Remote sensing and computer vision for marine aquaculture

Aquaculture, the cultivation of aquatic plants and animals, has grown rapidly since the 1990s, but sparse, self-reported, and aggregated production data limit the effective understanding and monitoring of the industry's trends and potential risks. Building on a manual survey of aquaculture prod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2024-10, Vol.10 (42), p.eadn4944
Hauptverfasser: Quaade, Sebastian, Vallebueno, Andrea, Alcabes, Olivia D N, Rodolfa, Kit T, Ho, Daniel E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 42
container_start_page eadn4944
container_title Science advances
container_volume 10
creator Quaade, Sebastian
Vallebueno, Andrea
Alcabes, Olivia D N
Rodolfa, Kit T
Ho, Daniel E
description Aquaculture, the cultivation of aquatic plants and animals, has grown rapidly since the 1990s, but sparse, self-reported, and aggregated production data limit the effective understanding and monitoring of the industry's trends and potential risks. Building on a manual survey of aquaculture production from remote sensing imagery, we train a computer vision model to identify marine aquaculture cages from aerial and satellite imagery and generate a spatially explicit dataset of finfish production locations in the French Mediterranean from 2000 to 2021 including 4010 cages (average cage area, 69 square meters). We demonstrate the value of our method as an easily adaptable, cost-effective approach that can improve the speed and reliability of aquaculture surveys and enables downstream analyses relevant to researchers and regulators. We illustrate its use to compute independent estimates of production and develop a flexible framework to quantify uncertainty in these estimates. Overall, our study presents an efficient, scalable, and adaptable method for monitoring aquaculture production from remote sensing imagery.
doi_str_mv 10.1126/sciadv.adn4944
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11482319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117619472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c236t-86b051a0342b9b46fa72449a03fd17a37c5fcc42a86dfa961c88795aa43179db3</originalsourceid><addsrcrecordid>eNpVkN9LwzAQx4MoTuZefZQ--tLZS9K0eRIZ_oKBIPocrmk6I22yJe3A_97K5phPd9x973tfPoRcQTYHoOI2aov1do6145LzE3JBWZGnNOfl6VE_IbMYv7IsAy5EDvKcTJjkwKCECyLfTOd7k0TjonWrBF2daN-th96EZGuj9S5pfEg6DNaZBDcD6qHth2AuyVmDbTSzfZ2Sj8eH98Vzunx9elncL1NNmejTUlRZDpgxTitZcdFgQTmX46CpoUBW6LzRmlMsRd2gFKDLspA5ImdQyLpiU3K3810PVWdqbVwfsFXrYMdM38qjVf83zn6qld8qAF5SBnJ0uNk7BL8ZTOxVZ6M2bYvO-CEqBlAIkLygo3S-k-rgYwymOfyBTP0yVzvmas98PLg-TneQ_xFmP88tf8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117619472</pqid></control><display><type>article</type><title>Remote sensing and computer vision for marine aquaculture</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Quaade, Sebastian ; Vallebueno, Andrea ; Alcabes, Olivia D N ; Rodolfa, Kit T ; Ho, Daniel E</creator><creatorcontrib>Quaade, Sebastian ; Vallebueno, Andrea ; Alcabes, Olivia D N ; Rodolfa, Kit T ; Ho, Daniel E</creatorcontrib><description>Aquaculture, the cultivation of aquatic plants and animals, has grown rapidly since the 1990s, but sparse, self-reported, and aggregated production data limit the effective understanding and monitoring of the industry's trends and potential risks. Building on a manual survey of aquaculture production from remote sensing imagery, we train a computer vision model to identify marine aquaculture cages from aerial and satellite imagery and generate a spatially explicit dataset of finfish production locations in the French Mediterranean from 2000 to 2021 including 4010 cages (average cage area, 69 square meters). We demonstrate the value of our method as an easily adaptable, cost-effective approach that can improve the speed and reliability of aquaculture surveys and enables downstream analyses relevant to researchers and regulators. We illustrate its use to compute independent estimates of production and develop a flexible framework to quantify uncertainty in these estimates. Overall, our study presents an efficient, scalable, and adaptable method for monitoring aquaculture production from remote sensing imagery.