First principles approach and experimental exploration of a new double perovskite phase Sr2(In0.33 Sn0.33Sb0.33)2O6: evaluation of structural, optical, and dielectric properties
A new double perovskite phase, Sr2(Sn0.33Sb0.33In0.33)2O6, was successfully synthesized via a solid-state reaction and comprehensively characterized using both experimental and theoretical techniques. Powder X-ray diffraction was used to determine the crystal structure, while scanning electron micro...
Gespeichert in:
Veröffentlicht in: | RSC advances 2024-10, Vol.14 (44), p.32292-32303 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 32303 |
---|---|
container_issue | 44 |
container_start_page | 32292 |
container_title | RSC advances |
container_volume | 14 |
creator | Besma Belgacem Nasri, Nabil Mouna Ben Yahia Oueslati, Abderrazek Rached Ben Hassen |
description | A new double perovskite phase, Sr2(Sn0.33Sb0.33In0.33)2O6, was successfully synthesized via a solid-state reaction and comprehensively characterized using both experimental and theoretical techniques. Powder X-ray diffraction was used to determine the crystal structure, while scanning electron microscopy (SEM) revealed a high degree of densification and uniform grain distribution across the ceramic. Raman and Fourier-transform infrared (FTIR) absorption spectra of the powder present broad bands predominantly due to different stretching modes of the various SnO32−, InO32− and SbO32− octahedra in the region ν = 400–800 cm−1. An analysis of the UV-Vis diffuse reflectance spectrum shows excellent optical transparency and gives an estimation of an optical gap Eg ∼ 3.6 eV on bulk Sr2(Sn0.33Sb0.33In0.33)2O6, making this material a promising candidate for optoelectronic devices. Density Functional Theory calculations further validated the experimental findings, confirming the crystal structure and providing insight into the electronic and vibrational properties. Impedance spectroscopy revealed non-Debye dielectric relaxation and confirmed typical negative temperature coefficient of resistance (NTCR) behavior, underscoring the material's potential for temperature-sensing applications. The primary conduction mechanism, modeled as correlated barrier-hopping (CBH), was complemented by an Arrhenius-type process with activation energies of 0.33 eV and 0.9 eV across two distinct temperature ranges. |
doi_str_mv | 10.1039/d4ra05308g |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11472220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3117332702</sourcerecordid><originalsourceid>FETCH-LOGICAL-p238t-1155363d3788ae59227b927b0ef49fa61c3195201bbe46481412e8ade106f4273</originalsourceid><addsrcrecordid>eNpdUNtO3DAQjaoidQX7whdY6guVuosviZP0paoQNwlpHxaeo4kzYU29dmo7C3wWf4gDqAJGmpkzmqMzlyw7ZHTJqKiPu9wDLQStbr9kM05zueBU1l_f4W_ZPIQ7mkwWjEs2y57OtA-RDF5bpQeDgcAweAdqQ8B2BB8G9HqLNoKZCuM8RO0scT0BYvGedG5sDZJEc7vwV8cENxCQrD0_urR0KQRZv6R1O8UffCV_EdyBGf8LhehHFUcP5idxQ9RqAtP0TqNBFb1WaUGXRkSN4SDb68EEnL_l_ezm7PT65GJxtTq_PPlztRi4qOKCsaIQUnSirCrAoua8bOvkFPu87kEyJVhdcMraFnOZVyxnHCvokFHZ57wU-9nvV91hbLfYqfSDtGGTPrUF_9g40M3HjtWb5tbtGsbyknNOk8LRm4J3_0YMsdnqoNAYsOjG0AjGpCwrSkWifv9EvXOjt-m-iVUKwUvKxTOJL5bp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117332702</pqid></control><display><type>article</type><title>First principles approach and experimental exploration of a new double perovskite phase Sr2(In0.33 Sn0.33Sb0.33)2O6: evaluation of structural, optical, and dielectric properties</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Besma Belgacem ; Nasri, Nabil ; Mouna Ben Yahia ; Oueslati, Abderrazek ; Rached Ben Hassen</creator><creatorcontrib>Besma Belgacem ; Nasri, Nabil ; Mouna Ben Yahia ; Oueslati, Abderrazek ; Rached Ben Hassen</creatorcontrib><description>A new double perovskite phase, Sr2(Sn0.33Sb0.33In0.33)2O6, was successfully synthesized via a solid-state reaction and comprehensively characterized using both experimental and theoretical techniques. Powder X-ray diffraction was used to