Ultrahigh Carrier Mobilities in Ferroelectric Domain Wall Corbino Cones at Room Temperature

Recently, electrically conducting heterointerfaces between dissimilar band insulators (such as lanthanum aluminate and strontium titanate) have attracted considerable research interest. Charge transport and fundamental aspects of conduction have been thoroughly explored. Perhaps surprisingly, simila...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2022-08, Vol.34 (32), p.e2204298-n/a
Hauptverfasser: McCluskey, Conor J., Colbear, Matthew G., McConville, James P. V., McCartan, Shane J., Maguire, Jesi R., Conroy, Michele, Moore, Kalani, Harvey, Alan, Trier, Felix, Bangert, Ursel, Gruverman, Alexei, Bibes, Manuel, Kumar, Amit, McQuaid, Raymond G. P., Gregg, J. Marty
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 32
container_start_page e2204298
container_title Advanced materials (Weinheim)
container_volume 34
creator McCluskey, Conor J.
Colbear, Matthew G.
McConville, James P. V.
McCartan, Shane J.
Maguire, Jesi R.
Conroy, Michele
Moore, Kalani
Harvey, Alan
Trier, Felix
Bangert, Ursel
Gruverman, Alexei
Bibes, Manuel
Kumar, Amit
McQuaid, Raymond G. P.
Gregg, J. Marty
description Recently, electrically conducting heterointerfaces between dissimilar band insulators (such as lanthanum aluminate and strontium titanate) have attracted considerable research interest. Charge transport and fundamental aspects of conduction have been thoroughly explored. Perhaps surprisingly, similar studies on conceptually much simpler conducting homointerfaces, such as domain walls, are not nearly so well developed. Addressing this disparity, magnetoresistance is herein reported in approximately conical 180° charged domain walls, in partially switched ferroelectric thin‐film single‐crystal lithium niobate. This system is ideal for such measurements: first, the conductivity difference between domains and domain walls is unusually large (a factor of 1013) and hence currents driven through the thin film, between planar top and bottom electrodes, are overwhelmingly channeled along the walls; second, when electrical contact is made to the top and bottom of the domain walls and a magnetic field is applied along their cone axes, then the test geometry mirrors that of a Corbino disk: a textbook arrangement for geometric magnetoresistance measurement. Data imply carriers with extremely high room‐temperature Hall mobilities of up to ≈3700 cm2 V−1 s−1. This is an unparalleled value for oxide interfaces (and for bulk oxides) comparable to mobilities in other systems seen at cryogenic, rather than at room, temperature. Magnetoresistance is measured in conical 180° charged domain walls, in ferroelectric lithium niobate. Extracted carrier mobilities are extremely high, up to ≈3700 cm2 V−1 s−1. This is an unparalleled value for oxide interfaces (and for bulk oxides too) and is most comparable to mobilities in other systems typically seen at cryogenic, rather than at room, temperature.
doi_str_mv 10.1002/adma.202204298
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11475267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2700145577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4298-b318a75bddb6a88b1fe2f9e975baf2adde78954b319c465f1d11def4d95d2bd33</originalsourceid><addsrcrecordid>eNqFkc9P2zAYhi20iRbGleMUaRcu6fwjTuLTVBUKSCAkVLTDDpYTf2mNnLizE1D_e1y16zYunD7p8-NH36sXoXOCJwRj-l3pVk0ophRnVJRHaEw4JWmGBf-Exlgwnoo8K0foJIRnjLHIcX6MRowXjDHBxujXk-29WpnlKpkp7w345N5VxpreQEhMl8zBewcW6t6bOrl0rYrLn8raZOZ8ZToXZxdR1SePzrXJAto1eNUPHr6gz42yAc728xQ9za8Ws5v07uH6dja9S-vtzWnFSKkKXmld5aosK9IAbQSIuFINVVpDUQqeRUzUWc4bognR0GRacE0rzdgp-rHzroeqBV1DFyNZufamVX4jnTLy_5fOrOTSvUhCsoLTvIiGi73Bu98DhF62JtRgrerADUHSvMSUcc5FRL-9Q5_d4LuYT9ICY5JxXmyFkx1VexeCh-ZwDcFyW5zcFicPxcUPX__NcMD_NBUBsQNejYXNBzo5vbyf_pW_AaP1pns</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2700145577</pqid></control><display><type>article</type><title>Ultrahigh Carrier Mobilities in Ferroelectric Domain Wall Corbino Cones at Room Temperature</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>McCluskey, Conor J. ; Colbear, Matthew G. ; McConville, James P. V. ; McCartan, Shane J. ; Maguire, Jesi R. ; Conroy, Michele ; Moore, Kalani ; Harvey, Alan ; Trier, Felix ; Bangert, Ursel ; Gruverman, Alexei ; Bibes, Manuel ; Kumar, Amit ; McQuaid, Raymond G. P. ; Gregg, J. Marty</creator><creatorcontrib>McCluskey, Conor J. ; Colbear, Matthew G. ; McConville, James P. V. ; McCartan, Shane J. ; Maguire, Jesi