Micromechanical and Tribological Performance of Laser-Cladded Equiatomic FeNiCr Coatings Reinforced with TiC and NbC Particles
This paper discusses a comparative micromechanical and tribological analysis of laser-cladded equiatomic FeNiCr coatings reinforced with TiC and NbC particles. Two types of coatings, FeNiCr-TiC (3 wt.% TiC) and FeNiCr-NbC (3 wt.% NbC), were deposited onto an AISI 1040 steel substrate by means of sho...
Gespeichert in:
Veröffentlicht in: | Materials 2024-09, Vol.17 (19), p.4686 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | 4686 |
container_title | Materials |
container_volume | 17 |
creator | Okulov, Artem Iusupova, Olga Liu, Kun Li, Jie Stepchenkov, Alexander Zavalishin, Vladimir Korkh, Yulia Kuznetsova, Tatyana Mugada, Krishna Kishore Moganraj, Arivarasu |
description | This paper discusses a comparative micromechanical and tribological analysis of laser-cladded equiatomic FeNiCr coatings reinforced with TiC and NbC particles. Two types of coatings, FeNiCr-TiC (3 wt.% TiC) and FeNiCr-NbC (3 wt.% NbC), were deposited onto an AISI 1040 steel substrate by means of short-pulsed laser cladding. The chemical composition, microstructure, and micromechanical and tribological characteristics of the coatings were systematically investigated via optical and scanning electron microscopy, Raman spectroscopy, and mechanical and tribological tests. The average thicknesses and compositional transition zones of the coatings were 600 ± 20 μm and 150 ± 20 μm, respectively. Raman spectroscopy revealed that both coatings are primarily composed of a single FCC γ-phase (γ-FeNiCr). The FeNiCr + 3 wt.% TiC coating exhibited an additional TiC phase dispersed within the γ-FeNiCr matrix. In contrast, the FeNiCr + 3 wt.% NbC coating displayed a more homogeneous distribution of finely dispersed NbC phase throughout the composite, leading to enhanced mechanical behavior. Micromechanical characterization showed that the FeNiCr + 3 wt.% NbC coating possessed higher average microhardness (3.8 GPa) and elastic modulus (180 GPa) compared to the FeNiCr + 3 wt.% TiC coating, which had values of ~3.2 GPa and ~156 GPa, respectively. Both coatings significantly exceeded the AISI 1040 steel substrate in tribological performance. The FeNiCr + 3 wt.% TiC and FeNiCr + 3 wt.% NbC coatings exhibited substantial reductions in both weight loss (37% and 41%, respectively) and wear rate (33% and 42%, respectively) compared to the substrate material. These findings indicate that more finely dispersed NbC particles are better suited for hardening laser-cladded equiatomic FeNiCr-NbC coatings, making them advanced candidates for industrial applications. |
doi_str_mv | 10.3390/ma17194686 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11477596</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A812617027</galeid><sourcerecordid>A812617027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-91c2eb7096b2420645a9bea8b6ec0234958d8497168c26b6d4d5d03d727e03723</originalsourceid><addsrcrecordid>eNpdkl1P3SAYx5tlZhr1Zh9gIdnNsqSOlxbK1WIa3ZacObOcXRMKT8_BtKDQznjjZ5d6nHODC-Dh9_zheSmKtwSfMCbxp1ETQWTFG_6qOCBS8jKfqtcv9vvFcUpXOA_GSEPlm2KfyYpgWvOD4v67MzGMYLbaO6MHpL1F6-i6MITNo-ESYh_iqL0BFHq00gli2Q7aWrDo7GZ2egqjM-gcLlwbURv05PwmoZ_gfHY0mbp10xatXfsoftG16FLHyZkB0lGx1-shwfHTelj8Oj9bt1_L1Y8v39rTVWkYq6dSEkOhE1jyjlYU86rWsgPddBwMpqySdWObSgrCG0N5x21la4uZFVQAZoKyw-LzTvd67kawBvwU9aCuoxt1vFNBO_XvjXdbtQm_FSGVELXkWeHDk0IMNzOkSY0uGRgG7SHMSTFCBBYN4yKj7_9Dr8IcfY5voTjnlOKFOtlRGz2AWnKVHzZ5WsjpDB56l-2nDaE8K9PF4ePOIRcspQj98_cJVksvqL-9kOF3LwN-Rv9Unj0ArjyuFw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3116662207</pqid></control><display><type>article</type><title>Micromechanical