Biocompatible Glycopolymer-PLA Amphiphilic Hybrid Block Copolymers with Unique Self-Assembly, Uptake, and Degradation Properties
The self-assembly of Janus-type amphiphilic hybrid block copolymers composed of hydrophilic/hydrophobic layers has shown promise for drug encapsulation and delivery. Saccharides have previously been incorporated to improve the biocompatibility of self-assembled structures; however, glycopolymer bloc...
Gespeichert in:
Veröffentlicht in: | Biomacromolecules 2024-10, Vol.25 (10), p.6681-6692 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6692 |
---|---|
container_issue | 10 |
container_start_page | 6681 |
container_title | Biomacromolecules |
container_volume | 25 |
creator | Green, Kevin A. Kulkarni, Anuja S. Jankoski, Penelope E. Newton, Thomas B. Derbigny, Blaine Clemons, Tristan D. Watkins, Davita L. Morgan, Sarah E. |
description | The self-assembly of Janus-type amphiphilic hybrid block copolymers composed of hydrophilic/hydrophobic layers has shown promise for drug encapsulation and delivery. Saccharides have previously been incorporated to improve the biocompatibility of self-assembled structures; however, glycopolymer block copolymers have been less explored, and their structure–property relationships are not well understood. In this study, novel glycopolymer-branched poly(lactic acid) (PLA) block copolymers were synthesized via thiol–ene coupling and their composition-dependent morphologies were elucidated. Stability as a function of pH, dye uptake capabilities, and cytotoxicity were evaluated. Systems with a hydrophilic weight ratio of 30% were found to produce bilayer nanoparticles, while systems with a hydrophilic weight ratio of 60% form micelles upon self-assembly in aqueous media. Regardless of composition and morphology, all systems exhibited uptake of both hydrophobic (curcumin, DL % from 4.25 to 11.55) and hydrophilic (methyl orange, DL % from 4.08 to 5.88) dye molecules with release profiles dependent on composition. Furthermore, all of the nanoparticles exhibited low cytotoxicity, confirming their potential for biomedical applications. |
doi_str_mv | 10.1021/acs.biomac.4c00885 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11480976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3104819374</sourcerecordid><originalsourceid>FETCH-LOGICAL-a356t-36184631b2887e67ab2f8ffa70ae1786ff5309501d21cc2a095290b8fbba94313</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhSMEoqXwB1ggL1k0g1_xY4WmQ2mRRqISzNqyHafj1omDnSnKrj8dl5lWsEFIlnyl-51j33uq6i2CCwQx-qBtXhgfe20X1EIoRPOsOkYNZjVlED__XTc155IfVa9yvoEQSkKbl9URkZgzyJrj6v7MRxv7UU_eBAcuwmzjGMPcu1RfrZdg2Y9bX07wFlzOJvkWnIVob8HqEcvgp5-2YDP4HzsHvrnQ1cucXW_CfAo246Rv3SnQQws-ueuk2_JQHMBViqNLk3f5dfWi0yG7N4f7pNp8Pv--uqzXXy--rJbrWpOGTTVhSFBGkMFCcMe4NrgTXac51A5xwbquIVA2ELUYWYt1qbGERnTGaEkJIifVx73vuDO9a60bpqSDGpPvdZpV1F793Rn8Vl3HO4UQFVByVhzeHxxSLKPmSfU-WxeCHlzcZUVQQwSiUpL_QCEVSBJOC4r3qE0x5-S6py8hqB5iViVmtY9ZHWIuond_DvMkecy1AIs98CC-ibs0lN3-y_EXAhq3lg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104819374</pqid></control><display><type>article</type><title>Biocompatible Glycopolymer-PLA Amphiphilic Hybrid Block Copolymers with Unique Self-Assembly, Uptake, and Degradation Properties</title><source>ACS Publications</source><source>MEDLINE</source><creator>Green, Kevin A. ; Kulkarni, Anuja S. ; Jankoski, Penelope E. ; Newton, Thomas B. ; Derbigny, Blaine ; Clemons, Tristan D. ; Watkins, Davita L. ; Morgan, Sarah E.</creator><creatorcontrib>Green, Kevin A. ; Kulkarni, Anuja S. ; Jankoski, Penelope E. ; Newton, Thomas B. ; Derbigny, Blaine ; Clemons, Tristan D. ; Watkins, Davita L. ; Morgan, Sarah E.