Single-cell profiling of brain pericyte heterogeneity following ischemic stroke unveils distinct pericyte subtype-targeted neural reprogramming potential and its underlying mechanisms
Brain pericytes can acquire multipotency to produce multi-lineage cells following injury. However, pericytes are a heterogenous population and it remains unknown whether there are different potencies from different subsets of pericytes in response to injury. We used an ischemic stroke model combined...
Gespeichert in:
Veröffentlicht in: | Theranostics 2024-01, Vol.14 (16), p.6110-6137 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6137 |
---|---|
container_issue | 16 |
container_start_page | 6110 |
container_title | Theranostics |
container_volume | 14 |
creator | Loan, Allison Awaja, Nidaa Lui, Margarita Syal, Charvi Sun, Yiren Sarma, Sailendra N Chona, Ragav Johnston, William B Cordova, Alex Saraf, Devansh Nakhlé, Anabella O'Connor, Kaela Thomas, Jacob Leung, Joseph Seegobin, Matthew He, Ling Wondisford, Fredric E Picketts, David J Tsai, Eve C Chan, Hing Man Wang, Jing |
description | Brain pericytes can acquire multipotency to produce multi-lineage cells following injury. However, pericytes are a heterogenous population and it remains unknown whether there are different potencies from different subsets of pericytes in response to injury.
We used an ischemic stroke model combined with pericyte lineage tracing animal models to investigate brain pericyte heterogeneity under both naïve and brain injury conditions via single-cell RNA-sequencing and immunohistochemistry analysis. In addition, we developed an NG2
pericyte neural reprogramming culture model from both murine and humans to unveil the role of energy sensor, AMP-dependent kinase (AMPK), activity in modulating the reprogramming/differentiation process to convert pericytes to functional neurons by targeting a Ser 436 phosphorylation on CREB-binding protein (CBP), a histone acetyltransferase.
We showed that two distinct pericyte subpopulations, marked by NG2
and Tbx18
, had different potency following brain injury. NG2
pericytes expressed dominant neural reprogramming potential to produce newborn neurons, while Tbx18
pericytes displayed dominant multipotency to produce endothelial cells, fibroblasts, and microglia following ischemic stroke. In addition, we discovered that AMPK modulators facilitated pericyte-to-neuron conversion by modulating Ser436 phosphorylation status of CBP, to coordinate an acetylation shift between Sox2 and histone H2B, and to regulate Sox2 nuclear-cytoplasmic trafficking during the reprogramming/differentiation process. Finally, we showed that sequential treatment of compound C (CpdC) and metformin, AMPK inhibitor and activator respectively, robustly facilitated the conversion of human pericytes into functional neurons.
We revealed that two distinct subtypes of pericytes possess different reprogramming potencies in response to physical and ischemic injuries. We also developed a genomic integration-free methodology to reprogram human pericytes into functional neurons by targeting NG2
pericytes. |
doi_str_mv | 10.7150/thno.97165 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11488099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118837631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-aa88116fed65c04cc61f6783ad12a55a9dc29e2dab812b2cb8a7bac98716bc353</originalsourceid><addsrcrecordid>eNpVkctu0DAQRS0EolXphg9AXiKkFDvOw14hVPGSKrEA1pZjTxKDYwfbaZUv4_dwaCnFm7Fmrs6M7kXoOSUXPW3J6zz7cCF62rWP0CnljFd915DHD_4n6Dyl76S8htSCiqfohImGUUL6U_Tri_WTg0qDc3iNYbSuNHAY8RCV9XiFaPWeAc-QIYYJPNi84zE4F24OpU16hsVqnHIMPwBv_hqsS9jYlK3X-R8hbUPeV6iyilOBGexhi8rhCGXvFNWyHLw1ZPDZlr7yBtucCtFAdPsxXEDPytu0pGfoyahcgvO7eoa-vX_39fJjdfX5w6fLt1eVrjueK6U4p7QbwXStJo3WHR27njNlaK3aVgmjawG1UQOn9VDrgat-UFrwYuigWcvO0Jtb7roNCxhdbis3yzXaRcVdBmXl_xNvZzmFa0lpwzkRohBe3hFi-LlBynIpnhW7lYewJcko5Zz1HaNF-upWqmNIKcJ4v4cSeaQtj7Tln7SL-MXDy-6lf7NlvwHN4a6j</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118837631</pqid></control><display><type>article</type><title>Single-cell profiling of brain pericyte heterogeneity following ischemic stroke unveils distinct pericyte subtype-targeted neural reprogramming potential and its underlying mechanisms</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Loan, Allison ; Awaja, Nidaa ; Lui, Margarita ; Syal, Charvi ; Sun, Yiren ; Sarma, Sailendra