and Tribological Performance of Laser-Cladded Equiatomic FeNiCr Coatings Reinforced with TiC and NbC Particles</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Okulov, Artem ; Iusupova, Olga ; Liu, Kun ; Li, Jie ; Stepchenkov, Alexander ; Zavalishin, Vladimir ; Korkh, Yulia ; Kuznetsova, Tatyana ; Mugada, Krishna Kishore ; Moganraj, Arivarasu</creator><creatorcontrib>Okulov, Artem ; Iusupova, Olga ; Liu, Kun ; Li, Jie ; Stepchenkov, Alexander ; Zavalishin, Vladimir ; Korkh, Yulia ; Kuznetsova, Tatyana ; Mugada, Krishna Kishore ; Moganraj, Arivarasu</creatorcontrib><description>This paper discusses a comparative micromechanical and tribological analysis of laser-cladded equiatomic FeNiCr coatings reinforced with TiC and NbC particles. Two types of coatings, FeNiCr-TiC (3 wt.% TiC) and FeNiCr-NbC (3 wt.% NbC), were deposited onto an AISI 1040 steel substrate by means of short-pulsed laser cladding. The chemical composition, microstructure, and micromechanical and tribological characteristics of the coatings were systematically investigated via optical and scanning electron microscopy, Raman spectroscopy, and mechanical and tribological tests. The average thicknesses and compositional transition zones of the coatings were 600 ± 20 μm and 150 ± 20 μm, respectively. Raman spectroscopy revealed that both coatings are primarily composed of a single FCC γ-phase (γ-FeNiCr). The FeNiCr + 3 wt.% TiC coating exhibited an additional TiC phase dispersed within the γ-FeNiCr matrix. In contrast, the FeNiCr + 3 wt.% NbC coating displayed a more homogeneous distribution of finely dispersed NbC phase throughout the composite, leading to enhanced mechanical behavior. Micromechanical characterization showed that the FeNiCr + 3 wt.% NbC coating possessed higher average microhardness (3.8 GPa) and elastic modulus (180 GPa) compared to the FeNiCr + 3 wt.% TiC coating, which had values of ~3.2 GPa and ~156 GPa, respectively. Both coatings significantly exceeded the AISI 1040 steel substrate in tribological performance. The FeNiCr + 3 wt.% TiC and FeNiCr + 3 wt.% NbC coatings exhibited substantial reductions in both weight loss (37% and 41%, respectively) and wear rate (33% and 42%, respectively) compared to the substrate material. These findings indicate that more finely dispersed NbC particles are better suited for hardening laser-cladded equiatomic FeNiCr-NbC coatings, making them advanced candidates for industrial applications.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17194686</identifier><identifier>PMID: 39410256</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Building materials ; Chemical composition ; Chemical elements ; Coatings ; Dispersion hardening ; Ductility ; Industrial applications ; Interfacial bonding ; Laboratory equipment ; Laser beam cladding ; Laser beam hardening ; Lasers ; Mechanical properties ; Medium carbon steels ; Microhardness ; Modulus of elasticity ; Niobium carbide ; Plating ; Pulsed lasers ; Raman spectroscopy ; Spectrum analysis ; Substrates ; Thickness ; Titanium ; Titanium carbide ; Tribology ; Wear rate ; Weight loss</subject><ispartof>Materials, 2024-09, Vol.17 (19), p.4686</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c335t-91c2eb7096b2420645a9bea8b6ec0234958d8497168c26b6d4d5d03d727e03723</cites><orcidid>0000-0002-9960-4810 ; 0000-0003-1625-7129 ; 0000-0002-7522-6130 ; 0000-0001-6947-793X ; 