First principles approach and experimental exploration of a new double perovskite phase Sr2(In0.33 Sn0.33Sb0.33)2O6: evaluation of structural, optical, and dielectric properties

A new double perovskite phase, Sr2(Sn0.33Sb0.33In0.33)2O6, was successfully synthesized via a solid-state reaction and comprehensively characterized using both experimental and theoretical techniques. Powder X-ray diffraction was used to determine the crystal structure, while scanning electron micro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2024-10, Vol.14 (44), p.32292-32303
Hauptverfasser: Besma Belgacem, Nasri, Nabil, Mouna Ben Yahia, Oueslati, Abderrazek, Rached Ben Hassen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32303
container_issue 44
container_start_page 32292
container_title RSC advances
container_volume 14
creator Besma Belgacem
Nasri, Nabil
Mouna Ben Yahia
Oueslati, Abderrazek
Rached Ben Hassen
description A new double perovskite phase, Sr2(Sn0.33Sb0.33In0.33)2O6, was successfully synthesized via a solid-state reaction and comprehensively characterized using both experimental and theoretical techniques. Powder X-ray diffraction was used to determine the crystal structure, while scanning electron microscopy (SEM) revealed a high degree of densification and uniform grain distribution across the ceramic. Raman and Fourier-transform infrared (FTIR) absorption spectra of the powder present broad bands predominantly due to different stretching modes of the various SnO32−, InO32− and SbO32− octahedra in the region ν = 400–800 cm−1. An analysis of the UV-Vis diffuse reflectance spectrum shows excellent optical transparency and gives an estimation of an optical gap Eg ∼ 3.6 eV on bulk Sr2(Sn0.33Sb0.33In0.33)2O6, making this material a promising candidate for optoelectronic devices. Density Functional Theory calculations further validated the experimental findings, confirming the crystal structure and providing insight into the electronic and vibrational properties. Impedance spectroscopy revealed non-Debye dielectric relaxation and confirmed typical negative temperature coefficient of resistance (NTCR) behavior, underscoring the material's potential for temperature-sensing applications. The primary conduction mechanism, modeled as correlated barrier-hopping (CBH), was complemented by an Arrhenius-type process with activation energies of 0.33 eV and 0.9 eV across two distinct temperature ranges.
doi_str_mv 10.1039/d4ra05308g
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11472220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117332702</sourcerecordid><originalsourceid>FETCH-LOGICAL-p238t-1155363d3788ae59227b927b0ef49fa61c3195201bbe46481412e8ade106f4273</originalsourceid><addsrcrecordid>eNpdUNtO3DAQjaoidQX7whdY6guVuosviZP0paoQNwlpHxaeo4kzYU29dmo7C3wWf4gDqAJGmpkzmqMzlyw7ZHTJqKiPu9wDLQStbr9kM05zueBU1l_f4W_ZPIQ7mkwWjEs2y57OtA-RDF5bpQeDgcAweAdqQ8B2BB8G9HqLNoKZCuM8RO0scT0BYvGedG5sDZJEc7vwV8cENxCQrD0_urR0KQRZv6R1O8UffCV_EdyBGf8LhehHFUcP5idxQ9RqAtP0TqNBFb1WaUGXRkSN4SDb68EEnL_l_ezm7PT65GJxtTq_PPlztRi4qOKCsaIQUnSirCrAoua8bOvkFPu87kEyJVhdcMraFnOZVyxnHCvokFHZ57wU-9nvV91hbLfYqfSDtGGTPrUF_9g40M3HjtWb5tbtGsbyknNOk8LRm4J3_0YMsdnqoNAYsOjG0AjGpCwrSkWifv9EvXOjt-m-iVUKwUvKxTOJL5bp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117332702</pqid></control><display><type>article</type><title>First principles approach and experimental exploration of a new double perovskite phase Sr2(In0.33 Sn0.33Sb0.33)2O6: evaluation of structural, optical, and dielectric properties</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Besma Belgacem ; Nasri, Nabil ; Mouna Ben Yahia ; Oueslati, Abderrazek ; Rached Ben Hassen</creator><creatorcontrib>Besma Belgacem ; Nasri, Nabil ; Mouna Ben Yahia ; Oueslati, Abderrazek ; Rached Ben Hassen</creatorcontrib><description>A new double perovskite phase, Sr2(Sn0.33Sb0.33In0.33)2O6, was successfully synthesized via a solid-state reaction and comprehensively characterized using both experimental and theoretical techniques. Powder X-ray diffraction was used to determine the crystal structure, while scanning electron microscopy (SEM) revealed a high degree of densification and uniform grain distribution across the ceramic. Raman and Fourier-transform infrared (FTIR) absorption spectra of the powder present broad bands predominantly due to different stretching modes of the various SnO32−, InO32− and SbO32− octahedra in the region ν = 400–800 cm−1. An analysis of the UV-Vis diffuse reflectance spectrum shows excellent optical transparency and gives an estimation of an optical gap Eg ∼ 3.6 eV on bulk Sr2(Sn0.33Sb0.33In0.33)2O6, making this material a promising candidate for optoelectronic devices. Density Functional Theory calculations further validated the experimental findings, confirming the crystal structure and providing insight into the electronic and vibrational properties. Impedance spectroscopy revealed non-Debye dielectric relaxation and confirmed typical negative temperature coefficient of resistance (NTCR) behavior, underscoring the material's potential for temperature-sensing applications. The primary conduction mechanism, modeled as correlated barrier-hopping (CBH), was complemented by an Arrhenius-type process with activation energies of 0.33 eV and 0.9 eV across two distinct temperature ranges.