Micromechanical and Tribological Performance of Laser-Cladded Equiatomic FeNiCr Coatings Reinforced with TiC and NbC Particles

This paper discusses a comparative micromechanical and tribological analysis of laser-cladded equiatomic FeNiCr coatings reinforced with TiC and NbC particles. Two types of coatings, FeNiCr-TiC (3 wt.% TiC) and FeNiCr-NbC (3 wt.% NbC), were deposited onto an AISI 1040 steel substrate by means of sho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-09, Vol.17 (19), p.4686
Hauptverfasser: Okulov, Artem, Iusupova, Olga, Liu, Kun, Li, Jie, Stepchenkov, Alexander, Zavalishin, Vladimir, Korkh, Yulia, Kuznetsova, Tatyana, Mugada, Krishna Kishore, Moganraj, Arivarasu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 19
container_start_page 4686
container_title Materials
container_volume 17
creator Okulov, Artem
Iusupova, Olga
Liu, Kun
Li, Jie
Stepchenkov, Alexander
Zavalishin, Vladimir
Korkh, Yulia
Kuznetsova, Tatyana
Mugada, Krishna Kishore
Moganraj, Arivarasu
description This paper discusses a comparative micromechanical and tribological analysis of laser-cladded equiatomic FeNiCr coatings reinforced with TiC and NbC particles. Two types of coatings, FeNiCr-TiC (3 wt.% TiC) and FeNiCr-NbC (3 wt.% NbC), were deposited onto an AISI 1040 steel substrate by means of short-pulsed laser cladding. The chemical composition, microstructure, and micromechanical and tribological characteristics of the coatings were systematically investigated via optical and scanning electron microscopy, Raman spectroscopy, and mechanical and tribological tests. The average thicknesses and compositional transition zones of the coatings were 600 ± 20 μm and 150 ± 20 μm, respectively. Raman spectroscopy revealed that both coatings are primarily composed of a single FCC γ-phase (γ-FeNiCr). The FeNiCr + 3 wt.% TiC coating exhibited an additional TiC phase dispersed within the γ-FeNiCr matrix. In contrast, the FeNiCr + 3 wt.% NbC coating displayed a more homogeneous distribution of finely dispersed NbC phase throughout the composite, leading to enhanced mechanical behavior. Micromechanical characterization showed that the FeNiCr + 3 wt.% NbC coating possessed higher average microhardness (3.8 GPa) and elastic modulus (180 GPa) compared to the FeNiCr + 3 wt.% TiC coating, which had values of ~3.2 GPa and ~156 GPa, respectively. Both coatings significantly exceeded the AISI 1040 steel substrate in tribological performance. The FeNiCr + 3 wt.% TiC and FeNiCr + 3 wt.% NbC coatings exhibited substantial reductions in both weight loss (37% and 41%, respectively) and wear rate (33% and 42%, respectively) compared to the substrate material. These findings indicate that more finely dispersed NbC particles are better suited for hardening laser-cladded equiatomic FeNiCr-NbC coatings, making them advanced candidates for industrial applications.