R. ; Conroy, Michele ; Moore, Kalani ; Harvey, Alan ; Trier, Felix ; Bangert, Ursel ; Gruverman, Alexei ; Bibes, Manuel ; Kumar, Amit ; McQuaid, Raymond G. P. ; Gregg, J. Marty</creatorcontrib><description>Recently, electrically conducting heterointerfaces between dissimilar band insulators (such as lanthanum aluminate and strontium titanate) have attracted considerable research interest. Charge transport and fundamental aspects of conduction have been thoroughly explored. Perhaps surprisingly, similar studies on conceptually much simpler conducting homointerfaces, such as domain walls, are not nearly so well developed. Addressing this disparity, magnetoresistance is herein reported in approximately conical 180° charged domain walls, in partially switched ferroelectric thin‐film single‐crystal lithium niobate. This system is ideal for such measurements: first, the conductivity difference between domains and domain walls is unusually large (a factor of 1013) and hence currents driven through the thin film, between planar top and bottom electrodes, are overwhelmingly channeled along the walls; second, when electrical contact is made to the top and bottom of the domain walls and a magnetic field is applied along their cone axes, then the test geometry mirrors that of a Corbino disk: a textbook arrangement for geometric magnetoresistance measurement. Data imply carriers with extremely high room‐temperature Hall mobilities of up to ≈3700 cm2 V−1 s−1. This is an unparalleled value for oxide interfaces (and for bulk oxides) comparable to mobilities in other systems seen at cryogenic, rather than at room, temperature. Magnetoresistance is measured in conical 180° charged domain walls, in ferroelectric lithium niobate. Extracted carrier mobilities are extremely high, up to ≈3700 cm2 V−1 s−1. This is an unparalleled value for oxide interfaces (and for bulk oxides too) and is most comparable to mobilities in other systems typically seen at cryogenic, rather than at room, temperature.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202204298</identifier><identifier>PMID: 35733393</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>carrier mobility ; Charge transport ; Conduction ; Corbino disks ; Domain walls ; Electric contacts ; Ferroelectric domains ; Ferroelectric materials ; Ferroelectricity ; ferroelectrics ; Insulators ; Lanthanum ; Lithium niobates ; Magnetic domains ; Magnetism ; Magnetoresistance ; Magnetoresistivity ; Materials science ; Room temperature ; Strontium titanates ; Thin films</subject><ispartof>Advanced materials (Weinheim), 2022-08, Vol.34 (32), p.e2204298-n/a</ispartof><rights>2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4298-b318a75bddb6a88b1fe2f9e975baf2adde78954b319c465f1d11def4d95d2bd33</citedby><cites>FETCH-LOGICAL-c4298-b318a75bddb6a88b1fe2f9e975baf2adde78954b319c465f1d11def4d95d2bd33</cites><orcidid>0000-0002-6451-7768</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202204298$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202204298$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35733393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McCluskey, Conor J.</creatorcontrib><creatorcontrib>Colbear, Matthew G.</creatorcontrib><creatorcontrib>McConville, James P. V.</creatorcontrib><creatorcontrib>McCartan, Shane J.</creatorcontrib><creatorcontrib>Maguire, Jesi R.</creatorcontrib><creatorcontrib>Conroy, Michele</creatorcontrib><creatorcontrib>Moore, Kalani</creatorcontrib><creatorcontrib>Harvey, Alan</creatorcontrib><creatorcontrib>Trier, Felix</creatorcontrib><creatorcontrib>Bangert, Ursel</creatorcontrib><creatorcontrib>Gruverman, Alexei</creatorcontrib><creatorcontrib>Bibes, Manuel</creatorcontrib><creatorcontrib>Kumar, Amit</creatorcontrib><creatorcontrib>McQuaid, Raymond G. P.</creatorcontrib><creatorcontrib>Gregg, J. Marty</creatorcontrib><title>Ultrahigh Carrier Mobilities in Ferroelectric Domain Wall Corbino Cones at Room Temperature</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Recently, electrically conducting heterointerfaces between dissimilar band insulators (such as lanthanum aluminate and strontium titanate) have attracted considerable research interest. Charge transport and fundamental aspects of conduction have been thoroughly explored. Perhaps surprisingly, similar studies on conceptually much simpler conducting homointerfaces, such as domain walls, are not nearly so well developed. Addressing this disparity, magnetoresistance is herein reported in