N ; Chona, Ragav ; Johnston, William B ; Cordova, Alex ; Saraf, Devansh ; Nakhlé, Anabella ; O'Connor, Kaela ; Thomas, Jacob ; Leung, Joseph ; Seegobin, Matthew ; He, Ling ; Wondisford, Fredric E ; Picketts, David J ; Tsai, Eve C ; Chan, Hing Man ; Wang, Jing</creator><creatorcontrib>Loan, Allison ; Awaja, Nidaa ; Lui, Margarita ; Syal, Charvi ; Sun, Yiren ; Sarma, Sailendra N ; Chona, Ragav ; Johnston, William B ; Cordova, Alex ; Saraf, Devansh ; Nakhlé, Anabella ; O'Connor, Kaela ; Thomas, Jacob ; Leung, Joseph ; Seegobin, Matthew ; He, Ling ; Wondisford, Fredric E ; Picketts, David J ; Tsai, Eve C ; Chan, Hing Man ; Wang, Jing</creatorcontrib><description>Brain pericytes can acquire multipotency to produce multi-lineage cells following injury. However, pericytes are a heterogenous population and it remains unknown whether there are different potencies from different subsets of pericytes in response to injury.
We used an ischemic stroke model combined with pericyte lineage tracing animal models to investigate brain pericyte heterogeneity under both naïve and brain injury conditions via single-cell RNA-sequencing and immunohistochemistry analysis. In addition, we developed an NG2
pericyte neural reprogramming culture model from both murine and humans to unveil the role of energy sensor, AMP-dependent kinase (AMPK), activity in modulating the reprogramming/differentiation process to convert pericytes to functional neurons by targeting a Ser 436 phosphorylation on CREB-binding protein (CBP), a histone acetyltransferase.
We showed that two distinct pericyte subpopulations, marked by NG2
and Tbx18
, had different potency following brain injury. NG2
pericytes expressed dominant neural reprogramming potential to produce newborn neurons, while Tbx18
pericytes displayed dominant multipotency to produce endothelial cells, fibroblasts, and microglia following ischemic stroke. In addition, we discovered that AMPK modulators facilitated pericyte-to-neuron conversion by modulating Ser436 phosphorylation status of CBP, to coordinate an acetylation shift between Sox2 and histone H2B, and to regulate Sox2 nuclear-cytoplasmic trafficking during the reprogramming/differentiation process. Finally, we showed that sequential treatment of compound C (CpdC) and metformin, AMPK inhibitor and activator respectively, robustly facilitated the conversion of human pericytes into functional neurons.
We revealed that two distinct subtypes of pericytes possess different reprogramming potencies in response to physical and ischemic injuries. We also developed a genomic integration-free methodology to reprogram human pericytes into functional neurons by targeting NG2
pericytes.</description><identifier>ISSN: 1838-7640</identifier><identifier>EISSN: 1838-7640</identifier><identifier>DOI: 10.7150/thno.97165</identifier><identifier>PMID: 39431007</identifier><language>eng</language><publisher>Australia: Ivyspring International Publisher</publisher><subject>AMP-Activated Protein Kinases - metabolism ; Animals ; Brain - metabolism ; Cell Differentiation ; Cellular Reprogramming - physiology ; CREB-Binding Protein - metabolism ; Disease Models, Animal ; Humans ; Ischemic Stroke - metabolism ; Ischemic Stroke - pathology ; Male ; Metformin - pharmacology ; Mice ; Mice, Inbred C57BL ; Neurons - metabolism ; Pericytes - metabolism ; Phosphorylation ; Pyrimidines - pharmacology ; Research Paper ; Single-Cell Analysis - methods ; T-Box Domain Proteins - genetics ; T-Box Domain Proteins - metabolism</subject><ispartof>Theranostics, 2024-01, Vol.14 (16), p.6110-6137</ispartof><rights>The author(s).</rights><rights>The author(s) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488099/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488099/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39431007$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Loan, Allison</creatorcontrib><creatorcontrib>Awaja, Nidaa</creatorcontrib><creatorcontrib>Lui, Margarita</creatorcontrib><creatorcontrib>Syal, Charvi</creatorcontrib><creatorcontrib>Sun, Yiren</creatorcontrib><creatorcontrib>Sarma, Sailendra N</creatorcontrib><creatorcontrib>Chona, Ragav</creatorcontrib><creatorcontrib>Johnston, William