Hydrogels and Bioprinting in Bone Tissue Engineering: Creating Artificial Stem‐Cell Niches for In Vitro Models

Advances in bioprinting have enabled the fabrication of complex tissue constructs with high speed and resolution. However, there remains significant structural and biological complexity within tissues that bioprinting is unable to recapitulate. Bone, for example, has a hierarchical organization rang...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2023-12, Vol.35 (52), p.e2301670-n/a
Hauptverfasser: Lewns, Francesca K., Tsigkou, Olga, Cox, Liam R., Wildman, Ricky D., Grover, Liam M., Poologasundarampillai, Gowsihan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 52
container_start_page e2301670
container_title Advanced materials (Weinheim)
container_volume 35
creator Lewns, Francesca K.
Tsigkou, Olga
Cox, Liam R.
Wildman, Ricky D.
Grover, Liam M.
Poologasundarampillai, Gowsihan
description Advances in bioprinting have enabled the fabrication of complex tissue constructs with high speed and resolution. However, there remains significant structural and biological complexity within tissues that bioprinting is unable to recapitulate. Bone, for example, has a hierarchical organization ranging from the molecular to whole organ level. Current bioprinting techniques and the materials employed have imposed limits on the scale, speed, and resolution that can be achieved, rendering the technique unable to reproduce the structural hierarchies and cell–matrix interactions that are observed in bone. The shift toward biomimetic approaches in bone tissue engineering, where hydrogels provide biophysical and biochemical cues to encapsulated cells, is a promising approach to enhancing the biological function and development of tissues for in vitro modeling. A major focus in bioprinting of bone tissue for in vitro modeling is creating dynamic microenvironmental niches to support, stimulate, and direct the cellular processes for bone formation and remodeling. Hydrogels are ideal materials for imitating the extracellular matrix since they can be engineered to present various cues whilst allowing bioprinting. Here, recent advances in hydrogels and 3D bioprinting toward creating a microenvironmental niche that is conducive to tissue engineering of in vitro models of bone are reviewed. This review focuses on hydrogels and 3D bioprinting in bone tissue engineering for development of in vitro models of bone. It highlights challenges in recapitulating the biological complexity seen in bone and how synergistic application of dynamic hydrogels and innovative bioprinting pipelines can address these challenges to achieve bone models.
doi_str_mv 10.1002/adma.202301670
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11478930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2906100554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4690-3437d9bb440ede3c4799c14ac5adc5708709491ef1fe0a42d7d04cb1157a451d3</originalsourceid><addsrcrecordid>eNqFkb1uFDEURi0EIkugpUSWaGhmuZ6xZ9Y0aLMEEimBgkBree07E0cz9mLPgLbjEXhGngQvG5afhsrFPffz_XQIecxgzgDK59oOel5CWQGrG7hDZkyUrOAgxV0yA1mJQtZ8cUQepHQDALKG-j45qhpYNE0lZ2RztrUxdNgnqr2lJy5sovOj8x11np4Ej_TKpTQhPfWd84h52r2gq4j6J7SMo2udcbqn70ccvn_9tsK-p2-ducZE2xDpuacf3RgDvQw2f_OQ3Gt1n_DR7XtMPrw-vVqdFRfv3pyvlheF4bWEouJVY-V6zTmgxcrwRkrDuDZCWyN254PkkmHLWgTNS9tY4GbNmGg0F8xWx-TlPnczrQe0Bv0Yda9yu0HHrQraqb8n3l2rLnxWjPFmISvICc9uE2L4NGEa1eCSye20xzAlVS5AQCl4WWf06T_oTZiiz_1UKaHOpoTgmZrvKRNDShHbwzUM1M6m2tlUB5t54cmfHQ74L30ZkHvgi-tx-584tXx1ufwd_gOrj60q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2906100554</pqid></control><display><type>article</type><title>Hydrogels and Bioprinting in Bone Tissue Engineering: Creating Artificial Stem‐Cell Niches for In Vitro Models</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Lewns, Francesca K. ; Tsigkou, Olga ; Cox, Liam R. ; Wildman, Ricky D. ; Grover, Liam M. ; Poologasundarampillai, Gowsihan</creator><creatorcontrib>Lewns, Francesca K. ; Tsigkou, Olga ; Cox, Liam R. ; Wildman, Ricky D. ; Grover, Liam M. ; Poologasundarampillai, Gowsihan</creatorcontrib><description>Advances in bioprinting have enabled the