doi_str_mv 10.3390/ma17194686
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11477596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A812617027</galeid><sourcerecordid>A812617027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-91c2eb7096b2420645a9bea8b6ec0234958d8497168c26b6d4d5d03d727e03723</originalsourceid><addsrcrecordid>eNpdkl1P3SAYx5tlZhr1Zh9gIdnNsqSOlxbK1WIa3ZacObOcXRMKT8_BtKDQznjjZ5d6nHODC-Dh9_zheSmKtwSfMCbxp1ETQWTFG_6qOCBS8jKfqtcv9vvFcUpXOA_GSEPlm2KfyYpgWvOD4v67MzGMYLbaO6MHpL1F6-i6MITNo-ESYh_iqL0BFHq00gli2Q7aWrDo7GZ2egqjM-gcLlwbURv05PwmoZ_gfHY0mbp10xatXfsoftG16FLHyZkB0lGx1-shwfHTelj8Oj9bt1_L1Y8v39rTVWkYq6dSEkOhE1jyjlYU86rWsgPddBwMpqySdWObSgrCG0N5x21la4uZFVQAZoKyw-LzTvd67kawBvwU9aCuoxt1vFNBO_XvjXdbtQm_FSGVELXkWeHDk0IMNzOkSY0uGRgG7SHMSTFCBBYN4yKj7_9Dr8IcfY5voTjnlOKFOtlRGz2AWnKVHzZ5WsjpDB56l-2nDaE8K9PF4ePOIRcspQj98_cJVksvqL-9kOF3LwN-Rv9Unj0ArjyuFw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116662207</pqid></control><display><type>article</type><title>Micromechanical and Tribological Performance of Laser-Cladded Equiatomic FeNiCr Coatings Reinforced with TiC and NbC Particles</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Okulov, Artem ; Iusupova, Olga ; Liu, Kun ; Li, Jie ; Stepchenkov, Alexander ; Zavalishin, Vladimir ; Korkh, Yulia ; Kuznetsova, Tatyana ; Mugada, Krishna Kishore ; Moganraj, Arivarasu</creator><creatorcontrib>Okulov, Artem ; Iusupova, Olga ; Liu, Kun ; Li, Jie ; Stepchenkov, Alexander ; Zavalishin, Vladimir ; Korkh, Yulia ; Kuznetsova, Tatyana ; Mugada, Krishna Kishore ; Moganraj, Arivarasu</creatorcontrib><description>This paper discusses a comparative micromechanical and tribological analysis of laser-cladded equiatomic FeNiCr coatings reinforced with TiC and NbC particles. Two types of coatings, FeNiCr-TiC (3 wt.% TiC) and FeNiCr-NbC (3 wt.% NbC), were deposited onto an AISI 1040 steel substrate by means of short-pulsed laser cladding. The chemical composition, microstructure, and micromechanical and tribological characteristics of the coatings were systematically investigated via optical and scanning electron microscopy, Raman spectroscopy, and mechanical and tribological tests. The average thicknesses and compositional transition zones of the coatings were 600 ± 20 μm and 150 ± 20 μm, respectively. Raman spectroscopy revealed that both coatings are primarily composed of a single FCC γ-phase (γ-FeNiCr). The FeNiCr + 3 wt.% TiC coating exhibited an additional TiC phase dispersed within the γ-FeNiCr matrix. In contrast, the FeNiCr + 3 wt.% NbC coating displayed a more homogeneous distribution of finely dispersed NbC phase throughout the composite, leading to enhanced mechanical behavior. Micromechanical characterization showed that the FeNiCr + 3 wt.% NbC coating possessed higher average microhardness (3.8 GPa) and elastic modulus (180 GPa) compared to the FeNiCr + 3 wt.% TiC coating, which had values of ~3.2 GPa and ~156 GPa, respectively. Both coatings significantly exceeded the AISI 1040 steel substrate in tribological performance. The FeNiCr + 3 wt.% TiC and FeNiCr + 3 wt.% NbC coatings exhibited substantial reductions in both weight loss (37% and 41%, respectively) and wear rate (33% and 42%, respectively) compared to the substrate material. These findings indicate that more finely dispersed NbC particles are better suited for hardening laser-cladded equiatomic FeNiCr-NbC coatings, making them advanced candidates for industrial applications.