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d4ra05308g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption spectra ; Band theory ; Banded structure ; Bulk density ; Chemical synthesis ; Chemistry ; Crystal structure ; Debye temperature ; Densification ; Density functional theory ; Dielectric properties ; Dielectric relaxation ; First principles ; Fourier transforms ; Hopping conduction ; Infrared analysis ; Infrared spectra ; Optical properties ; Optoelectronic devices ; Perovskites ; Spectrum analysis ; X ray powder diffraction</subject><ispartof>RSC advances, 2024-10, Vol.14 (44), p.32292-32303</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry.</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472220/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472220/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Besma Belgacem</creatorcontrib><creatorcontrib>Nasri, Nabil</creatorcontrib><creatorcontrib>Mouna Ben Yahia</creatorcontrib><creatorcontrib>Oueslati, Abderrazek</creatorcontrib><creatorcontrib>Rached Ben Hassen</creatorcontrib><title>First principles approach and experimental exploration of a new double perovskite phase Sr2(In0.33 Sn0.33Sb0.33)2O6: evaluation of structural, optical, and dielectric properties</title><title>RSC advances</title><description>A new double perovskite phase, Sr2(Sn0.33Sb0.33In0.33)2O6, was successfully synthesized via a solid-state reaction and comprehensively characterized using both experimental and theoretical techniques. Powder X-ray diffraction was used to determine the crystal structure, while scanning electron microscopy (SEM) revealed a high degree of densification and uniform grain distribution across the ceramic. Raman and Fourier-transform infrared (FTIR) absorption spectra of the powder present broad bands predominantly due to different stretching modes of the various SnO32−, InO32− and SbO32− octahedra in the region ν = 400–800 cm−1. An analysis of the UV-Vis diffuse reflectance spectrum shows excellent optical transparency and gives an estimation of an optical gap Eg ∼ 3.6 eV on bulk Sr2(Sn0.33Sb0.33In0.33)2O6, making this material a promising candidate for optoelectronic devices. Density Functional Theory calculations further validated the experimental findings, confirming the crystal structure and providing insight into the electronic and vibrational properties. Impedance spectroscopy revealed non-Debye dielectric relaxation and confirmed typical negative temperature coefficient of resistance (NTCR) behavior, underscoring the material's potential for temperature-sensing applications. The primary conduction mechanism, modeled as correlated barrier-hopping (CBH), was complemented by an Arrhenius-type process with activation energies of 0.33 eV and 0.9 eV across two distinct temperature ranges.</description><subject>Absorption spectra</subject><subject>Band theory</subject><subject>Banded structure</subject><subject>Bulk density</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Crystal structure</subject><subject>Debye temperature</subject><subject>Densification</subject><subject>Density functional theory</subject><subject>Dielectric properties</subject><subject>Dielectric relaxation</subject><subject>First principles</subject><subject>Fourier transforms</subject><subject>Hopping conduction</subject><subject>Infrared analysis</subject><subject>Infrared spectra</subject><subject>Optical properties</subject><subject>Optoelectronic devices</subject><subject>Perovskites</subject><subject>Spectrum analysis</subject><subject>X ray powder diffraction</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdUNtO3DAQjaoidQX7whdY6guVuosviZP0paoQNwlpHxaeo4kzYU29dmo7C3wWf4gDqAJGmpkzmqMzlyw7ZHTJqKiPu9wDLQStbr9kM05zueBU1l_f4W_ZPIQ7mkwWjEs2y57OtA-RDF5bpQeDgcAweAdqQ8B2BB8G9HqLNoKZCuM8RO0scT0BYvGedG5sDZJEc7vwV8cENxCQrD0_urR0KQRZv6R1O8UffCV_EdyBGf8LhehHFUcP5idxQ9RqAtP0TqNBFb1WaUGXRkSN4SDb68EEnL_l_ezm7PT65GJxtTq_PPlztRi4qOKCsaIQUnSirCrAoua8bOvkFPu87kEyJVhdcMraFnOZVyxnHCvokFHZ57wU-9nvV91hbLfYqfSDtGGTPrUF_9g40M3HjtWb5tbtGsbyknNOk8LRm4J3_0YMsdnqoNAYsOjG0AjGpCwrSkWifv9EvXOjt-m-iVUKwUvKxTOJL5bp</recordid><startdate>20241009</startdate><enddate>20241009</enddate><creator>Besma Belgacem</creator><creator>Nasri, Nabil</creator><creator>Mouna Ben Yahia</creator><creator>Oueslati, Abderrazek</creator><creator>Rached Ben Hassen</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20241009</creationdate><title>First principles approach and experimental exploration of a new double perovskite phase Sr2(In0.33 Sn0.33Sb0.33)2O6: evaluation