</creatorcontrib><description>The self-assembly of Janus-type amphiphilic hybrid block copolymers composed of hydrophilic/hydrophobic layers has shown promise for drug encapsulation and delivery. Saccharides have previously been incorporated to improve the biocompatibility of self-assembled structures; however, glycopolymer block copolymers have been less explored, and their structure–property relationships are not well understood. In this study, novel glycopolymer-branched poly(lactic acid) (PLA) block copolymers were synthesized via thiol–ene coupling and their composition-dependent morphologies were elucidated. Stability as a function of pH, dye uptake capabilities, and cytotoxicity were evaluated. Systems with a hydrophilic weight ratio of 30% were found to produce bilayer nanoparticles, while systems with a hydrophilic weight ratio of 60% form micelles upon self-assembly in aqueous media. Regardless of composition and morphology, all systems exhibited uptake of both hydrophobic (curcumin, DL % from 4.25 to 11.55) and hydrophilic (methyl orange, DL % from 4.08 to 5.88) dye molecules with release profiles dependent on composition. Furthermore, all of the nanoparticles exhibited low cytotoxicity, confirming their potential for biomedical applications.</description><identifier>ISSN: 1525-7797</identifier><identifier>ISSN: 1526-4602</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/acs.biomac.4c00885</identifier><identifier>PMID: 39276065</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>biocompatibility ; Biocompatible Materials - chemistry ; composite polymers ; curcumin ; Curcumin - chemistry ; Curcumin - pharmacology ; cytotoxicity ; drugs ; dyes ; encapsulation ; Humans ; hydrophilicity ; Hydrophobic and Hydrophilic Interactions ; hydrophobicity ; methyl orange ; Micelles ; nanoparticles ; Nanoparticles - chemistry ; Polyesters - chemistry ; Polymers - chemistry</subject><ispartof>Biomacromolecules, 2024-10, Vol.25 (10), p.6681-6692</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a356t-36184631b2887e67ab2f8ffa70ae1786ff5309501d21cc2a095290b8fbba94313</cites><orcidid>0000-0002-2539-3117 ; 0000-0001-8042-0141 ; 0000-0002-0943-7220 ; 0000-0002-8796-9548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biomac.4c00885$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biomac.4c00885$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39276065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Green, Kevin A.</creatorcontrib><creatorcontrib>Kulkarni, Anuja S.</creatorcontrib><creatorcontrib>Jankoski, Penelope E.</creatorcontrib><creatorcontrib>Newton, Thomas B.</creatorcontrib><creatorcontrib>Derbigny, Blaine</creatorcontrib><creatorcontrib>Clemons, Tristan D.</creatorcontrib><creatorcontrib>Watkins, Davita L.</creatorcontrib><creatorcontrib>Morgan, Sarah E.</creatorcontrib><title>Biocompatible Glycopolymer-PLA Amphiphilic Hybrid Block Copolymers with Unique Self-Assembly, Uptake, and Degradation Properties</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>The self-assembly of Janus-type amphiphilic hybrid block copolymers composed of hydrophilic/hydrophobic layers has shown promise for drug encapsulation and delivery. Saccharides have previously been incorporated to improve the biocompatibility of self-assembled structures; however, glycopolymer block copolymers have been less explored, and their structure–property relationships are not well understood. In this study, novel glycopolymer-branched poly(lactic acid) (PLA) block copolymers were synthesized via thiol–ene coupling and their composition-dependent morphologies were elucidated. Stability as a function of pH, dye uptake capabilities, and cytotoxicity were evaluated. Systems with a hydrophilic weight ratio of 30% were found to produce bilayer nanoparticles, while systems with a hydrophilic weight ratio of 60% form micelles upon self-assembly in aqueous media. Regardless of composition and morphology, all systems exhibited uptake of both hydrophobic (curcumin, DL % from 4.25 to 11.55) and hydrophilic (methyl orange, DL % from 4.08 to 5.88) dye molecules with release profiles dependent on composition. Furthermore, all of the nanoparticles exhibited low cytotoxicity, confirming their potential for biomedical applications.