B</creatorcontrib><creatorcontrib>Cordova, Alex</creatorcontrib><creatorcontrib>Saraf, Devansh</creatorcontrib><creatorcontrib>Nakhlé, Anabella</creatorcontrib><creatorcontrib>O'Connor, Kaela</creatorcontrib><creatorcontrib>Thomas, Jacob</creatorcontrib><creatorcontrib>Leung, Joseph</creatorcontrib><creatorcontrib>Seegobin, Matthew</creatorcontrib><creatorcontrib>He, Ling</creatorcontrib><creatorcontrib>Wondisford, Fredric E</creatorcontrib><creatorcontrib>Picketts, David J</creatorcontrib><creatorcontrib>Tsai, Eve C</creatorcontrib><creatorcontrib>Chan, Hing Man</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><title>Single-cell profiling of brain pericyte heterogeneity following ischemic stroke unveils distinct pericyte subtype-targeted neural reprogramming potential and its underlying mechanisms</title><title>Theranostics</title><addtitle>Theranostics</addtitle><description>Brain pericytes can acquire multipotency to produce multi-lineage cells following injury. However, pericytes are a heterogenous population and it remains unknown whether there are different potencies from different subsets of pericytes in response to injury.
We used an ischemic stroke model combined with pericyte lineage tracing animal models to investigate brain pericyte heterogeneity under both naïve and brain injury conditions via single-cell RNA-sequencing and immunohistochemistry analysis. In addition, we developed an NG2
pericyte neural reprogramming culture model from both murine and humans to unveil the role of energy sensor, AMP-dependent kinase (AMPK), activity in modulating the reprogramming/differentiation process to convert pericytes to functional neurons by targeting a Ser 436 phosphorylation on CREB-binding protein (CBP), a histone acetyltransferase.
We showed that two distinct pericyte subpopulations, marked by NG2
and Tbx18
, had different potency following brain injury. NG2
pericytes expressed dominant neural reprogramming potential to produce newborn neurons, while Tbx18
pericytes displayed dominant multipotency to produce endothelial cells, fibroblasts, and microglia following ischemic stroke. In addition, we discovered that AMPK modulators facilitated pericyte-to-neuron conversion by modulating Ser436 phosphorylation status of CBP, to coordinate an acetylation shift between Sox2 and histone H2B, and to regulate Sox2 nuclear-cytoplasmic trafficking during the reprogramming/differentiation process. Finally, we showed that sequential treatment of compound C (CpdC) and metformin, AMPK inhibitor and activator respectively, robustly facilitated the conversion of human pericytes into functional neurons.
We revealed that two distinct subtypes of pericytes possess different reprogramming potencies in response to physical and ischemic injuries. We also developed a genomic integration-free methodology to reprogram human pericytes into functional neurons by targeting NG2
pericytes.</description><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Brain - metabolism</subject><subject>Cell Differentiation</subject><subject>Cellular Reprogramming - physiology</subject><subject>CREB-Binding Protein - metabolism</subject><subject>Disease Models, Animal</subject><subject>Humans</subject><subject>Ischemic Stroke - metabolism</subject><subject>Ischemic Stroke - pathology</subject><subject>Male</subject><subject>Metformin - pharmacology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neurons - metabolism</subject><subject>Pericytes - metabolism</subject><subject>Phosphorylation</subject><subject>Pyrimidines - pharmacology</subject><subject>Research Paper</subject><subject>Single-Cell Analysis - methods</subject><subject>T-Box Domain Proteins - genetics</subject><subject>T-Box Domain Proteins - metabolism</subject><issn>1838-7640</issn><issn>1838-7640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkctu0DAQRS0EolXphg9AXiKkFDvOw14hVPGSKrEA1pZjTxKDYwfbaZUv4_dwaCnFm7Fmrs6M7kXoOSUXPW3J6zz7cCF62rWP0CnljFd915DHD_4n6Dyl76S8htSCiqfohImGUUL6U_Tri_WTg0qDc3iNYbSuNHAY8RCV9XiFaPWeAc-QIYYJPNi84zE4F24OpU16hsVqnHIMPwBv_hqsS9jYlK3X-R8hbUPeV6iyilOBGexhi8rhCGXvFNWyHLw1ZPDZlr7yBtucCtFAdPsxXEDPytu0pGfoyahcgvO7eoa-vX_39fJjdfX5w6fLt1eVrjueK6U4p7QbwXStJo3WHR27njNlaK3aVgmjawG1UQOn9VDrgat-UFrwYuigWcvO0Jtb7roNCxhdbis3yzXaRcVdBmXl_xNvZzmFa0lpwzkRohBe3hFi-LlBynIpnhW7lYewJcko5Zz1HaNF-upWqmNIKcJ4v4cSeaQtj7Tln7SL-MXDy-6lf7NlvwHN4a6j</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Loan, Allison</creator><creator>Awaja, Nidaa</creator><creator>Lui, Margarita</creator><creator>Syal, Charvi</creator><creator>Sun, Yiren</creator><creator>Sarma, Sailendra