fabrication of complex tissue constructs with high speed and resolution. However, there remains significant structural and biological complexity within tissues that bioprinting is unable to recapitulate. Bone, for example, has a hierarchical organization ranging from the molecular to whole organ level. Current bioprinting techniques and the materials employed have imposed limits on the scale, speed, and resolution that can be achieved, rendering the technique unable to reproduce the structural hierarchies and cell–matrix interactions that are observed in bone. The shift toward biomimetic approaches in bone tissue engineering, where hydrogels provide biophysical and biochemical cues to encapsulated cells, is a promising approach to enhancing the biological function and development of tissues for in vitro modeling. A major focus in bioprinting of bone tissue for in vitro modeling is creating dynamic microenvironmental niches to support, stimulate, and direct the cellular processes for bone formation and remodeling. Hydrogels are ideal materials for imitating the extracellular matrix since they can be engineered to present various cues whilst allowing bioprinting. Here, recent advances in hydrogels and 3D bioprinting toward creating a microenvironmental niche that is conducive to tissue engineering of in vitro models of bone are reviewed. This review focuses on hydrogels and 3D bioprinting in bone tissue engineering for development of in vitro models of bone. It highlights challenges in recapitulating the biological complexity seen in bone and how synergistic application of dynamic hydrogels and innovative bioprinting pipelines can address these challenges to achieve bone models.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202301670</identifier><identifier>PMID: 37087739</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>3D bioprinting ; Biomimetics ; Bioprinting - methods ; Bone and Bones ; bone tissue modeling ; Bones ; Complexity ; extracellular matrices ; Hierarchies ; Hydrogels ; Hydrogels - chemistry ; in vitro models ; Materials science ; Modelling ; Osteogenesis ; Printing, Three-Dimensional ; Review ; Reviews ; Structural hierarchy ; Three dimensional printing ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry</subject><ispartof>Advanced materials (Weinheim), 2023-12, Vol.35 (52), p.e2301670-n/a</ispartof><rights>2023 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4690-3437d9bb440ede3c4799c14ac5adc5708709491ef1fe0a42d7d04cb1157a451d3</citedby><cites>FETCH-LOGICAL-c4690-3437d9bb440ede3c4799c14ac5adc5708709491ef1fe0a42d7d04cb1157a451d3</cites><orcidid>0000-0001-7018-3904 ; 0000-0003-2329-8471 ; 0000-0002-9774-7412 ; 0000-0002-5250-8610 ; 0000-0002-2921-434X ; 0000-0002-8498-323X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202301670$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202301670$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37087739$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lewns, Francesca K.</creatorcontrib><creatorcontrib>Tsigkou, Olga</creatorcontrib><creatorcontrib>Cox, Liam R.</creatorcontrib><creatorcontrib>Wildman, Ricky D.</creatorcontrib><creatorcontrib>Grover, Liam M.</creatorcontrib><creatorcontrib>Poologasundarampillai, Gowsihan</creatorcontrib><title>Hydrogels and Bioprinting in Bone Tissue Engineering: Creating Artificial Stem‐Cell Niches for In Vitro Models</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Advances in bioprinting have enabled the fabrication of complex tissue constructs with high speed and resolution. However, there remains significant structural and biological complexity within tissues that bioprinting is unable to recapitulate. Bone, for example, has a hierarchical organization ranging from the molecular to whole organ level. Current bioprinting techniques and the materials employed have imposed limits on the scale, speed, and resolution that can be achieved, rendering the technique unable to reproduce the structural hierarchies and cell–matrix interactions that are observed in bone. The shift toward biomimetic approaches in bone tissue engineering, where hydrogels