determine the crystal structure, while scanning electron microscopy (SEM) revealed a high degree of densification and uniform grain distribution across the ceramic. Raman and Fourier-transform infrared (FTIR) absorption spectra of the powder present broad bands predominantly due to different stretching modes of the various SnO32−, InO32− and SbO32− octahedra in the region ν = 400–800 cm−1. An analysis of the UV-Vis diffuse reflectance spectrum shows excellent optical transparency and gives an estimation of an optical gap Eg ∼ 3.6 eV on bulk Sr2(Sn0.33Sb0.33In0.33)2O6, making this material a promising candidate for optoelectronic devices. Density Functional Theory calculations further validated the experimental findings, confirming the crystal structure and providing insight into the electronic and vibrational properties. Impedance spectroscopy revealed non-Debye dielectric relaxation and confirmed typical negative temperature coefficient of resistance (NTCR) behavior, underscoring the material's potential for temperature-sensing applications. The primary conduction mechanism, modeled as correlated barrier-hopping (CBH), was complemented by an Arrhenius-type process with activation energies of 0.33 eV and 0.9 eV across two distinct temperature ranges.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d4ra05308g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption spectra ; Band theory ; Banded structure ; Bulk density ; Chemical synthesis ; Chemistry ; Crystal structure ; Debye temperature ; Densification ; Density functional theory ; Dielectric properties ; Dielectric relaxation ; First principles ; Fourier transforms ; Hopping conduction ; Infrared analysis ; Infrared spectra ; Optical properties ; Optoelectronic devices ; Perovskites ; Spectrum analysis ; X ray powder diffraction</subject><ispartof>RSC advances, 2024-10, Vol.14 (44), p.32292-32303</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><rights>This journal is © The Royal Society of Chemistry.</rights><rights>This journal is © The Royal Society of Chemistry 2024 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472220/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472220/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Besma Belgacem</creatorcontrib><creatorcontrib>Nasri, Nabil</creatorcontrib><creatorcontrib>Mouna Ben Yahia</creatorcontrib><creatorcontrib>Oueslati, Abderrazek</creatorcontrib><creatorcontrib>Rached Ben Hassen</creatorcontrib><title>First principles approach and experimental exploration of a new double perovskite phase Sr2(In0.33 Sn0.33Sb0.33)2O6: evaluation of structural, optical, and dielectric properties</title><title>RSC advances</title><description>A new double perovskite phase, Sr2(Sn0.33Sb0.33In0.33)2O6, was successfully synthesized via a solid-state reaction and comprehensively characterized using both experimental and theoretical techniques. Powder X-ray diffraction was used to determine the crystal structure, while scanning electron microscopy (SEM) revealed a high degree of densification and uniform grain distribution across the ceramic. Raman and Fourier-transform infrared (FTIR) absorption spectra of the powder present broad bands predominantly due to different stretching modes of the various SnO32−, InO32− and SbO32− octahedra in the region ν = 400–800 cm−1. An analysis of the UV-Vis diffuse reflectance spectrum shows excellent optical transparency and gives an estimation of an optical gap Eg ∼ 3.6 eV on bulk Sr2(Sn0.33Sb0.33In0.33)2O6, making this material a promising candidate for optoelectronic devices. Density Functional Theory calculations further validated the experimental findings, confirming the crystal structure and providing insight into the electronic and vibrational properties. Impedance spectroscopy revealed non-Debye dielectric relaxation and confirmed typical negative temperature coefficient of resistance (NTCR) behavior, underscoring the material's potential for temperature-sensing applications. The primary conduction mechanism, modeled as correlated barrier-hopping (CBH), was complemented by an Arrhenius-type process with activation energies of 0.33 eV and 0.9 eV across two distinct temperature ranges.