N</creator><creator>Chona, Ragav</creator><creator>Johnston, William B</creator><creator>Cordova, Alex</creator><creator>Saraf, Devansh</creator><creator>Nakhlé, Anabella</creator><creator>O'Connor, Kaela</creator><creator>Thomas, Jacob</creator><creator>Leung, Joseph</creator><creator>Seegobin, Matthew</creator><creator>He, Ling</creator><creator>Wondisford, Fredric E</creator><creator>Picketts, David J</creator><creator>Tsai, Eve C</creator><creator>Chan, Hing Man</creator><creator>Wang, Jing</creator><general>Ivyspring International Publisher</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240101</creationdate><title>Single-cell profiling of brain pericyte heterogeneity following ischemic stroke unveils distinct pericyte subtype-targeted neural reprogramming potential and its underlying mechanisms</title><author>Loan, Allison ; Awaja, Nidaa ; Lui, Margarita ; Syal, Charvi ; Sun, Yiren ; Sarma, Sailendra N ; Chona, Ragav ; Johnston, William B ; Cordova, Alex ; Saraf, Devansh ; Nakhlé, Anabella ; O'Connor, Kaela ; Thomas, Jacob ; Leung, Joseph ; Seegobin, Matthew ; He, Ling ; Wondisford, Fredric E ; Picketts, David J ; Tsai, Eve C ; Chan, Hing Man ; Wang, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-aa88116fed65c04cc61f6783ad12a55a9dc29e2dab812b2cb8a7bac98716bc353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Brain - metabolism</topic><topic>Cell Differentiation</topic><topic>Cellular Reprogramming - physiology</topic><topic>CREB-Binding Protein - metabolism</topic><topic>Disease Models, Animal</topic><topic>Humans</topic><topic>Ischemic Stroke - metabolism</topic><topic>Ischemic Stroke - pathology</topic><topic>Male</topic><topic>Metformin - pharmacology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neurons - metabolism</topic><topic>Pericytes - metabolism</topic><topic>Phosphorylation</topic><topic>Pyrimidines - pharmacology</topic><topic>Research Paper</topic><topic>Single-Cell Analysis - methods</topic><topic>T-Box Domain Proteins - genetics</topic><topic>T-Box Domain Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loan, Allison</creatorcontrib><creatorcontrib>Awaja, Nidaa</creatorcontrib><creatorcontrib>Lui, Margarita</creatorcontrib><creatorcontrib>Syal, Charvi</creatorcontrib><creatorcontrib>Sun, Yiren</creatorcontrib><creatorcontrib>Sarma, Sailendra N</creatorcontrib><creatorcontrib>Chona, Ragav</creatorcontrib><creatorcontrib>Johnston, William B</creatorcontrib><creatorcontrib>Cordova, Alex</creatorcontrib><creatorcontrib>Saraf, Devansh</creatorcontrib><creatorcontrib>Nakhlé, Anabella</creatorcontrib><creatorcontrib>O'Connor, Kaela</creatorcontrib><creatorcontrib>Thomas, Jacob</creatorcontrib><creatorcontrib>Leung, Joseph</creatorcontrib><creatorcontrib>Seegobin, Matthew</creatorcontrib><creatorcontrib>He, Ling</creatorcontrib><creatorcontrib>Wondisford, Fredric E</creatorcontrib><creatorcontrib>Picketts, David J</creatorcontrib><creatorcontrib>Tsai, Eve C</creatorcontrib><creatorcontrib>Chan, Hing Man</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Theranostics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loan, Allison</au><au>Awaja, Nidaa</au><au>Lui, Margarita</au><au>Syal, Charvi</au><au>Sun, Yiren</au><au>Sarma, Sailendra N</au><au>Chona, Ragav</au><au>Johnston, William B</au><au>Cordova, Alex</au><au>Saraf, Devansh</au><au>Nakhlé, Anabella</au><au>O'Connor, Kaela</au><au>Thomas, Jacob</au><au>Leung, Joseph</au><au>Seegobin, Matthew</au><au>He, Ling</au><au>Wondisford, Fredric E</au><au>Picketts, David J</au><au>Tsai, Eve C</au><au>Chan, Hing Man</au><au>Wang, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-cell profiling of brain pericyte heterogeneity following ischemic stroke unveils distinct pericyte subtype-targeted neural reprogramming potential and its underlying mechanisms</atitle><jtitle>Theranostics</jtitle><addtitle>Theranostics</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>14</volume><issue>16</issue><spage>6110</spage><epage>6137</epage><pages>6110-6137</pages><issn>1838-7640</issn><eissn>1838-7640</eissn><abstract>Brain pericytes can acquire multipotency to produce multi-lineage cells following injury. However, pericytes are a heterogenous population and it remains unknown whether there are different potencies from different subsets of pericytes in response to injury.