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.adn4944</identifier><identifier>PMID: 39413181</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Animals ; Applied Ecology ; Aquaculture ; Aquaculture - methods ; Earth, Environmental, Ecological, and Space Sciences ; Environmental Studies ; Remote Sensing Technology - methods ; Satellite Imagery - methods ; SciAdv r-articles</subject><ispartof>Science advances, 2024-10, Vol.10 (42), p.eadn4944</ispartof><rights>Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c236t-86b051a0342b9b46fa72449a03fd17a37c5fcc42a86dfa961c88795aa43179db3</cites><orcidid>0000-0002-2195-5469 ; 0000-0001-8023-746X ; 0000-0003-1584-2465 ; 0000-0002-3146-8111 ; 0000-0002-0829-1282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482319/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482319/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39413181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quaade, Sebastian</creatorcontrib><creatorcontrib>Vallebueno, Andrea</creatorcontrib><creatorcontrib>Alcabes, Olivia D N</creatorcontrib><creatorcontrib>Rodolfa, Kit T</creatorcontrib><creatorcontrib>Ho, Daniel E</creatorcontrib><title>Remote sensing and computer vision for marine aquaculture</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Aquaculture, the cultivation of aquatic plants and animals, has grown rapidly since the 1990s, but sparse, self-reported, and aggregated production data limit the effective understanding and monitoring of the industry's trends and potential risks. Building on a manual survey of aquaculture production from remote sensing imagery, we train a computer vision model to identify marine aquaculture cages from aerial and satellite imagery and generate a spatially explicit dataset of finfish production locations in the French Mediterranean from 2000 to 2021 including 4010 cages (average cage area, 69 square meters). We demonstrate the value of our method as an easily adaptable, cost-effective approach that can improve the speed and reliability of aquaculture surveys and enables downstream analyses relevant to researchers and regulators. We illustrate its use to compute independent estimates of production and develop a flexible framework to quantify uncertainty in these estimates. Overall, our study presents an efficient, scalable, and adaptable method for monitoring aquaculture production from remote sensing imagery.</description><subject>Animals</subject><subject>Applied Ecology</subject><subject>Aquaculture</subject><subject>Aquaculture - methods</subject><subject>Earth, Environmental, Ecological, and Space Sciences</subject><subject>Environmental Studies</subject><subject>Remote Sensing Technology - methods</subject><subject>Satellite Imagery - methods</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkN9LwzAQx4MoTuZefZQ--tLZS9K0eRIZ_oKBIPocrmk6I22yJe3A_97K5phPd9x973tfPoRcQTYHoOI2aov1do6145LzE3JBWZGnNOfl6VE_IbMYv7IsAy5EDvKcTJjkwKCECyLfTOd7k0TjonWrBF2daN-th96EZGuj9S5pfEg6DNaZBDcD6qHth2AuyVmDbTSzfZ2Sj8eH98Vzunx9elncL1NNmejTUlRZDpgxTitZcdFgQTmX46CpoUBW6LzRmlMsRd2gFKDLspA5ImdQyLpiU3K3810PVWdqbVwfsFXrYMdM38qjVf83zn6qld8qAF5SBnJ0uNk7BL8ZTOxVZ6M2bYvO-CEqBlAIkLygo3S-k-rgYwymOfyBTP0yVzvmas98PLg-TneQ_xFmP88tf8g</recordid><startdate>20241018</startdate><enddate>20241018</enddate><creator>Quaade, Sebastian</creator><creator>Vallebueno, Andrea</creator><creator>Alcabes, Olivia D N</creator><creator>Rodolfa, Kit T</creator><creator>Ho, Daniel E</creator><general>American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2195-5469</orcidid><orcidid>https://orcid.org/0000-0001-8023-746X</orcidid><orcidid>https://orcid.org/0000-0003-1584-2465</orcidid><orcidid>https://orcid.org/0000-0002-3146-8111</orcidid><orcidid>https://orcid.org/0000-0002-0829-1282</orcidid></search><sort><creationdate>20241018</creationdate><title>Remote