0000-0002-2955-1370</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11477596/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11477596/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39410256$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Okulov, Artem</creatorcontrib><creatorcontrib>Iusupova, Olga</creatorcontrib><creatorcontrib>Liu, Kun</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Stepchenkov, Alexander</creatorcontrib><creatorcontrib>Zavalishin, Vladimir</creatorcontrib><creatorcontrib>Korkh, Yulia</creatorcontrib><creatorcontrib>Kuznetsova, Tatyana</creatorcontrib><creatorcontrib>Mugada, Krishna Kishore</creatorcontrib><creatorcontrib>Moganraj, Arivarasu</creatorcontrib><title>Micromechanical and Tribological Performance of Laser-Cladded Equiatomic FeNiCr Coatings Reinforced with TiC and NbC Particles</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>This paper discusses a comparative micromechanical and tribological analysis of laser-cladded equiatomic FeNiCr coatings reinforced with TiC and NbC particles. Two types of coatings, FeNiCr-TiC (3 wt.% TiC) and FeNiCr-NbC (3 wt.% NbC), were deposited onto an AISI 1040 steel substrate by means of short-pulsed laser cladding. The chemical composition, microstructure, and micromechanical and tribological characteristics of the coatings were systematically investigated via optical and scanning electron microscopy, Raman spectroscopy, and mechanical and tribological tests. The average thicknesses and compositional transition zones of the coatings were 600 ± 20 μm and 150 ± 20 μm, respectively. Raman spectroscopy revealed that both coatings are primarily composed of a single FCC γ-phase (γ-FeNiCr). The FeNiCr + 3 wt.% TiC coating exhibited an additional TiC phase dispersed within the γ-FeNiCr matrix. In contrast, the FeNiCr + 3 wt.% NbC coating displayed a more homogeneous distribution of finely dispersed NbC phase throughout the composite, leading to enhanced mechanical behavior. Micromechanical characterization showed that the FeNiCr + 3 wt.% NbC coating possessed higher average microhardness (3.8 GPa) and elastic modulus (180 GPa) compared to the FeNiCr + 3 wt.% TiC coating, which had values of ~3.2 GPa and ~156 GPa, respectively. Both coatings significantly exceeded the AISI 1040 steel substrate in tribological performance. The FeNiCr + 3 wt.% TiC and FeNiCr + 3 wt.% NbC coatings exhibited substantial reductions in both weight loss (37% and 41%, respectively) and wear rate (33% and 42%, respectively) compared to the substrate material. These findings indicate that more finely dispersed NbC particles are better suited for hardening laser-cladded equiatomic FeNiCr-NbC coatings, making them advanced candidates for industrial applications.</description><subject>Building materials</subject><subject>Chemical composition</subject><subject>Chemical elements</subject><subject>Coatings</subject><subject>Dispersion hardening</subject><subject>Ductility</subject><subject>Industrial applications</subject><subject>Interfacial bonding</subject><subject>Laboratory equipment</subject><subject>Laser beam cladding</subject><subject>Laser beam hardening</subject><subject>Lasers</subject><subject>Mechanical properties</subject><subject>Medium carbon steels</subject><subject>Microhardness</subject><subject>Modulus of elasticity</subject><subject>Niobium carbide</subject><subject>Plating</subject><subject>Pulsed lasers</subject><subject>Raman spectroscopy</subject><subject>Spectrum analysis</subject><subject>Substrates</subject><subject>Thickness</subject><subject>Titanium</subject><subject>Titanium carbide</subject><subject>Tribology</subject><subject>Wear rate</subject><subject>Weight