We used an ischemic stroke model combined with pericyte lineage tracing animal models to investigate brain pericyte heterogeneity under both naïve and brain injury conditions via single-cell RNA-sequencing and immunohistochemistry analysis. In addition, we developed an NG2
pericyte neural reprogramming culture model from both murine and humans to unveil the role of energy sensor, AMP-dependent kinase (AMPK), activity in modulating the reprogramming/differentiation process to convert pericytes to functional neurons by targeting a Ser 436 phosphorylation on CREB-binding protein (CBP), a histone acetyltransferase.
We showed that two distinct pericyte subpopulations, marked by NG2
and Tbx18
, had different potency following brain injury. NG2
pericytes expressed dominant neural reprogramming potential to produce newborn neurons, while Tbx18
pericytes displayed dominant multipotency to produce endothelial cells, fibroblasts, and microglia following ischemic stroke. In addition, we discovered that AMPK modulators facilitated pericyte-to-neuron conversion by modulating Ser436 phosphorylation status of CBP, to coordinate an acetylation shift between Sox2 and histone H2B, and to regulate Sox2 nuclear-cytoplasmic trafficking during the reprogramming/differentiation process. Finally, we showed that sequential treatment of compound C (CpdC) and metformin, AMPK inhibitor and activator respectively, robustly facilitated the conversion of human pericytes into functional neurons.
We revealed that two distinct subtypes of pericytes possess different reprogramming potencies in response to physical and ischemic injuries. We also developed a genomic integration-free methodology to reprogram human pericytes into functional neurons by targeting NG2
pericytes.</abstract><cop>Australia</cop><pub>Ivyspring International Publisher</pub><pmid>39431007</pmid><doi>10.7150/thno.97165</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1838-7640 |
ispartof | Theranostics, 2024-01, Vol.14 (16), p.6110-6137 |
issn | 1838-7640 1838-7640 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11488099 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | AMP-Activated Protein Kinases - metabolism Animals Brain - metabolism Cell Differentiation Cellular Reprogramming - physiology CREB-Binding Protein - metabolism Disease Models, Animal Humans Ischemic Stroke - metabolism Ischemic Stroke - pathology Male Metformin - pharmacology Mice Mice, Inbred C57BL Neurons - metabolism Pericytes - metabolism Phosphorylation Pyrimidines - pharmacology Research Paper Single-Cell Analysis - methods T-Box Domain Proteins - genetics T-Box Domain Proteins - metabolism |
title | Single-cell profiling of brain pericyte heterogeneity following ischemic stroke unveils distinct pericyte subtype-targeted neural reprogramming potential and its underlying mechanisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T11%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-cell%20profiling%20of%20brain%20pericyte%20heterogeneity%20following%20ischemic%20stroke%20unveils%20distinct%20pericyte%20subtype-targeted%20neural%20reprogramming%20potential%20and%20its%20underlying%20mechanisms&rft.jtitle=Theranostics&rft.au=Loan,%20Allison&rft.date=2024-01-01&rft.volume=14&rft.issue=16&rft.spage=6110&rft.epage=6137&rft.pages=6110-6137&rft.issn=1838-7640&rft.eissn=1838-7640&rft_id=info:doi/10.7150/thno.97165&rft_dat=%3Cproquest_pubme%3E3118837631%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3118837631&rft_id=info:pmid/39431007&rfr_iscdi=true |