Single-cell profiling of brain pericyte heterogeneity following ischemic stroke unveils distinct pericyte subtype-targeted neural reprogramming potential and its underlying mechanisms

Brain pericytes can acquire multipotency to produce multi-lineage cells following injury. However, pericytes are a heterogenous population and it remains unknown whether there are different potencies from different subsets of pericytes in response to injury. We used an ischemic stroke model combined...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theranostics 2024-01, Vol.14 (16), p.6110-6137
Hauptverfasser: Loan, Allison, Awaja, Nidaa, Lui, Margarita, Syal, Charvi, Sun, Yiren, Sarma, Sailendra N, Chona, Ragav, Johnston, William B, Cordova, Alex, Saraf, Devansh, Nakhlé, Anabella, O'Connor, Kaela, Thomas, Jacob, Leung, Joseph, Seegobin, Matthew, He, Ling, Wondisford, Fredric E, Picketts, David J, Tsai, Eve C, Chan, Hing Man, Wang, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6137
container_issue 16
container_start_page 6110
container_title Theranostics
container_volume 14
creator Loan, Allison
Awaja, Nidaa
Lui, Margarita
Syal, Charvi
Sun, Yiren
Sarma, Sailendra N
Chona, Ragav
Johnston, William B
Cordova, Alex
Saraf, Devansh
Nakhlé, Anabella
O'Connor, Kaela
Thomas, Jacob
Leung, Joseph
Seegobin, Matthew
He, Ling
Wondisford, Fredric E
Picketts, David J
Tsai, Eve C
Chan, Hing Man
Wang, Jing
description Brain pericytes can acquire multipotency to produce multi-lineage cells following injury. However, pericytes are a heterogenous population and it remains unknown whether there are different potencies from different subsets of pericytes in response to injury. We used an ischemic stroke model combined with pericyte lineage tracing animal models to investigate brain pericyte heterogeneity under both naïve and brain injury conditions via single-cell RNA-sequencing and immunohistochemistry analysis. In addition, we developed an NG2 pericyte neural reprogramming culture model from both murine and humans to unveil the role of energy sensor, AMP-dependent kinase (AMPK), activity in modulating the reprogramming/differentiation process to convert pericytes to functional neurons by targeting a Ser 436 phosphorylation on CREB-binding protein (CBP), a histone acetyltransferase. We showed that two distinct pericyte subpopulations, marked by NG2 and Tbx18 , had different potency following brain injury. NG2 pericytes expressed dominant neural reprogramming potential to produce newborn neurons, while Tbx18 pericytes displayed dominant multipotency to produce endothelial cells, fibroblasts, and microglia following ischemic stroke. In addition, we discovered that AMPK modulators facilitated pericyte-to-neuron conversion by modulating Ser436 phosphorylation status of CBP, to coordinate an acetylation shift between Sox2 and histone H2B, and to regulate Sox2 nuclear-cytoplasmic trafficking during the reprogramming/differentiation process. Finally, we showed that sequential treatment of compound C (CpdC) and metformin, AMPK inhibitor and activator respectively, robustly facilitated the conversion of human pericytes into functional neurons. We revealed that two distinct subtypes of pericytes possess different reprogramming potencies in response to physical and ischemic injuries. We also developed a genomic integration-free methodology to reprogram human pericytes into functional neurons by targeting NG2 pericytes.