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17194686</identifier><identifier>PMID: 39410256</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Building materials ; Chemical composition ; Chemical elements ; Coatings ; Dispersion hardening ; Ductility ; Industrial applications ; Interfacial bonding ; Laboratory equipment ; Laser beam cladding ; Laser beam hardening ; Lasers ; Mechanical properties ; Medium carbon steels ; Microhardness ; Modulus of elasticity ; Niobium carbide ; Plating ; Pulsed lasers ; Raman spectroscopy ; Spectrum analysis ; Substrates ; Thickness ; Titanium ; Titanium carbide ; Tribology ; Wear rate ; Weight loss</subject><ispartof>Materials, 2024-09, Vol.17 (19), p.4686</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c335t-91c2eb7096b2420645a9bea8b6ec0234958d8497168c26b6d4d5d03d727e03723</cites><orcidid>0000-0002-9960-4810 ; 0000-0003-1625-7129 ; 0000-0002-7522-6130 ; 0000-0001-6947-793X ; 0000-0002-2955-1370</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11477596/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11477596/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39410256$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Okulov, Artem</creatorcontrib><creatorcontrib>Iusupova, Olga</creatorcontrib><creatorcontrib>Liu, Kun</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Stepchenkov, Alexander</creatorcontrib><creatorcontrib>Zavalishin, Vladimir</creatorcontrib><creatorcontrib>Korkh, Yulia</creatorcontrib><creatorcontrib>Kuznetsova, Tatyana</creatorcontrib><creatorcontrib>Mugada, Krishna Kishore</creatorcontrib><creatorcontrib>Moganraj, Arivarasu</creatorcontrib><title>Micromechanical and Tribological Performance of Laser-Cladded Equiatomic FeNiCr Coatings Reinforced with TiC and NbC Particles</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>This paper discusses a comparative micromechanical and tribological analysis of laser-cladded equiatomic FeNiCr coatings reinforced with TiC and NbC particles. Two types of coatings, FeNiCr-TiC (3 wt.% TiC) and FeNiCr-NbC (3 wt.% NbC), were deposited onto an AISI 1040 steel substrate by means of short-pulsed laser cladding. The chemical composition, microstructure, and micromechanical and tribological characteristics of the coatings were systematically investigated via optical and scanning electron microscopy, Raman spectroscopy, and mechanical and tribological tests. The average thicknesses and compositional transition zones of the coatings were 600 ± 20 μm and 150 ± 20 μm, respectively. Raman spectroscopy revealed that both coatings are primarily composed of a single FCC γ-phase (γ-FeNiCr). The FeNiCr + 3 wt.% TiC coating exhibited an additional TiC phase dispersed within the γ-FeNiCr matrix. In contrast, the FeNiCr + 3 wt.% NbC coating displayed a more homogeneous distribution of finely dispersed NbC phase throughout the composite, leading to enhanced mechanical behavior. Micromechanical characterization showed that the FeNiCr + 3 wt.% NbC coating possessed higher average microhardness (3.8 GPa) and elastic modulus (180 GPa) compared to the FeNiCr + 3 wt.% TiC coating, which had values of ~3.2 GPa and ~156 GPa, respectively. Both coatings significantly exceeded the AISI 1040 steel substrate in tribological performance. The FeNiCr + 3 wt.% TiC and FeNiCr + 3 wt.% NbC coatings exhibited substantial reductions in both weight loss (37% and 41%, respectively) and wear rate (33% and 42%, respectively) compared to the substrate material. These findings indicate that more finely dispersed NbC particles are better suited for hardening laser-cladded equiatomic FeNiCr-NbC coatings, making them advanced candidates for industrial applications.</description><subject>Building materials</subject><subject>Chemical composition</subject><subject>Chemical elements</subject><subject>Coatings</subject><subject>Dispersion hardening</subject><subject>Ductility</subject><subject>Industrial applications</subject><subject>Interfacial bonding</subject><subject>Laboratory equipment</subject><subject>Laser beam cladding</subject><subject>Laser beam hardening</subject><subject>Lasers</subject><subject>Mechanical properties</subject><subject>Medium carbon steels</subject><subject>Microhardness</subject><subject>Modulus of elasticity</subject><subject>Niobium