Remote sensing and computer vision for marine aquaculture
Aquaculture, the cultivation of aquatic plants and animals, has grown rapidly since the 1990s, but sparse, self-reported, and aggregated production data limit the effective understanding and monitoring of the industry's trends and potential risks. Building on a manual survey of aquaculture prod...
Gespeichert in:
Veröffentlicht in: | Science advances 2024-10, Vol.10 (42), p.eadn4944 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 42 |
container_start_page | eadn4944 |
container_title | Science advances |
container_volume | 10 |
creator | Quaade, Sebastian Vallebueno, Andrea Alcabes, Olivia D N Rodolfa, Kit T Ho, Daniel E |
description | Aquaculture, the cultivation of aquatic plants and animals, has grown rapidly since the 1990s, but sparse, self-reported, and aggregated production data limit the effective understanding and monitoring of the industry's trends and potential risks. Building on a manual survey of aquaculture production from remote sensing imagery, we train a computer vision model to identify marine aquaculture cages from aerial and satellite imagery and generate a spatially explicit dataset of finfish production locations in the French Mediterranean from 2000 to 2021 including 4010 cages (average cage area, 69 square meters). We demonstrate the value of our method as an easily adaptable, cost-effective approach that can improve the speed and reliability of aquaculture surveys and enables downstream analyses relevant to researchers and regulators. We illustrate its use to compute independent estimates of production and develop a flexible framework to quantify uncertainty in these estimates. Overall, our study presents an efficient, scalable, and adaptable method for monitoring aquaculture production from remote sensing imagery. |
doi_str_mv | 10.1126/sciadv.adn4944 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11482319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117619472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c236t-86b051a0342b9b46fa72449a03fd17a37c5fcc42a86dfa961c88795aa43179db3</originalsourceid><addsrcrecordid>eNpVkN9LwzAQx4MoTuZefZQ--tLZS9K0eRIZ_oKBIPocrmk6I22yJe3A_97K5phPd9x973tfPoRcQTYHoOI2aov1do6145LzE3JBWZGnNOfl6VE_IbMYv7IsAy5EDvKcTJjkwKCECyLfTOd7k0TjonWrBF2daN-th96EZGuj9S5pfEg6DNaZBDcD6qHth2AuyVmDbTSzfZ2Sj8eH98Vzunx9elncL1NNmejTUlRZDpgxTitZcdFgQTmX46CpoUBW6LzRmlMsRd2gFKDLspA5ImdQyLpiU3K3810PVWdqbVwfsFXrYMdM38qjVf83zn6qld8qAF5SBnJ0uNk7BL8ZTOxVZ6M2bYvO-CEqBlAIkLygo3S-k-rgYwymOfyBTP0yVzvmas98PLg-TneQ_xFmP88tf8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117619472</pqid></control><display><type>article</type><title>Remote sensing and computer vision for marine aquaculture</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Quaade, Sebastian ; Vallebueno, Andrea ; Alcabes, Olivia D N ; Rodolfa, Kit T ; Ho, Daniel E</creator><creatorcontrib>Quaade, Sebastian ; Vallebueno, Andrea ; Alcabes, Olivia D N ; Rodolfa, Kit T ; Ho, Daniel E</creatorcontrib><description>Aquaculture, the cultivation of aquatic plants and animals, has grown rapidly since the 1990s, but sparse, self-reported, and aggregated production data limit the effective understanding and monitoring of the industry's trends and potential risks. Building on a manual survey of aquaculture production from remote sensing imagery, we train a computer vision model to identify marine aquaculture cages from aerial and satellite imagery and generate a spatially explicit dataset of finfish production locations in the French Mediterranean from 2000 to 2021 including 4010 cages (average cage area, 69 square meters). We demonstrate the value of our method as an easily adaptable, cost-effective approach that can improve the speed and reliability of aquaculture surveys and enables downstream analyses relevant to researchers and regulators. We illustrate its use to compute independent estimates of production and develop a flexible framework to quantify uncertainty in these estimates. Overall, our study presents an efficient, scalable, and adaptable method for monitoring aquaculture production from remote sensing imagery.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.adn4944</identifier><identifier>PMID: 39413181</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Animals ; Applied Ecology ; Aquaculture ; Aquaculture - methods ; Earth, Environmental, Ecological, and Space Sciences ; Environmental Studies ; Remote Sensing Technology - methods ; Satellite Imagery - methods ; SciAdv r-articles</subject><ispartof>Science advances, 2024-10, Vol.10 (42), p.eadn4944</ispartof><rights>Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c236t-86b051a0342b9b46fa72449a03fd17a37c5fcc42a86dfa961c88795aa43179db3</cites><orcidid>0000-0002-2195-5469 ; 0000-0001-8023-746X ; 0000-0003-1584-2465 ; 0000-0002-3146-8111 ; 0000-0002-0829-1282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482319/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482319/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39413181$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quaade, Sebastian</creatorcontrib><creatorcontrib>Vallebueno, Andrea</creatorcontrib><creatorcontrib>Alcabes, Olivia D N</creatorcontrib><creatorcontrib>Rodolfa, Kit T</creatorcontrib><creatorcontrib>Ho, Daniel E</creatorcontrib><title>Remote sensing and computer vision for marine aquaculture</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Aquaculture, the cultivation of aquatic plants and animals, has grown rapidly since the 1990s, but sparse, self-reported, and aggregated production data limit the effective understanding and monitoring of the industry's trends and potential risks. Building on a manual survey of aquaculture production from remote sensing imagery, we train a computer vision model to identify marine aquaculture cages from aerial and satellite imagery and generate a spatially explicit dataset of finfish production locations in the French Mediterranean from 2000 to 2021 including 4010 cages (average cage area, 69 square meters). We demonstrate the value of our method as an easily adaptable, cost-effective approach that can improve the speed and reliability of aquaculture surveys and enables downstream analyses relevant to researchers and regulators. We illustrate its use to compute independent estimates of production and develop a flexible framework to quantify uncertainty in these estimates. Overall, our study presents an efficient, scalable, and adaptable method for monitoring aquaculture production from remote sensing imagery.