approximately conical 180° charged domain walls, in partially switched ferroelectric thin‐film single‐crystal lithium niobate. This system is ideal for such measurements: first, the conductivity difference between domains and domain walls is unusually large (a factor of 1013) and hence currents driven through the thin film, between planar top and bottom electrodes, are overwhelmingly channeled along the walls; second, when electrical contact is made to the top and bottom of the domain walls and a magnetic field is applied along their cone axes, then the test geometry mirrors that of a Corbino disk: a textbook arrangement for geometric magnetoresistance measurement. Data imply carriers with extremely high room‐temperature Hall mobilities of up to ≈3700 cm2 V−1 s−1. This is an unparalleled value for oxide interfaces (and for bulk oxides) comparable to mobilities in other systems seen at cryogenic, rather than at room, temperature. Magnetoresistance is measured in conical 180° charged domain walls, in ferroelectric lithium niobate. Extracted carrier mobilities are extremely high, up to ≈3700 cm2 V−1 s−1. This is an unparalleled value for oxide interfaces (and for bulk oxides too) and is most comparable to mobilities in other systems typically seen at cryogenic, rather than at room, temperature.</description><subject>carrier mobility</subject><subject>Charge transport</subject><subject>Conduction</subject><subject>Corbino disks</subject><subject>Domain walls</subject><subject>Electric contacts</subject><subject>Ferroelectric domains</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>ferroelectrics</subject><subject>Insulators</subject><subject>Lanthanum</subject><subject>Lithium niobates</subject><subject>Magnetic domains</subject><subject>Magnetism</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Materials science</subject><subject>Room temperature</subject><subject>Strontium titanates</subject><subject>Thin films</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkc9P2zAYhi20iRbGleMUaRcu6fwjTuLTVBUKSCAkVLTDDpYTf2mNnLizE1D_e1y16zYunD7p8-NH36sXoXOCJwRj-l3pVk0ophRnVJRHaEw4JWmGBf-Exlgwnoo8K0foJIRnjLHIcX6MRowXjDHBxujXk-29WpnlKpkp7w345N5VxpreQEhMl8zBewcW6t6bOrl0rYrLn8raZOZ8ZToXZxdR1SePzrXJAto1eNUPHr6gz42yAc728xQ9za8Ws5v07uH6dja9S-vtzWnFSKkKXmld5aosK9IAbQSIuFINVVpDUQqeRUzUWc4bognR0GRacE0rzdgp-rHzroeqBV1DFyNZufamVX4jnTLy_5fOrOTSvUhCsoLTvIiGi73Bu98DhF62JtRgrerADUHSvMSUcc5FRL-9Q5_d4LuYT9ICY5JxXmyFkx1VexeCh-ZwDcFyW5zcFicPxcUPX__NcMD_NBUBsQNejYXNBzo5vbyf_pW_AaP1pns</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>McCluskey, Conor J.</creator><creator>Colbear, Matthew G.</creator><creator>McConville, James P. V.</creator><creator>McCartan, Shane J.</creator><creator>Maguire, Jesi R.</creator><creator>Conroy, Michele</creator><creator>Moore, Kalani</creator><creator>Harvey, Alan</creator><creator>Trier, Felix</creator><creator>Bangert, Ursel</creator><creator>Gruverman, Alexei</creator><creator>Bibes, Manuel</creator><creator>Kumar, Amit</creator><creator>McQuaid, Raymond G. P.</creator><creator>Gregg, J. Marty</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6451-7768</orcidid></search><sort><creationdate>20220801</creationdate><title>Ultrahigh Carrier Mobilities in Ferroelectric Domain Wall Corbino Cones at Room Temperature</title><author>McCluskey, Conor J. ; Colbear, Matthew G. ; McConville, James P. V. ; McCartan, Shane J. ; Maguire, Jesi R. ; Conroy, Michele ; Moore, Kalani ; Harvey, Alan ; Trier, Felix ; Bangert, Ursel ; Gruverman, Alexei ; Bibes, Manuel ; Kumar, Amit ; McQuaid, Raymond G. P. ; Gregg, J. Marty</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4298-b318a75bddb6a88b1fe2f9e975baf2adde78954b319c465f1d11def4d95d2bd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>carrier mobility</topic><topic>Charge transport</topic><topic>Conduction</topic><topic>Corbino disks</topic><topic>Domain walls</topic><topic>Electric contacts</topic><topic>Ferroelectric domains</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>ferroelectrics</topic><topic>Insulators</topic><topic>Lanthanum</topic><topic>Lithium niobates</topic><topic>Magnetic domains</topic><topic>Magnetism</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Materials science</topic><topic>Room temperature</topic><topic>Strontium titanates</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCluskey, Conor J.</creatorcontrib><creatorcontrib>Colbear, Matthew G.</creatorcontrib><creatorcontrib>McConville, James P. V.</creatorcontrib><creatorcontrib>McCartan, Shane J.