carbide</subject><subject>Plating</subject><subject>Pulsed lasers</subject><subject>Raman spectroscopy</subject><subject>Spectrum analysis</subject><subject>Substrates</subject><subject>Thickness</subject><subject>Titanium</subject><subject>Titanium carbide</subject><subject>Tribology</subject><subject>Wear rate</subject><subject>Weight loss</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkl1P3SAYx5tlZhr1Zh9gIdnNsqSOlxbK1WIa3ZacObOcXRMKT8_BtKDQznjjZ5d6nHODC-Dh9_zheSmKtwSfMCbxp1ETQWTFG_6qOCBS8jKfqtcv9vvFcUpXOA_GSEPlm2KfyYpgWvOD4v67MzGMYLbaO6MHpL1F6-i6MITNo-ESYh_iqL0BFHq00gli2Q7aWrDo7GZ2egqjM-gcLlwbURv05PwmoZ_gfHY0mbp10xatXfsoftG16FLHyZkB0lGx1-shwfHTelj8Oj9bt1_L1Y8v39rTVWkYq6dSEkOhE1jyjlYU86rWsgPddBwMpqySdWObSgrCG0N5x21la4uZFVQAZoKyw-LzTvd67kawBvwU9aCuoxt1vFNBO_XvjXdbtQm_FSGVELXkWeHDk0IMNzOkSY0uGRgG7SHMSTFCBBYN4yKj7_9Dr8IcfY5voTjnlOKFOtlRGz2AWnKVHzZ5WsjpDB56l-2nDaE8K9PF4ePOIRcspQj98_cJVksvqL-9kOF3LwN-Rv9Unj0ArjyuFw</recordid><startdate>20240924</startdate><enddate>20240924</enddate><creator>Okulov, Artem</creator><creator>Iusupova, Olga</creator><creator>Liu, Kun</creator><creator>Li, Jie</creator><creator>Stepchenkov, Alexander</creator><creator>Zavalishin, Vladimir</creator><creator>Korkh, Yulia</creator><creator>Kuznetsova, Tatyana</creator><creator>Mugada, Krishna Kishore</creator><creator>Moganraj, Arivarasu</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9960-4810</orcidid><orcidid>https://orcid.org/0000-0003-1625-7129</orcidid><orcidid>https://orcid.org/0000-0002-7522-6130</orcidid><orcidid>https://orcid.org/0000-0001-6947-793X</orcidid><orcidid>https://orcid.org/0000-0002-2955-1370</orcidid></search><sort><creationdate>20240924</creationdate><title>Micromechanical and Tribological Performance of Laser-Cladded Equiatomic FeNiCr Coatings Reinforced with TiC and NbC Particles</title><author>Okulov, Artem ; Iusupova, Olga ; Liu, Kun ; Li, Jie ; Stepchenkov, Alexander ; Zavalishin, Vladimir ; Korkh, Yulia ; Kuznetsova, Tatyana ; Mugada, Krishna Kishore ; Moganraj, Arivarasu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-91c2eb7096b2420645a9bea8b6ec0234958d8497168c26b6d4d5d03d727e03723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Building materials</topic><topic>Chemical composition</topic><topic>Chemical elements</topic><topic>Coatings</topic><topic>Dispersion hardening</topic><topic>Ductility</topic><topic>Industrial applications</topic><topic>Interfacial bonding</topic><topic>Laboratory equipment</topic><topic>Laser beam cladding</topic><topic>Laser beam hardening</topic><topic>Lasers</topic><topic>Mechanical properties</topic><topic>Medium carbon steels</topic><topic>Microhardness</topic><topic>Modulus of elasticity</topic><topic>Niobium carbide</topic><topic>Plating</topic><topic>Pulsed lasers</topic><topic>Raman spectroscopy</topic><topic>Spectrum analysis</topic><topic>Substrates</topic><topic>Thickness</topic><topic>Titanium</topic><topic>Titanium carbide</topic><topic>Tribology</topic><topic>Wear rate</topic><topic>Weight loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okulov, Artem</creatorcontrib><creatorcontrib>Iusupova, Olga</creatorcontrib><creatorcontrib>Liu, Kun</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Stepchenkov, Alexander</creatorcontrib><creatorcontrib>Zavalishin, Vladimir</creatorcontrib><creatorcontrib>Korkh, Yulia</creatorcontrib><creatorcontrib>Kuznetsova, Tatyana</creatorcontrib><creatorcontrib>Mugada, Krishna Kishore</creatorcontrib><creatorcontrib>Moganraj, Arivarasu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okulov, Artem</au><au>Iusupova, Olga</au><au>Liu, Kun</au><au>Li, Jie</au><au>Stepchenkov, Alexander</au><au>Zavalishin, Vladimir</au><au>Korkh, Yulia</au><au>Kuznetsova, Tatyana</au><au>Mugada, Krishna Kishore</au><au>Moganraj, Arivarasu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromechanical and Tribological Performance of Laser-Cladded Equiatomic FeNiCr Coatings Reinforced with TiC and NbC Particles</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-09-24</date><risdate>2024</risdate><volume>17</volume><issue>19</issue><spage>4686</spage><pages>4686-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>This paper discusses a comparative micromechanical and tribological analysis of laser-cladded equiatomic FeNiCr coatings reinforced with TiC and NbC particles. Two types of coatings, FeNiCr-TiC (3 wt.