sensing and computer vision for marine aquaculture</title><author>Quaade, Sebastian ; Vallebueno, Andrea ; Alcabes, Olivia D N ; Rodolfa, Kit T ; Ho, Daniel E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c236t-86b051a0342b9b46fa72449a03fd17a37c5fcc42a86dfa961c88795aa43179db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Applied Ecology</topic><topic>Aquaculture</topic><topic>Aquaculture - methods</topic><topic>Earth, Environmental, Ecological, and Space Sciences</topic><topic>Environmental Studies</topic><topic>Remote Sensing Technology - methods</topic><topic>Satellite Imagery - methods</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quaade, Sebastian</creatorcontrib><creatorcontrib>Vallebueno, Andrea</creatorcontrib><creatorcontrib>Alcabes, Olivia D N</creatorcontrib><creatorcontrib>Rodolfa, Kit T</creatorcontrib><creatorcontrib>Ho, Daniel E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quaade, Sebastian</au><au>Vallebueno, Andrea</au><au>Alcabes, Olivia D N</au><au>Rodolfa, Kit T</au><au>Ho, Daniel E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remote sensing and computer vision for marine aquaculture</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2024-10-18</date><risdate>2024</risdate><volume>10</volume><issue>42</issue><spage>eadn4944</spage><pages>eadn4944-</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Aquaculture, the cultivation of aquatic plants and animals, has grown rapidly since the 1990s, but sparse, self-reported, and aggregated production data limit the effective understanding and monitoring of the industry's trends and potential risks. Building on a manual survey of aquaculture production from remote sensing imagery, we train a computer vision model to identify marine aquaculture cages from aerial and satellite imagery and generate a spatially explicit dataset of finfish production locations in the French Mediterranean from 2000 to 2021 including 4010 cages (average cage area, 69 square meters). We demonstrate the value of our method as an easily adaptable, cost-effective approach that can improve the speed and reliability of aquaculture surveys and enables downstream analyses relevant to researchers and regulators. We illustrate its use to compute independent estimates of production and develop a flexible framework to quantify uncertainty in these estimates. Overall, our study presents an efficient, scalable, and adaptable method for monitoring aquaculture production from remote sensing imagery.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>39413181</pmid><doi>10.1126/sciadv.adn4944</doi><orcidid>https://orcid.org/0000-0002-2195-5469</orcidid><orcidid>https://orcid.org/0000-0001-8023-746X</orcidid><orcidid>https://orcid.org/0000-0003-1584-2465</orcidid><orcidid>https://orcid.org/0000-0002-3146-8111</orcidid><orcidid>https://orcid.org/0000-0002-0829-1282</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2024-10, Vol.10 (42), p.eadn4944
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11482319
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Applied Ecology
Aquaculture
Aquaculture - methods
Earth, Environmental, Ecological, and Space Sciences
Environmental Studies
Remote Sensing Technology - methods
Satellite Imagery - methods
SciAdv r-articles
title Remote sensing and computer vision for marine aquaculture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A09%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remote%20sensing%20and%20computer%20vision%20for%20marine%20aquaculture&rft.jtitle=Science%20advances&rft.au=Quaade,%20Sebastian&rft.date=2024-10-18&rft.volume=10&rft.issue=42&rft.spage=eadn4944&rft.pages=eadn4944-&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.adn4944&rft_dat=%3Cproquest_pubme%3E3117619472%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117619472&rft_id=info:pmid/39413181&rfr_iscdi=true