loss</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkl1P3SAYx5tlZhr1Zh9gIdnNsqSOlxbK1WIa3ZacObOcXRMKT8_BtKDQznjjZ5d6nHODC-Dh9_zheSmKtwSfMCbxp1ETQWTFG_6qOCBS8jKfqtcv9vvFcUpXOA_GSEPlm2KfyYpgWvOD4v67MzGMYLbaO6MHpL1F6-i6MITNo-ESYh_iqL0BFHq00gli2Q7aWrDo7GZ2egqjM-gcLlwbURv05PwmoZ_gfHY0mbp10xatXfsoftG16FLHyZkB0lGx1-shwfHTelj8Oj9bt1_L1Y8v39rTVWkYq6dSEkOhE1jyjlYU86rWsgPddBwMpqySdWObSgrCG0N5x21la4uZFVQAZoKyw-LzTvd67kawBvwU9aCuoxt1vFNBO_XvjXdbtQm_FSGVELXkWeHDk0IMNzOkSY0uGRgG7SHMSTFCBBYN4yKj7_9Dr8IcfY5voTjnlOKFOtlRGz2AWnKVHzZ5WsjpDB56l-2nDaE8K9PF4ePOIRcspQj98_cJVksvqL-9kOF3LwN-Rv9Unj0ArjyuFw</recordid><startdate>20240924</startdate><enddate>20240924</enddate><creator>Okulov, Artem</creator><creator>Iusupova, Olga</creator><creator>Liu, Kun</creator><creator>Li, Jie</creator><creator>Stepchenkov, Alexander</creator><creator>Zavalishin, Vladimir</creator><creator>Korkh, Yulia</creator><creator>Kuznetsova, Tatyana</creator><creator>Mugada, Krishna Kishore</creator><creator>Moganraj, Arivarasu</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9960-4810</orcidid><orcidid>https://orcid.org/0000-0003-1625-7129</orcidid><orcidid>https://orcid.org/0000-0002-7522-6130</orcidid><orcidid>https://orcid.org/0000-0001-6947-793X</orcidid><orcidid>https://orcid.org/0000-0002-2955-1370</orcidid></search><sort><creationdate>20240924</creationdate><title>Micromechanical and Tribological Performance of Laser-Cladded Equiatomic FeNiCr Coatings Reinforced with TiC and NbC Particles</title><author>Okulov, Artem ; Iusupova, Olga ; Liu, Kun ; Li, Jie ; Stepchenkov, Alexander ; Zavalishin, Vladimir ; Korkh, Yulia ; Kuznetsova, Tatyana ; Mugada, Krishna Kishore ; Moganraj, Arivarasu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-91c2eb7096b2420645a9bea8b6ec0234958d8497168c26b6d4d5d03d727e03723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Building materials</topic><topic>Chemical composition</topic><topic>Chemical elements</topic><topic>Coatings</topic><topic>Dispersion hardening</topic><topic>Ductility</topic><topic>Industrial applications</topic><topic>Interfacial bonding</topic><topic>Laboratory equipment</topic><topic>Laser beam cladding</topic><topic>Laser beam hardening</topic><topic>Lasers</topic><topic>Mechanical properties</topic><topic>Medium carbon steels</topic><topic>Microhardness</topic><topic>Modulus of elasticity</topic><topic>Niobium carbide</topic><topic>Plating</topic><topic>Pulsed lasers</topic><topic>Raman spectroscopy</topic><topic>Spectrum analysis</topic><topic>Substrates</topic><topic>Thickness</topic><topic>Titanium</topic><topic>Titanium carbide</topic><topic>Tribology</topic><topic>Wear rate</topic><topic>Weight loss</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okulov, Artem</creatorcontrib><creatorcontrib>Iusupova, Olga</creatorcontrib><creatorcontrib>Liu, Kun</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Stepchenkov, Alexander</creatorcontrib><creatorcontrib>Zavalishin, Vladimir</creatorcontrib><creatorcontrib>Korkh, Yulia</creatorcontrib><creatorcontrib>Kuznetsova, Tatyana</creatorcontrib><creatorcontrib>Mugada, Krishna Kishore</creatorcontrib><creatorcontrib>Moganraj, Arivarasu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okulov, Artem</au><au>Iusupova, Olga</au><au>Liu, Kun</au><au>Li, Jie</au><au>Stepchenkov, Alexander</au><au>Zavalishin, Vladimir</au><au>Korkh, Yulia</au><au>Kuznetsova, Tatyana</au><au>Mugada, Krishna Kishore</au><au>Moganraj, Arivarasu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromechanical and Tribological Performance of Laser-Cladded Equiatomic FeNiCr Coatings Reinforced with TiC and NbC Particles</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-09-24</date><risdate>2024</risdate><volume>17</volume><issue>19</issue><spage>4686</spage><pages>4686-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>This paper discusses a comparative micromechanical and tribological analysis of laser-cladded equiatomic FeNiCr coatings reinforced with TiC and NbC particles. Two types of coatings, FeNiCr-TiC (3 wt.