doi_str_mv 10.7150/thno.97165
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11488099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118837631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-aa88116fed65c04cc61f6783ad12a55a9dc29e2dab812b2cb8a7bac98716bc353</originalsourceid><addsrcrecordid>eNpVkctu0DAQRS0EolXphg9AXiKkFDvOw14hVPGSKrEA1pZjTxKDYwfbaZUv4_dwaCnFm7Fmrs6M7kXoOSUXPW3J6zz7cCF62rWP0CnljFd915DHD_4n6Dyl76S8htSCiqfohImGUUL6U_Tri_WTg0qDc3iNYbSuNHAY8RCV9XiFaPWeAc-QIYYJPNi84zE4F24OpU16hsVqnHIMPwBv_hqsS9jYlK3X-R8hbUPeV6iyilOBGexhi8rhCGXvFNWyHLw1ZPDZlr7yBtucCtFAdPsxXEDPytu0pGfoyahcgvO7eoa-vX_39fJjdfX5w6fLt1eVrjueK6U4p7QbwXStJo3WHR27njNlaK3aVgmjawG1UQOn9VDrgat-UFrwYuigWcvO0Jtb7roNCxhdbis3yzXaRcVdBmXl_xNvZzmFa0lpwzkRohBe3hFi-LlBynIpnhW7lYewJcko5Zz1HaNF-upWqmNIKcJ4v4cSeaQtj7Tln7SL-MXDy-6lf7NlvwHN4a6j</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3118837631</pqid></control><display><type>article</type><title>Single-cell profiling of brain pericyte heterogeneity following ischemic stroke unveils distinct pericyte subtype-targeted neural reprogramming potential and its underlying mechanisms</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Loan, Allison ; Awaja, Nidaa ; Lui, Margarita ; Syal, Charvi ; Sun, Yiren ; Sarma, Sailendra N ; Chona, Ragav ; Johnston, William B ; Cordova, Alex ; Saraf, Devansh ; Nakhlé, Anabella ; O'Connor, Kaela ; Thomas, Jacob ; Leung, Joseph ; Seegobin, Matthew ; He, Ling ; Wondisford, Fredric E ; Picketts, David J ; Tsai, Eve C ; Chan, Hing Man ; Wang, Jing</creator><creatorcontrib>Loan, Allison ; Awaja, Nidaa ; Lui, Margarita ; Syal, Charvi ; Sun, Yiren ; Sarma, Sailendra N ; Chona, Ragav ; Johnston, William B ; Cordova, Alex ; Saraf, Devansh ; Nakhlé, Anabella ; O'Connor, Kaela ; Thomas, Jacob ; Leung, Joseph ; Seegobin, Matthew ; He, Ling ; Wondisford, Fredric E ; Picketts, David J ; Tsai, Eve C ; Chan, Hing Man ; Wang, Jing</creatorcontrib><description>Brain pericytes can acquire multipotency to produce multi-lineage cells following injury. However, pericytes are a heterogenous population and it remains unknown whether there are different potencies from different subsets of pericytes in response to injury. We used an ischemic stroke model combined with pericyte lineage tracing animal models to investigate brain pericyte heterogeneity under both naïve and brain injury conditions via single-cell RNA-sequencing and immunohistochemistry analysis. In addition, we developed an NG2 pericyte neural reprogramming culture model from both murine and humans to unveil the role of energy sensor, AMP-dependent kinase (AMPK), activity in modulating the reprogramming/differentiation process to convert pericytes to functional neurons by targeting a Ser 436 phosphorylation on CREB-binding protein (CBP), a histone acetyltransferase. We showed that two distinct pericyte subpopulations, marked by NG2 and Tbx18 , had different potency following brain injury. NG2 pericytes expressed dominant neural reprogramming potential to produce newborn neurons, while Tbx18 pericytes displayed dominant multipotency to produce endothelial cells, fibroblasts, and microglia following ischemic stroke. In addition, we discovered that AMPK modulators facilitated pericyte-to-neuron conversion by modulating Ser436 phosphorylation status of CBP, to coordinate an acetylation shift between Sox2 and histone H2B, and to regulate Sox2 nuclear-cytoplasmic trafficking during the reprogramming/differentiation process. Finally, we showed that sequential treatment of compound C (CpdC) and metformin, AMPK inhibitor and activator respectively, robustly facilitated the conversion of human pericytes into functional neurons. We revealed that two distinct subtypes of pericytes possess different reprogramming potencies in response to physical and ischemic injuries. We also developed a genomic integration-free methodology to reprogram human pericytes into functional neurons by targeting NG2 pericytes.</description><identifier>ISSN: 1838-7640</identifier><identifier>EISSN: 1838-7640</identifier><identifier>DOI: 10.7150/thno.97165</identifier><identifier>PMID: 39431007</identifier><language>eng</language><publisher>Australia: Ivyspring International Publisher</publisher><subject>AMP-Activated Protein Kinases - metabolism ; Animals ; Brain - metabolism ; Cell Differentiation ; Cellular Reprogramming - physiology ; CREB-Binding Protein - metabolism ; Disease Models, Animal ; Humans ; Ischemic Stroke - metabolism ; Ischemic Stroke - pathology ; Male ; Metformin - pharmacology ; Mice ; Mice, Inbred C57BL ; Neurons - metabolism ; Pericytes - metabolism ; Phosphorylation ; Pyrimidines - pharmacology ; Research Paper ; Single-Cell Analysis - methods ; T-Box Domain Proteins - genetics ; T-Box Domain Proteins - metabolism</subject><ispartof>Theranostics, 2024-01, Vol.14 (16), p.6110-6137</ispartof><rights>The author(s).