of structural, optical, and dielectric properties</title><author>Besma Belgacem ; Nasri, Nabil ; Mouna Ben Yahia ; Oueslati, Abderrazek ; Rached Ben Hassen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p238t-1155363d3788ae59227b927b0ef49fa61c3195201bbe46481412e8ade106f4273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption spectra</topic><topic>Band theory</topic><topic>Banded structure</topic><topic>Bulk density</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Crystal structure</topic><topic>Debye temperature</topic><topic>Densification</topic><topic>Density functional theory</topic><topic>Dielectric properties</topic><topic>Dielectric relaxation</topic><topic>First principles</topic><topic>Fourier transforms</topic><topic>Hopping conduction</topic><topic>Infrared analysis</topic><topic>Infrared spectra</topic><topic>Optical properties</topic><topic>Optoelectronic devices</topic><topic>Perovskites</topic><topic>Spectrum analysis</topic><topic>X ray powder diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Besma Belgacem</creatorcontrib><creatorcontrib>Nasri, Nabil</creatorcontrib><creatorcontrib>Mouna Ben Yahia</creatorcontrib><creatorcontrib>Oueslati, Abderrazek</creatorcontrib><creatorcontrib>Rached Ben Hassen</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Besma Belgacem</au><au>Nasri, Nabil</au><au>Mouna Ben Yahia</au><au>Oueslati, Abderrazek</au><au>Rached Ben Hassen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First principles approach and experimental exploration of a new double perovskite phase Sr2(In0.33 Sn0.33Sb0.33)2O6: evaluation of structural, optical, and dielectric properties</atitle><jtitle>RSC advances</jtitle><date>2024-10-09</date><risdate>2024</risdate><volume>14</volume><issue>44</issue><spage>32292</spage><epage>32303</epage><pages>32292-32303</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>A new double perovskite phase, Sr2(Sn0.33Sb0.33In0.33)2O6, was successfully synthesized via a solid-state reaction and comprehensively characterized using both experimental and theoretical techniques. Powder X-ray diffraction was used to determine the crystal structure, while scanning electron microscopy (SEM) revealed a high degree of densification and uniform grain distribution across the ceramic. Raman and Fourier-transform infrared (FTIR) absorption spectra of the powder present broad bands predominantly due to different stretching modes of the various SnO32−, InO32− and SbO32− octahedra in the region ν = 400–800 cm−1. An analysis of the UV-Vis diffuse reflectance spectrum shows excellent optical transparency and gives an estimation of an optical gap Eg ∼ 3.6 eV on bulk Sr2(Sn0.33Sb0.33In0.33)2O6, making this material a promising candidate for optoelectronic devices. Density Functional Theory calculations further validated the experimental findings, confirming the crystal structure and providing insight into the electronic and vibrational properties. Impedance spectroscopy revealed non-Debye dielectric relaxation and confirmed typical negative temperature coefficient of resistance (NTCR) behavior, underscoring the material's potential for temperature-sensing applications. The primary conduction mechanism, modeled as correlated barrier-hopping (CBH), was complemented by an Arrhenius-type process with activation energies of 0.33 eV and 0.9 eV across two distinct temperature ranges.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ra05308g</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2024-10, Vol.14 (44), p.32292-32303
issn 2046-2069
2046-2069
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11472220
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Absorption spectra
Band theory
Banded structure
Bulk density
Chemical synthesis
Chemistry
Crystal structure
Debye temperature
Densification
Density functional theory
Dielectric properties
Dielectric relaxation
First principles
Fourier transforms
Hopping conduction
Infrared analysis
Infrared spectra
Optical properties
Optoelectronic devices
Perovskites
Spectrum analysis
X ray powder diffraction
title First principles approach and experimental exploration of a new double perovskite phase Sr2(In0.33 Sn0.33Sb0.33)2O6: evaluation of structural, optical, and dielectric properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T15%3A14%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20principles%20approach%20and%20experimental%20exploration%20of%20a%20new%20double%20perovskite%20phase%20Sr2(In0.33%20Sn0.33Sb0.33)2O6:%20evaluation%20of%20structural,%20optical,%20and%20dielectric%20properties&rft.jtitle=RSC%20advances&rft.au=Besma%20Belgacem&rft.date=2024-10-09&rft.volume=14&rft.issue=44&rft.spage=32292&rft.epage=32303&rft.pages=32292-32303&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d4ra05308g&rft_dat=%3Cproquest_pubme%3E3117332702%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117332702&rft_id=info:pmid/&rfr_iscdi=true