% TiC) and FeNiCr-NbC (3 wt.% NbC), were deposited onto an AISI 1040 steel substrate by means of short-pulsed laser cladding. The chemical composition, microstructure, and micromechanical and tribological characteristics of the coatings were systematically investigated via optical and scanning electron microscopy, Raman spectroscopy, and mechanical and tribological tests. The average thicknesses and compositional transition zones of the coatings were 600 ± 20 μm and 150 ± 20 μm, respectively. Raman spectroscopy revealed that both coatings are primarily composed of a single FCC γ-phase (γ-FeNiCr). The FeNiCr + 3 wt.% TiC coating exhibited an additional TiC phase dispersed within the γ-FeNiCr matrix. In contrast, the FeNiCr + 3 wt.% NbC coating displayed a more homogeneous distribution of finely dispersed NbC phase throughout the composite, leading to enhanced mechanical behavior. Micromechanical characterization showed that the FeNiCr + 3 wt.% NbC coating possessed higher average microhardness (3.8 GPa) and elastic modulus (180 GPa) compared to the FeNiCr + 3 wt.% TiC coating, which had values of ~3.2 GPa and ~156 GPa, respectively. Both coatings significantly exceeded the AISI 1040 steel substrate in tribological performance. The FeNiCr + 3 wt.% TiC and FeNiCr + 3 wt.% NbC coatings exhibited substantial reductions in both weight loss (37% and 41%, respectively) and wear rate (33% and 42%, respectively) compared to the substrate material. These findings indicate that more finely dispersed NbC particles are better suited for hardening laser-cladded equiatomic FeNiCr-NbC coatings, making them advanced candidates for industrial applications.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39410256</pmid><doi>10.3390/ma17194686</doi><orcidid>https://orcid.org/0000-0002-9960-4810</orcidid><orcidid>https://orcid.org/0000-0003-1625-7129</orcidid><orcidid>https://orcid.org/0000-0002-7522-6130</orcidid><orcidid>https://orcid.org/0000-0001-6947-793X</orcidid><orcidid>https://orcid.org/0000-0002-2955-1370</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-09, Vol.17 (19), p.4686 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11477596 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Building materials Chemical composition Chemical elements Coatings Dispersion hardening Ductility Industrial applications Interfacial bonding Laboratory equipment Laser beam cladding Laser beam hardening Lasers Mechanical properties Medium carbon steels Microhardness Modulus of elasticity Niobium carbide Plating Pulsed lasers Raman spectroscopy Spectrum analysis Substrates Thickness Titanium Titanium carbide Tribology Wear rate Weight loss |
title | Micromechanical and Tribological Performance of Laser-Cladded Equiatomic FeNiCr Coatings Reinforced with TiC and NbC Particles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T12%3A50%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromechanical%20and%20Tribological%20Performance%20of%20Laser-Cladded%20Equiatomic%20FeNiCr%20Coatings%20Reinforced%20with%20TiC%20and%20NbC%20Particles&rft.jtitle=Materials&rft.au=Okulov,%20Artem&rft.date=2024-09-24&rft.volume=17&rft.issue=19&rft.spage=4686&rft.pages=4686-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17194686&rft_dat=%3Cgale_pubme%3EA812617027%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3116662207&rft_id=info:pmid/39410256&rft_galeid=A812617027&rfr_iscdi=true |