</rights><rights>The author(s) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488099/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11488099/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39431007$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Loan, Allison</creatorcontrib><creatorcontrib>Awaja, Nidaa</creatorcontrib><creatorcontrib>Lui, Margarita</creatorcontrib><creatorcontrib>Syal, Charvi</creatorcontrib><creatorcontrib>Sun, Yiren</creatorcontrib><creatorcontrib>Sarma, Sailendra N</creatorcontrib><creatorcontrib>Chona, Ragav</creatorcontrib><creatorcontrib>Johnston, William B</creatorcontrib><creatorcontrib>Cordova, Alex</creatorcontrib><creatorcontrib>Saraf, Devansh</creatorcontrib><creatorcontrib>Nakhlé, Anabella</creatorcontrib><creatorcontrib>O'Connor, Kaela</creatorcontrib><creatorcontrib>Thomas, Jacob</creatorcontrib><creatorcontrib>Leung, Joseph</creatorcontrib><creatorcontrib>Seegobin, Matthew</creatorcontrib><creatorcontrib>He, Ling</creatorcontrib><creatorcontrib>Wondisford, Fredric E</creatorcontrib><creatorcontrib>Picketts, David J</creatorcontrib><creatorcontrib>Tsai, Eve C</creatorcontrib><creatorcontrib>Chan, Hing Man</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><title>Single-cell profiling of brain pericyte heterogeneity following ischemic stroke unveils distinct pericyte subtype-targeted neural reprogramming potential and its underlying mechanisms</title><title>Theranostics</title><addtitle>Theranostics</addtitle><description>Brain pericytes can acquire multipotency to produce multi-lineage cells following injury. However, pericytes are a heterogenous population and it remains unknown whether there are different potencies from different subsets of pericytes in response to injury. We used an ischemic stroke model combined with pericyte lineage tracing animal models to investigate brain pericyte heterogeneity under both naïve and brain injury conditions via single-cell RNA-sequencing and immunohistochemistry analysis. In addition, we developed an NG2 pericyte neural reprogramming culture model from both murine and humans to unveil the role of energy sensor, AMP-dependent kinase (AMPK), activity in modulating the reprogramming/differentiation process to convert pericytes to functional neurons by targeting a Ser 436 phosphorylation on CREB-binding protein (CBP), a histone acetyltransferase. We showed that two distinct pericyte subpopulations, marked by NG2 and Tbx18 , had different potency following brain injury. NG2 pericytes expressed dominant neural reprogramming potential to produce newborn neurons, while Tbx18 pericytes displayed dominant multipotency to produce endothelial cells, fibroblasts, and microglia following ischemic stroke. In addition, we discovered that AMPK modulators facilitated pericyte-to-neuron conversion by modulating Ser436 phosphorylation status of CBP, to coordinate an acetylation shift between Sox2 and histone H2B, and to regulate Sox2 nuclear-cytoplasmic trafficking during the reprogramming/differentiation process. Finally, we showed that sequential treatment of compound C (CpdC) and metformin, AMPK inhibitor and activator respectively, robustly facilitated the conversion of human pericytes into functional neurons. We revealed that two distinct subtypes of pericytes possess different reprogramming potencies in response to physical and ischemic injuries. We also developed a genomic integration-free methodology to reprogram human pericytes into functional neurons by targeting NG2 pericytes.