</description><subject>biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>composite polymers</subject><subject>curcumin</subject><subject>Curcumin - chemistry</subject><subject>Curcumin - pharmacology</subject><subject>cytotoxicity</subject><subject>drugs</subject><subject>dyes</subject><subject>encapsulation</subject><subject>Humans</subject><subject>hydrophilicity</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>hydrophobicity</subject><subject>methyl orange</subject><subject>Micelles</subject><subject>nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Polyesters - chemistry</subject><subject>Polymers - chemistry</subject><issn>1525-7797</issn><issn>1526-4602</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtv1DAUhSMEoqXwB1ggL1k0g1_xY4WmQ2mRRqISzNqyHafj1omDnSnKrj8dl5lWsEFIlnyl-51j33uq6i2CCwQx-qBtXhgfe20X1EIoRPOsOkYNZjVlED__XTc155IfVa9yvoEQSkKbl9URkZgzyJrj6v7MRxv7UU_eBAcuwmzjGMPcu1RfrZdg2Y9bX07wFlzOJvkWnIVob8HqEcvgp5-2YDP4HzsHvrnQ1cucXW_CfAo246Rv3SnQQws-ueuk2_JQHMBViqNLk3f5dfWi0yG7N4f7pNp8Pv--uqzXXy--rJbrWpOGTTVhSFBGkMFCcMe4NrgTXac51A5xwbquIVA2ELUYWYt1qbGERnTGaEkJIifVx73vuDO9a60bpqSDGpPvdZpV1F793Rn8Vl3HO4UQFVByVhzeHxxSLKPmSfU-WxeCHlzcZUVQQwSiUpL_QCEVSBJOC4r3qE0x5-S6py8hqB5iViVmtY9ZHWIuond_DvMkecy1AIs98CC-ibs0lN3-y_EXAhq3lg</recordid><startdate>20241014</startdate><enddate>20241014</enddate><creator>Green, Kevin A.</creator><creator>Kulkarni, Anuja S.</creator><creator>Jankoski, Penelope E.</creator><creator>Newton, Thomas B.</creator><creator>Derbigny, Blaine</creator><creator>Clemons, Tristan D.</creator><creator>Watkins, Davita L.</creator><creator>Morgan, Sarah E.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2539-3117</orcidid><orcidid>https://orcid.org/0000-0001-8042-0141</orcidid><orcidid>https://orcid.org/0000-0002-0943-7220</orcidid><orcidid>https://orcid.org/0000-0002-8796-9548</orcidid></search><sort><creationdate>20241014</creationdate><title>Biocompatible Glycopolymer-PLA Amphiphilic Hybrid Block Copolymers with Unique Self-Assembly, Uptake, and Degradation Properties</title><author>Green, Kevin A. ; Kulkarni, Anuja S. ; Jankoski, Penelope E. ; Newton, Thomas B. ; Derbigny, Blaine ; Clemons, Tristan D. ; Watkins, Davita L. ; Morgan, Sarah E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a356t-36184631b2887e67ab2f8ffa70ae1786ff5309501d21cc2a095290b8fbba94313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>composite polymers</topic><topic>curcumin</topic><topic>Curcumin - chemistry</topic><topic>Curcumin - pharmacology</topic><topic>cytotoxicity</topic><topic>drugs</topic><topic>dyes</topic><topic>encapsulation</topic><topic>Humans</topic><topic>hydrophilicity</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>hydrophobicity</topic><topic>methyl orange</topic><topic>Micelles</topic><topic>nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Polyesters - chemistry</topic><topic>Polymers - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Green, Kevin A.</creatorcontrib><creatorcontrib>Kulkarni, Anuja S.</creatorcontrib><creatorcontrib>Jankoski, Penelope E.</creatorcontrib><creatorcontrib>Newton, Thomas B.</creatorcontrib><creatorcontrib>Derbigny, Blaine</creatorcontrib><creatorcontrib>Clemons, Tristan D.</creatorcontrib><creatorcontrib>Watkins, Davita L.