</description><subject>Animals</subject><subject>Applied Ecology</subject><subject>Aquaculture</subject><subject>Aquaculture - methods</subject><subject>Earth, Environmental, Ecological, and Space Sciences</subject><subject>Environmental Studies</subject><subject>Remote Sensing Technology - methods</subject><subject>Satellite Imagery - methods</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkN9LwzAQx4MoTuZefZQ--tLZS9K0eRIZ_oKBIPocrmk6I22yJe3A_97K5phPd9x973tfPoRcQTYHoOI2aov1do6145LzE3JBWZGnNOfl6VE_IbMYv7IsAy5EDvKcTJjkwKCECyLfTOd7k0TjonWrBF2daN-th96EZGuj9S5pfEg6DNaZBDcD6qHth2AuyVmDbTSzfZ2Sj8eH98Vzunx9elncL1NNmejTUlRZDpgxTitZcdFgQTmX46CpoUBW6LzRmlMsRd2gFKDLspA5ImdQyLpiU3K3810PVWdqbVwfsFXrYMdM38qjVf83zn6qld8qAF5SBnJ0uNk7BL8ZTOxVZ6M2bYvO-CEqBlAIkLygo3S-k-rgYwymOfyBTP0yVzvmas98PLg-TneQ_xFmP88tf8g</recordid><startdate>20241018</startdate><enddate>20241018</enddate><creator>Quaade, Sebastian</creator><creator>Vallebueno, Andrea</creator><creator>Alcabes, Olivia D N</creator><creator>Rodolfa, Kit T</creator><creator>Ho, Daniel E</creator><general>American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2195-5469</orcidid><orcidid>https://orcid.org/0000-0001-8023-746X</orcidid><orcidid>https://orcid.org/0000-0003-1584-2465</orcidid><orcidid>https://orcid.org/0000-0002-3146-8111</orcidid><orcidid>https://orcid.org/0000-0002-0829-1282</orcidid></search><sort><creationdate>20241018</creationdate><title>Remote sensing and computer vision for marine aquaculture</title><author>Quaade, Sebastian ; Vallebueno, Andrea ; Alcabes, Olivia D N ; Rodolfa, Kit T ; Ho, Daniel E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c236t-86b051a0342b9b46fa72449a03fd17a37c5fcc42a86dfa961c88795aa43179db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Applied Ecology</topic><topic>Aquaculture</topic><topic>Aquaculture - methods</topic><topic>Earth, Environmental, Ecological, and Space Sciences</topic><topic>Environmental Studies</topic><topic>Remote Sensing Technology - methods</topic><topic>Satellite Imagery - methods</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quaade, Sebastian</creatorcontrib><creatorcontrib>Vallebueno, Andrea</creatorcontrib><creatorcontrib>Alcabes, Olivia D N</creatorcontrib><creatorcontrib>Rodolfa, Kit T</creatorcontrib><creatorcontrib>Ho, Daniel E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quaade, Sebastian</au><au>Vallebueno, Andrea</au><au>Alcabes, Olivia D N</au><au>Rodolfa, Kit T</au><au>Ho, Daniel E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remote sensing and computer vision for marine aquaculture</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2024-10-18</date><risdate>2024</risdate><volume>10</volume><issue>42</issue><spage>eadn4944</spage><pages>eadn4944-</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Aquaculture, the cultivation of aquatic plants and animals, has grown rapidly since the 1990s, but sparse, self-reported, and aggregated production data limit the effective understanding and monitoring of the industry's trends and potential risks. Building on a manual survey of aquaculture production from remote sensing imagery, we train a computer vision model to identify marine aquaculture cages from aerial and satellite imagery and generate a spatially explicit dataset of finfish production locations in the French Mediterranean from 2000 to 2021 including 4010 cages (average cage area, 69 square meters). We demonstrate the value of our method as an easily adaptable, cost-effective approach that can improve the speed and reliability of aquaculture surveys and enables downstream analyses relevant to researchers and regulators. We illustrate its use to compute independent estimates of production and develop a flexible framework to quantify uncertainty in these estimates. Overall, our study presents an efficient, scalable, and adaptable method for monitoring aquaculture production from remote sensing imagery.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>39413181</pmid><doi>10.1126/sciadv.adn4944</doi><orcidid>https://orcid.org/0000-0002-2195-5469</orcidid><orcidid>https://orcid.org/0000-0001-8023-746X</orcidid><orcidid>https://orcid.org/0000-0003-1584-2465</orcidid><orcidid>https://orcid.org/0000-0002-3146-8111</orcidid><orcidid>https://orcid.org/0000-0002-0829-1282</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2024-10, Vol.10 (42), p.eadn4944 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11482319 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Animals Applied Ecology Aquaculture Aquaculture - methods Earth, Environmental, Ecological, and Space Sciences Environmental Studies Remote Sensing Technology - methods Satellite Imagery - methods SciAdv r-articles |
title | Remote sensing and computer vision for marine aquaculture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A09%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remote%20sensing%20and%20computer%20vision%20for%20marine%20aquaculture&rft.jtitle=Science%20advances&rft.au=Quaade,%20Sebastian&rft.date=2024-10-18&rft.volume=10&rft.issue=42&rft.spage=eadn4944&rft.pages=eadn4944-&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.adn4944&rft_dat=%3Cproquest_pubme%3E3117619472%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117619472&rft_id=info:pmid/39413181&rfr_iscdi=true |