</description><subject>AMP-Activated Protein Kinases - metabolism</subject><subject>Animals</subject><subject>Brain - metabolism</subject><subject>Cell Differentiation</subject><subject>Cellular Reprogramming - physiology</subject><subject>CREB-Binding Protein - metabolism</subject><subject>Disease Models, Animal</subject><subject>Humans</subject><subject>Ischemic Stroke - metabolism</subject><subject>Ischemic Stroke - pathology</subject><subject>Male</subject><subject>Metformin - pharmacology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neurons - metabolism</subject><subject>Pericytes - metabolism</subject><subject>Phosphorylation</subject><subject>Pyrimidines - pharmacology</subject><subject>Research Paper</subject><subject>Single-Cell Analysis - methods</subject><subject>T-Box Domain Proteins - genetics</subject><subject>T-Box Domain Proteins - metabolism</subject><issn>1838-7640</issn><issn>1838-7640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkctu0DAQRS0EolXphg9AXiKkFDvOw14hVPGSKrEA1pZjTxKDYwfbaZUv4_dwaCnFm7Fmrs6M7kXoOSUXPW3J6zz7cCF62rWP0CnljFd915DHD_4n6Dyl76S8htSCiqfohImGUUL6U_Tri_WTg0qDc3iNYbSuNHAY8RCV9XiFaPWeAc-QIYYJPNi84zE4F24OpU16hsVqnHIMPwBv_hqsS9jYlK3X-R8hbUPeV6iyilOBGexhi8rhCGXvFNWyHLw1ZPDZlr7yBtucCtFAdPsxXEDPytu0pGfoyahcgvO7eoa-vX_39fJjdfX5w6fLt1eVrjueK6U4p7QbwXStJo3WHR27njNlaK3aVgmjawG1UQOn9VDrgat-UFrwYuigWcvO0Jtb7roNCxhdbis3yzXaRcVdBmXl_xNvZzmFa0lpwzkRohBe3hFi-LlBynIpnhW7lYewJcko5Zz1HaNF-upWqmNIKcJ4v4cSeaQtj7Tln7SL-MXDy-6lf7NlvwHN4a6j</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Loan, Allison</creator><creator>Awaja, Nidaa</creator><creator>Lui, Margarita</creator><creator>Syal, Charvi</creator><creator>Sun, Yiren</creator><creator>Sarma, Sailendra N</creator><creator>Chona, Ragav</creator><creator>Johnston, William B</creator><creator>Cordova, Alex</creator><creator>Saraf, Devansh</creator><creator>Nakhlé, Anabella</creator><creator>O'Connor, Kaela</creator><creator>Thomas, Jacob</creator><creator>Leung, Joseph</creator><creator>Seegobin, Matthew</creator><creator>He, Ling</creator><creator>Wondisford, Fredric E</creator><creator>Picketts, David J</creator><creator>Tsai, Eve C</creator><creator>Chan, Hing Man</creator><creator>Wang, Jing</creator><general>Ivyspring International Publisher</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240101</creationdate><title>Single-cell profiling of brain pericyte heterogeneity following ischemic stroke unveils distinct pericyte subtype-targeted neural reprogramming potential and its underlying mechanisms</title><author>Loan, Allison ; Awaja, Nidaa ; Lui, Margarita ; Syal, Charvi ; Sun, Yiren ; Sarma, Sailendra N ; Chona, Ragav ; Johnston, William B ; Cordova, Alex ; Saraf, Devansh ; Nakhlé, Anabella ; O'Connor, Kaela ; Thomas, Jacob ; Leung, Joseph ; Seegobin, Matthew ; He, Ling ; Wondisford, Fredric E ; Picketts, David J ; Tsai, Eve C ; Chan, Hing Man ; Wang, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-aa88116fed65c04cc61f6783ad12a55a9dc29e2dab812b2cb8a7bac98716bc353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>AMP-Activated Protein Kinases - metabolism</topic><topic>Animals</topic><topic>Brain - metabolism</topic><topic>Cell Differentiation</topic><topic>Cellular Reprogramming - physiology</topic><topic>CREB-Binding Protein - metabolism</topic><topic>Disease Models, Animal</topic><topic>Humans</topic><topic>Ischemic Stroke - metabolism</topic><topic>Ischemic Stroke - pathology</topic><topic>Male</topic><topic>Metformin - pharmacology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neurons - metabolism</topic><topic>Pericytes - metabolism</topic><topic>Phosphorylation</topic><topic>Pyrimidines - pharmacology</topic><topic>Research Paper</topic><topic>Single-Cell Analysis - methods</topic><topic>T-Box Domain Proteins - genetics</topic><topic>T-Box Domain Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loan, Allison</creatorcontrib><creatorcontrib>Awaja, Nidaa</creatorcontrib><creatorcontrib>Lui, Margarita</creatorcontrib><creatorcontrib>Syal, Charvi</creatorcontrib><creatorcontrib>Sun, Yiren</creatorcontrib><creatorcontrib>Sarma, Sailendra N</creatorcontrib><creatorcontrib>Chona, Ragav</creatorcontrib><creatorcontrib>Johnston, William B</creatorcontrib><creatorcontrib>Cordova, Alex</creatorcontrib><creatorcontrib>Saraf, Devansh</creatorcontrib><creatorcontrib>Nakhlé, Anabella</creatorcontrib><creatorcontrib>O'Connor, Kaela</creatorcontrib><creatorcontrib>Thomas, Jacob</creatorcontrib><creatorcontrib>Leung, Joseph</creatorcontrib><creatorcontrib>Seegobin, Matthew</creatorcontrib><creatorcontrib>He, Ling</creatorcontrib><creatorcontrib>Wondisford, Fredric E</creatorcontrib><creatorcontrib>Picketts, David J</creatorcontrib><creatorcontrib>Tsai, Eve C</creatorcontrib><creatorcontrib>Chan, Hing Man</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Theranostics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loan, Allison</au><au>Awaja, Nidaa</au><au>Lui, Margarita</au><au>Syal, Charvi</au><au>Sun, Yiren</au><au>Sarma, Sailendra N</au><au>Chona, Ragav</au><au>Johnston, William