</creatorcontrib><creatorcontrib>Maguire, Jesi R.</creatorcontrib><creatorcontrib>Conroy, Michele</creatorcontrib><creatorcontrib>Moore, Kalani</creatorcontrib><creatorcontrib>Harvey, Alan</creatorcontrib><creatorcontrib>Trier, Felix</creatorcontrib><creatorcontrib>Bangert, Ursel</creatorcontrib><creatorcontrib>Gruverman, Alexei</creatorcontrib><creatorcontrib>Bibes, Manuel</creatorcontrib><creatorcontrib>Kumar, Amit</creatorcontrib><creatorcontrib>McQuaid, Raymond G. P.</creatorcontrib><creatorcontrib>Gregg, J. Marty</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCluskey, Conor J.</au><au>Colbear, Matthew G.</au><au>McConville, James P. V.</au><au>McCartan, Shane J.</au><au>Maguire, Jesi R.</au><au>Conroy, Michele</au><au>Moore, Kalani</au><au>Harvey, Alan</au><au>Trier, Felix</au><au>Bangert, Ursel</au><au>Gruverman, Alexei</au><au>Bibes, Manuel</au><au>Kumar, Amit</au><au>McQuaid, Raymond G. P.</au><au>Gregg, J. Marty</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrahigh Carrier Mobilities in Ferroelectric Domain Wall Corbino Cones at Room Temperature</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>34</volume><issue>32</issue><spage>e2204298</spage><epage>n/a</epage><pages>e2204298-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Recently, electrically conducting heterointerfaces between dissimilar band insulators (such as lanthanum aluminate and strontium titanate) have attracted considerable research interest. Charge transport and fundamental aspects of conduction have been thoroughly explored. Perhaps surprisingly, similar studies on conceptually much simpler conducting homointerfaces, such as domain walls, are not nearly so well developed. Addressing this disparity, magnetoresistance is herein reported in approximately conical 180° charged domain walls, in partially switched ferroelectric thin‐film single‐crystal lithium niobate. This system is ideal for such measurements: first, the conductivity difference between domains and domain walls is unusually large (a factor of 1013) and hence currents driven through the thin film, between planar top and bottom electrodes, are overwhelmingly channeled along the walls; second, when electrical contact is made to the top and bottom of the domain walls and a magnetic field is applied along their cone axes, then the test geometry mirrors that of a Corbino disk: a textbook arrangement for geometric magnetoresistance measurement. Data imply carriers with extremely high room‐temperature Hall mobilities of up to ≈3700 cm2 V−1 s−1. This is an unparalleled value for oxide interfaces (and for bulk oxides) comparable to mobilities in other systems seen at cryogenic, rather than at room, temperature. Magnetoresistance is measured in conical 180° charged domain walls, in ferroelectric lithium niobate. Extracted carrier mobilities are extremely high, up to ≈3700 cm2 V−1 s−1. This is an unparalleled value for oxide interfaces (and for bulk oxides too) and is most comparable to mobilities in other systems typically seen at cryogenic, rather than at room, temperature.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35733393</pmid><doi>10.1002/adma.202204298</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6451-7768</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2022-08, Vol.34 (32), p.e2204298-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11475267
source Wiley Online Library Journals Frontfile Complete
subjects carrier mobility
Charge transport
Conduction
Corbino disks
Domain walls
Electric contacts
Ferroelectric domains
Ferroelectric materials
Ferroelectricity
ferroelectrics
Insulators
Lanthanum
Lithium niobates
Magnetic domains
Magnetism
Magnetoresistance
Magnetoresistivity
Materials science
Room temperature
Strontium titanates
Thin films
title Ultrahigh Carrier Mobilities in Ferroelectric Domain Wall Corbino Cones at Room Temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A44%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrahigh%20Carrier%20Mobilities%20in%20Ferroelectric%20Domain%20Wall%20Corbino%20Cones%20at%20Room%20Temperature&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=McCluskey,%20Conor%20J.&rft.date=2022-08-01&rft.volume=34&rft.issue=32&rft.spage=e2204298&rft.epage=n/a&rft.pages=e2204298-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202204298&rft_dat=%3Cproquest_pubme%3E2700145577%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2700145577&rft_id=info:pmid/35733393&rfr_iscdi=true