnert, Kristi</creator><creator>Smith, Chastyn</creator><creator>Cox, Jordan O.</creator><creator>Seashols-Williams, Sarah J.</creator><creator>Green, Tracey Dawson</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K7.</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0093-8261</orcidid><orcidid>https://orcid.org/0009-0008-1125-6622</orcidid><orcidid>https://orcid.org/0000-0003-0755-6899</orcidid><orcidid>https://orcid.org/0000-0003-1353-6034</orcidid><orcidid>https://orcid.org/0000-0003-4761-6657</orcidid><orcidid>https://orcid.org/0009-0008-5669-9654</orcidid><orcidid>https://orcid.org/0000-0003-4483-9185</orcidid></search><sort><creationdate>20241101</creationdate><title>Statistical methods for discrimination of STR genotypes using high resolution melt curve data</title><author>Cloudy, Darianne C. ; Boone, Edward L. ; Kuehnert, Kristi ; Smith, Chastyn ; Cox, Jordan O. ; Seashols-Williams, Sarah J. ; Green, Tracey Dawson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-7cd0954e58fc7a0b6e542f4ad02a92e433a8641beea65d9a2a8e76e6fc578a593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Data analysis</topic><topic>Deoxyribonucleic acid</topic><topic>Discriminant analysis</topic><topic>DNA</topic><topic>Forensic chemistry</topic><topic>Forensic Medicine</topic><topic>Genetic testing</topic><topic>Genotype &amp; phenotype</topic><topic>Heterogeneity</topic><topic>High resolution</topic><topic>Medical Law</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Original</topic><topic>Original Article</topic><topic>Prediction models</topic><topic>Principal components analysis</topic><topic>Samples</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cloudy, Darianne C.</creatorcontrib><creatorcontrib>Boone, Edward L.</creatorcontrib><creatorcontrib>Kuehnert, Kristi</creatorcontrib><creatorcontrib>Smith, Chastyn</creatorcontrib><creatorcontrib>Cox, Jordan O.</creatorcontrib><creatorcontrib>Seashols-Williams, Sarah J.</creatorcontrib><creatorcontrib>Green, Tracey Dawson</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Criminal Justice (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of legal medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cloudy, Darianne C.</au><au>Boone, Edward L.</au><au>Kuehnert, Kristi</au><au>Smith, Chastyn</au><au>Cox, Jordan O.</au><au>Seashols-Williams, Sarah J.</au><au>Green, Tracey Dawson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical methods for discrimination of STR genotypes using high resolution melt curve data</atitle><jtitle>International journal of legal medicine</jtitle><stitle>Int J Legal Med</stitle><addtitle>Int J Legal Med</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>138</volume><issue>6</issue><spage>2281</spage><epage>2288</epage><pages>2281-2288</pages><issn>0937-9827</issn><issn>1437-1596</issn><eissn>1437-1596</eissn><abstract>Despite the improvements in forensic DNA quantification methods that allow for the early detection of low template/challenged DNA samples, complicating stochastic effects are not revealed until the final stage of the DNA analysis workflow. An assay that would provide genotyping information at the earlier stage of quantification would allow examiners to make critical adjustments prior to STR amplification allowing for potentially exclusionary information to be immediately reported. Specifically, qPCR instruments often have dissociation curve and/or high-resolution melt curve (HRM) capabilities; this, coupled with statistical prediction analysis, could provide additional information regarding STR genotypes present. Thus, this study aimed to evaluate Qiagen’s principal component analysis (PCA)-based ScreenClust ® HRM ® software and a linear discriminant analysis (LDA)-based technique for their abilities to accurately predict genotypes and similar groups of genotypes from HRM data. Melt curves from single source samples were generated from STR D5S818 and D18S51 amplicons using a Rotor-Gene ® Q qPCR instrument and EvaGreen ® intercalating dye. When used to predict D5S818 genotypes for unknown samples, LDA analysis outperformed the PCA-based method whether predictions were for individual genotypes (58.92% accuracy) or for geno-groups (81.00% accuracy). However, when a locus with increased heterogeneity was tested (D18S51), PCA-based prediction accuracy rates improved to rates similar to those obtained using LDA (45.10% and 63.46%, respectively). This study provides foundational data documenting the performance of prediction modeling for STR genotyping based on qPCR-HRM data. In order to expand the forensic applicability of this HRM assay, the method could be tested with a more commonly utilized qPCR platform.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>38997516</pmid><doi>10.1007/s00414-024-03289-x</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0093-8261</orcidid><orcidid>https://orcid.org/0009-0008-1125-6622</orcidid><orcidid>https://orcid.org/0000-0003-0755-6899</orcidid><orcidid>https://orcid.org/0000-0003-1353-6034</orcidid><orcidid>https://orcid.org/0000-0003-4761-6657</orcidid><orcidid>https://orcid.org/0009-0008-5669-9654</orcidid><orcidid>https://orcid.org/0000-0003-4483-9185</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0937-9827
ispartof International journal of legal medicine, 2024-11, Vol.138 (6), p.2281-2288
issn 0937-9827
1437-1596
1437-1596
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11490427
source Springer Nature - Complete Springer Journals
subjects Accuracy
Data analysis
Deoxyribonucleic acid
Discriminant analysis
DNA
Forensic chemistry
Forensic Medicine
Genetic testing
Genotype & phenotype
Heterogeneity
High resolution
Medical Law
Medicine
Medicine & Public Health
Original
Original Article
Prediction models
Principal components analysis
Samples
Statistical analysis
Statistical methods
Workflow
title Statistical methods for discrimination of STR genotypes using high resolution melt curve data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T22%3A32%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20methods%20for%20discrimination%20of%20STR%20genotypes%20using%20high%20resolution%20melt%20curve%20data&rft.jtitle=International%20journal%20of%20legal%20medicine&rft.au=Cloudy,%20Darianne%20C.&rft.date=2024-11-01&rft.volume=138&rft.issue=6&rft.spage=2281&rft.epage=2288&rft.pages=2281-2288&rft.issn=0937-9827&rft.eissn=1437-1596&rft_id=info:doi/10.1007/s00414-024-03289-x&rft_dat=%3Cproquest_pubme%3E3118388764%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3118388764&rft_id=info:pmid/38997516&rfr_iscdi=true