B</au><au>Cordova, Alex</au><au>Saraf, Devansh</au><au>Nakhlé, Anabella</au><au>O'Connor, Kaela</au><au>Thomas, Jacob</au><au>Leung, Joseph</au><au>Seegobin, Matthew</au><au>He, Ling</au><au>Wondisford, Fredric E</au><au>Picketts, David J</au><au>Tsai, Eve C</au><au>Chan, Hing Man</au><au>Wang, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-cell profiling of brain pericyte heterogeneity following ischemic stroke unveils distinct pericyte subtype-targeted neural reprogramming potential and its underlying mechanisms</atitle><jtitle>Theranostics</jtitle><addtitle>Theranostics</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>14</volume><issue>16</issue><spage>6110</spage><epage>6137</epage><pages>6110-6137</pages><issn>1838-7640</issn><eissn>1838-7640</eissn><abstract>Brain pericytes can acquire multipotency to produce multi-lineage cells following injury. However, pericytes are a heterogenous population and it remains unknown whether there are different potencies from different subsets of pericytes in response to injury. We used an ischemic stroke model combined with pericyte lineage tracing animal models to investigate brain pericyte heterogeneity under both naïve and brain injury conditions via single-cell RNA-sequencing and immunohistochemistry analysis. In addition, we developed an NG2 pericyte neural reprogramming culture model from both murine and humans to unveil the role of energy sensor, AMP-dependent kinase (AMPK), activity in modulating the reprogramming/differentiation process to convert pericytes to functional neurons by targeting a Ser 436 phosphorylation on CREB-binding protein (CBP), a histone acetyltransferase. We showed that two distinct pericyte subpopulations, marked by NG2 and Tbx18 , had different potency following brain injury. NG2 pericytes expressed dominant neural reprogramming potential to produce newborn neurons, while Tbx18 pericytes displayed dominant multipotency to produce endothelial cells, fibroblasts, and microglia following ischemic stroke. In addition, we discovered that AMPK modulators facilitated pericyte-to-neuron conversion by modulating Ser436 phosphorylation status of CBP, to coordinate an acetylation shift between Sox2 and histone H2B, and to regulate Sox2 nuclear-cytoplasmic trafficking during the reprogramming/differentiation process. Finally, we showed that sequential treatment of compound C (CpdC) and metformin, AMPK inhibitor and activator respectively, robustly facilitated the conversion of human pericytes into functional neurons. We revealed that two distinct subtypes of pericytes possess different reprogramming potencies in response to physical and ischemic injuries. We also developed a genomic integration-free methodology to reprogram human pericytes into functional neurons by targeting NG2 pericytes.</abstract><cop>Australia</cop><pub>Ivyspring International Publisher</pub><pmid>39431007</pmid><doi>10.7150/thno.97165</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1838-7640
ispartof Theranostics, 2024-01, Vol.14 (16), p.6110-6137
issn 1838-7640
1838-7640
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11488099
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects AMP-Activated Protein Kinases - metabolism
Animals
Brain - metabolism
Cell Differentiation
Cellular Reprogramming - physiology
CREB-Binding Protein - metabolism
Disease Models, Animal
Humans
Ischemic Stroke - metabolism
Ischemic Stroke - pathology
Male
Metformin - pharmacology
Mice
Mice, Inbred C57BL
Neurons - metabolism
Pericytes - metabolism
Phosphorylation
Pyrimidines - pharmacology
Research Paper
Single-Cell Analysis - methods
T-Box Domain Proteins - genetics
T-Box Domain Proteins - metabolism
title Single-cell profiling of brain pericyte heterogeneity following ischemic stroke unveils distinct pericyte subtype-targeted neural reprogramming potential and its underlying mechanisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T11%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-cell%20profiling%20of%20brain%20pericyte%20heterogeneity%20following%20ischemic%20stroke%20unveils%20distinct%20pericyte%20subtype-targeted%20neural%20reprogramming%20potential%20and%20its%20underlying%20mechanisms&rft.jtitle=Theranostics&rft.au=Loan,%20Allison&rft.date=2024-01-01&rft.volume=14&rft.issue=16&rft.spage=6110&rft.epage=6137&rft.pages=6110-6137&rft.issn=1838-7640&rft.eissn=1838-7640&rft_id=info:doi/10.7150/thno.97165&rft_dat=%3Cproquest_pubme%3E3118837631%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3118837631&rft_id=info:pmid/39431007&rfr_iscdi=true