</creatorcontrib><creatorcontrib>Morgan, Sarah E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Green, Kevin A.</au><au>Kulkarni, Anuja S.</au><au>Jankoski, Penelope E.</au><au>Newton, Thomas B.</au><au>Derbigny, Blaine</au><au>Clemons, Tristan D.</au><au>Watkins, Davita L.</au><au>Morgan, Sarah E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biocompatible Glycopolymer-PLA Amphiphilic Hybrid Block Copolymers with Unique Self-Assembly, Uptake, and Degradation Properties</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2024-10-14</date><risdate>2024</risdate><volume>25</volume><issue>10</issue><spage>6681</spage><epage>6692</epage><pages>6681-6692</pages><issn>1525-7797</issn><issn>1526-4602</issn><eissn>1526-4602</eissn><abstract>The self-assembly of Janus-type amphiphilic hybrid block copolymers composed of hydrophilic/hydrophobic layers has shown promise for drug encapsulation and delivery. Saccharides have previously been incorporated to improve the biocompatibility of self-assembled structures; however, glycopolymer block copolymers have been less explored, and their structure–property relationships are not well understood. In this study, novel glycopolymer-branched poly(lactic acid) (PLA) block copolymers were synthesized via thiol–ene coupling and their composition-dependent morphologies were elucidated. Stability as a function of pH, dye uptake capabilities, and cytotoxicity were evaluated. Systems with a hydrophilic weight ratio of 30% were found to produce bilayer nanoparticles, while systems with a hydrophilic weight ratio of 60% form micelles upon self-assembly in aqueous media. Regardless of composition and morphology, all systems exhibited uptake of both hydrophobic (curcumin, DL % from 4.25 to 11.55) and hydrophilic (methyl orange, DL % from 4.08 to 5.88) dye molecules with release profiles dependent on composition. Furthermore, all of the nanoparticles exhibited low cytotoxicity, confirming their potential for biomedical applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39276065</pmid><doi>10.1021/acs.biomac.4c00885</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2539-3117</orcidid><orcidid>https://orcid.org/0000-0001-8042-0141</orcidid><orcidid>https://orcid.org/0000-0002-0943-7220</orcidid><orcidid>https://orcid.org/0000-0002-8796-9548</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-7797 |
ispartof | Biomacromolecules, 2024-10, Vol.25 (10), p.6681-6692 |
issn | 1525-7797 1526-4602 1526-4602 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11480976 |
source | ACS Publications; MEDLINE |
subjects | biocompatibility Biocompatible Materials - chemistry composite polymers curcumin Curcumin - chemistry Curcumin - pharmacology cytotoxicity drugs dyes encapsulation Humans hydrophilicity Hydrophobic and Hydrophilic Interactions hydrophobicity methyl orange Micelles nanoparticles Nanoparticles - chemistry Polyesters - chemistry Polymers - chemistry |
title | Biocompatible Glycopolymer-PLA Amphiphilic Hybrid Block Copolymers with Unique Self-Assembly, Uptake, and Degradation Properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A01%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biocompatible%20Glycopolymer-PLA%20Amphiphilic%20Hybrid%20Block%20Copolymers%20with%20Unique%20Self-Assembly,%20Uptake,%20and%20Degradation%20Properties&rft.jtitle=Biomacromolecules&rft.au=Green,%20Kevin%20A.&rft.date=2024-10-14&rft.volume=25&rft.issue=10&rft.spage=6681&rft.epage=6692&rft.pages=6681-6692&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/acs.biomac.4c00885&rft_dat=%3Cproquest_pubme%3E3104819374%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104819374&rft_id=info:pmid/39276065&rfr_iscdi=true |