provide biophysical and biochemical cues to encapsulated cells, is a promising approach to enhancing the biological function and development of tissues for in vitro modeling. A major focus in bioprinting of bone tissue for in vitro modeling is creating dynamic microenvironmental niches to support, stimulate, and direct the cellular processes for bone formation and remodeling. Hydrogels are ideal materials for imitating the extracellular matrix since they can be engineered to present various cues whilst allowing bioprinting. Here, recent advances in hydrogels and 3D bioprinting toward creating a microenvironmental niche that is conducive to tissue engineering of in vitro models of bone are reviewed. This review focuses on hydrogels and 3D bioprinting in bone tissue engineering for development of in vitro models of bone. It highlights challenges in recapitulating the biological complexity seen in bone and how synergistic application of dynamic hydrogels and innovative bioprinting pipelines can address these challenges to achieve bone models.</description><subject>3D bioprinting</subject><subject>Biomimetics</subject><subject>Bioprinting - methods</subject><subject>Bone and Bones</subject><subject>bone tissue modeling</subject><subject>Bones</subject><subject>Complexity</subject><subject>extracellular matrices</subject><subject>Hierarchies</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>in vitro models</subject><subject>Materials science</subject><subject>Modelling</subject><subject>Osteogenesis</subject><subject>Printing, Three-Dimensional</subject><subject>Review</subject><subject>Reviews</subject><subject>Structural hierarchy</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkb1uFDEURi0EIkugpUSWaGhmuZ6xZ9Y0aLMEEimBgkBree07E0cz9mLPgLbjEXhGngQvG5afhsrFPffz_XQIecxgzgDK59oOel5CWQGrG7hDZkyUrOAgxV0yA1mJQtZ8cUQepHQDALKG-j45qhpYNE0lZ2RztrUxdNgnqr2lJy5sovOj8x11np4Ej_TKpTQhPfWd84h52r2gq4j6J7SMo2udcbqn70ccvn_9tsK-p2-ducZE2xDpuacf3RgDvQw2f_OQ3Gt1n_DR7XtMPrw-vVqdFRfv3pyvlheF4bWEouJVY-V6zTmgxcrwRkrDuDZCWyN254PkkmHLWgTNS9tY4GbNmGg0F8xWx-TlPnczrQe0Bv0Yda9yu0HHrQraqb8n3l2rLnxWjPFmISvICc9uE2L4NGEa1eCSye20xzAlVS5AQCl4WWf06T_oTZiiz_1UKaHOpoTgmZrvKRNDShHbwzUM1M6m2tlUB5t54cmfHQ74L30ZkHvgi-tx-584tXx1ufwd_gOrj60q</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Lewns, Francesca K.</creator><creator>Tsigkou, Olga</creator><creator>Cox, Liam R.</creator><creator>Wildman, Ricky D.</creator><creator>Grover, Liam M.</creator><creator>Poologasundarampillai, Gowsihan</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7018-3904</orcidid><orcidid>https://orcid.org/0000-0003-2329-8471</orcidid><orcidid>https://orcid.org/0000-0002-9774-7412</orcidid><orcidid>https://orcid.org/0000-0002-5250-8610</orcidid><orcidid>https://orcid.org/0000-0002-2921-434X</orcidid><orcidid>https://orcid.org/0000-0002-8498-323X</orcidid></search><sort><creationdate>20231201</creationdate><title>Hydrogels and Bioprinting in Bone Tissue Engineering: Creating Artificial Stem‐Cell Niches for In Vitro Models</title><author>Lewns, Francesca K. ; Tsigkou, Olga ; Cox, Liam R. ; Wildman, Ricky D. ; Grover, Liam M. ; Poologasundarampillai, Gowsihan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4690-3437d9bb440ede3c4799c14ac5adc5708709491ef1fe0a42d7d04cb1157a451d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3D bioprinting</topic><topic>Biomimetics</topic><topic>Bioprinting - methods</topic><topic>Bone and Bones</topic><topic>bone tissue modeling</topic><topic>Bones</topic><topic>Complexity</topic><topic>extracellular matrices</topic><topic>Hierarchies</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>in vitro models</topic><topic>Materials science</topic><topic>Modelling</topic><topic>Osteogenesis</topic><topic>Printing, Three-Dimensional</topic><topic>Review</topic><topic>Reviews</topic><topic>Structural hierarchy</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewns, Francesca K.</creatorcontrib><creatorcontrib>Tsigkou, Olga</creatorcontrib><creatorcontrib>Cox, Liam R.</creatorcontrib><creatorcontrib>Wildman, Ricky D.</creatorcontrib><creatorcontrib>Grover, Liam M.