% TiC) and FeNiCr-NbC (3 wt.% NbC), were deposited onto an AISI 1040 steel substrate by means of short-pulsed laser cladding. The chemical composition, microstructure, and micromechanical and tribological characteristics of the coatings were systematically investigated via optical and scanning electron microscopy, Raman spectroscopy, and mechanical and tribological tests. The average thicknesses and compositional transition zones of the coatings were 600 ± 20 μm and 150 ± 20 μm, respectively. Raman spectroscopy revealed that both coatings are primarily composed of a single FCC γ-phase (γ-FeNiCr). The FeNiCr + 3 wt.% TiC coating exhibited an additional TiC phase dispersed within the γ-FeNiCr matrix. In contrast, the FeNiCr + 3 wt.% NbC coating displayed a more homogeneous distribution of finely dispersed NbC phase throughout the composite, leading to enhanced mechanical behavior. Micromechanical characterization showed that the FeNiCr + 3 wt.% NbC coating possessed higher average microhardness (3.8 GPa) and elastic modulus (180 GPa) compared to the FeNiCr + 3 wt.% TiC coating, which had values of ~3.2 GPa and ~156 GPa, respectively. Both coatings significantly exceeded the AISI 1040 steel substrate in tribological performance. The FeNiCr + 3 wt.% TiC and FeNiCr + 3 wt.% NbC coatings exhibited substantial reductions in both weight loss (37% and 41%, respectively) and wear rate (33% and 42%, respectively) compared to the substrate material. These findings indicate that more finely dispersed NbC particles are better suited for hardening laser-cladded equiatomic FeNiCr-NbC coatings, making them advanced candidates for industrial applications.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39410256</pmid><doi>10.3390/ma17194686</doi><orcidid>https://orcid.org/0000-0002-9960-4810</orcidid><orcidid>https://orcid.org/0000-0003-1625-7129</orcidid><orcidid>https://orcid.org/0000-0002-7522-6130</orcidid><orcidid>https://orcid.org/0000-0001-6947-793X</orcidid><orcidid>https://orcid.org/0000-0002-2955-1370</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-09, Vol.17 (19), p.4686
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11477596
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Building materials
Chemical composition
Chemical elements
Coatings
Dispersion hardening
Ductility
Industrial applications
Interfacial bonding
Laboratory equipment
Laser beam cladding
Laser beam hardening
Lasers
Mechanical properties
Medium carbon steels
Microhardness
Modulus of elasticity
Niobium carbide
Plating
Pulsed lasers
Raman spectroscopy
Spectrum analysis
Substrates
Thickness
Titanium
Titanium carbide
Tribology
Wear rate
Weight loss
title Micromechanical and Tribological Performance of Laser-Cladded Equiatomic FeNiCr Coatings Reinforced with TiC and NbC Particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T12%3A50%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromechanical%20and%20Tribological%20Performance%20of%20Laser-Cladded%20Equiatomic%20FeNiCr%20Coatings%20Reinforced%20with%20TiC%20and%20NbC%20Particles&rft.jtitle=Materials&rft.au=Okulov,%20Artem&rft.date=2024-09-24&rft.volume=17&rft.issue=19&rft.spage=4686&rft.pages=4686-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17194686&rft_dat=%3Cgale_pubme%3EA812617027%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116662207&rft_id=info:pmid/39410256&rft_galeid=A812617027&rfr_iscdi=true