</creatorcontrib><creatorcontrib>Poologasundarampillai, Gowsihan</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewns, Francesca K.</au><au>Tsigkou, Olga</au><au>Cox, Liam R.</au><au>Wildman, Ricky D.</au><au>Grover, Liam M.</au><au>Poologasundarampillai, Gowsihan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogels and Bioprinting in Bone Tissue Engineering: Creating Artificial Stem‐Cell Niches for In Vitro Models</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>35</volume><issue>52</issue><spage>e2301670</spage><epage>n/a</epage><pages>e2301670-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Advances in bioprinting have enabled the fabrication of complex tissue constructs with high speed and resolution. However, there remains significant structural and biological complexity within tissues that bioprinting is unable to recapitulate. Bone, for example, has a hierarchical organization ranging from the molecular to whole organ level. Current bioprinting techniques and the materials employed have imposed limits on the scale, speed, and resolution that can be achieved, rendering the technique unable to reproduce the structural hierarchies and cell–matrix interactions that are observed in bone. The shift toward biomimetic approaches in bone tissue engineering, where hydrogels provide biophysical and biochemical cues to encapsulated cells, is a promising approach to enhancing the biological function and development of tissues for in vitro modeling. A major focus in bioprinting of bone tissue for in vitro modeling is creating dynamic microenvironmental niches to support, stimulate, and direct the cellular processes for bone formation and remodeling. Hydrogels are ideal materials for imitating the extracellular matrix since they can be engineered to present various cues whilst allowing bioprinting. Here, recent advances in hydrogels and 3D bioprinting toward creating a microenvironmental niche that is conducive to tissue engineering of in vitro models of bone are reviewed. This review focuses on hydrogels and 3D bioprinting in bone tissue engineering for development of in vitro models of bone. It highlights challenges in recapitulating the biological complexity seen in bone and how synergistic application of dynamic hydrogels and innovative bioprinting pipelines can address these challenges to achieve bone models.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37087739</pmid><doi>10.1002/adma.202301670</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-7018-3904</orcidid><orcidid>https://orcid.org/0000-0003-2329-8471</orcidid><orcidid>https://orcid.org/0000-0002-9774-7412</orcidid><orcidid>https://orcid.org/0000-0002-5250-8610</orcidid><orcidid>https://orcid.org/0000-0002-2921-434X</orcidid><orcidid>https://orcid.org/0000-0002-8498-323X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-12, Vol.35 (52), p.e2301670-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11478930
source Wiley Online Library - AutoHoldings Journals; MEDLINE
subjects 3D bioprinting
Biomimetics
Bioprinting - methods
Bone and Bones
bone tissue modeling
Bones
Complexity
extracellular matrices
Hierarchies
Hydrogels
Hydrogels - chemistry
in vitro models
Materials science
Modelling
Osteogenesis
Printing, Three-Dimensional
Review
Reviews
Structural hierarchy
Three dimensional printing
Tissue engineering
Tissue Engineering - methods
Tissue Scaffolds - chemistry
title Hydrogels and Bioprinting in Bone Tissue Engineering: Creating Artificial Stem‐Cell Niches for In Vitro Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A15%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogels%20and%20Bioprinting%20in%20Bone%20Tissue%20Engineering:%20Creating%20Artificial%20Stem%E2%80%90Cell%20Niches%20for%20In%20Vitro%20Models&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Lewns,%20Francesca%20K.&rft.date=2023-12-01&rft.volume=35&rft.issue=52&rft.spage=e2301670&rft.epage=n/a&rft.pages=e2301670-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202301670&rft_dat=%3Cproquest_pubme%3E2906100554%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2906100554&rft_id=info:pmid/37087739&rfr_iscdi=true