</description><subject>Absorption spectra</subject><subject>Band theory</subject><subject>Banded structure</subject><subject>Bulk density</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Crystal structure</subject><subject>Debye temperature</subject><subject>Densification</subject><subject>Density functional theory</subject><subject>Dielectric properties</subject><subject>Dielectric relaxation</subject><subject>First principles</subject><subject>Fourier transforms</subject><subject>Hopping conduction</subject><subject>Infrared analysis</subject><subject>Infrared spectra</subject><subject>Optical properties</subject><subject>Optoelectronic devices</subject><subject>Perovskites</subject><subject>Spectrum analysis</subject><subject>X ray powder diffraction</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdUNtO3DAQjaoidQX7whdY6guVuosviZP0paoQNwlpHxaeo4kzYU29dmo7C3wWf4gDqAJGmpkzmqMzlyw7ZHTJqKiPu9wDLQStbr9kM05zueBU1l_f4W_ZPIQ7mkwWjEs2y57OtA-RDF5bpQeDgcAweAdqQ8B2BB8G9HqLNoKZCuM8RO0scT0BYvGedG5sDZJEc7vwV8cENxCQrD0_urR0KQRZv6R1O8UffCV_EdyBGf8LhehHFUcP5idxQ9RqAtP0TqNBFb1WaUGXRkSN4SDb68EEnL_l_ezm7PT65GJxtTq_PPlztRi4qOKCsaIQUnSirCrAoua8bOvkFPu87kEyJVhdcMraFnOZVyxnHCvokFHZ57wU-9nvV91hbLfYqfSDtGGTPrUF_9g40M3HjtWb5tbtGsbyknNOk8LRm4J3_0YMsdnqoNAYsOjG0AjGpCwrSkWifv9EvXOjt-m-iVUKwUvKxTOJL5bp</recordid><startdate>20241009</startdate><enddate>20241009</enddate><creator>Besma Belgacem</creator><creator>Nasri, Nabil</creator><creator>Mouna Ben Yahia</creator><creator>Oueslati, Abderrazek</creator><creator>Rached Ben Hassen</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20241009</creationdate><title>First principles approach and experimental exploration of a new double perovskite phase Sr2(In0.33 Sn0.33Sb0.33)2O6: evaluation of structural, optical, and dielectric properties</title><author>Besma Belgacem ; Nasri, Nabil ; Mouna Ben Yahia ; Oueslati, Abderrazek ; Rached Ben Hassen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p238t-1155363d3788ae59227b927b0ef49fa61c3195201bbe46481412e8ade106f4273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption spectra</topic><topic>Band theory</topic><topic>Banded structure</topic><topic>Bulk density</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Crystal structure</topic><topic>Debye temperature</topic><topic>Densification</topic><topic>Density functional theory</topic><topic>Dielectric properties</topic><topic>Dielectric relaxation</topic><topic>First principles</topic><topic>Fourier transforms</topic><topic>Hopping conduction</topic><topic>Infrared analysis</topic><topic>Infrared spectra</topic><topic>Optical properties</topic><topic>Optoelectronic devices</topic><topic>Perovskites</topic><topic>Spectrum analysis</topic><topic>X ray powder diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Besma Belgacem</creatorcontrib><creatorcontrib>Nasri, Nabil</creatorcontrib><creatorcontrib>Mouna Ben Yahia</creatorcontrib><creatorcontrib>Oueslati, Abderrazek</creatorcontrib><creatorcontrib>Rached Ben Hassen</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Besma Belgacem</au><au>Nasri, Nabil</au><au>Mouna Ben Yahia</au><au>Oueslati, Abderrazek</au><au>Rached Ben Hassen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First principles approach and experimental exploration of a new double perovskite phase Sr2(In0.33 Sn0.33Sb0.33)2O6: evaluation of structural, optical, and dielectric properties</atitle><jtitle>RSC advances</jtitle><date>2024-10-09</date><risdate>2024</risdate><volume>14</volume><issue>44</issue><spage>32292</spage><epage>32303</epage><pages>32292-32303</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>A new double perovskite phase, Sr2(Sn0.33Sb0.33In0.33)2O6, was successfully synthesized via a solid-state reaction and comprehensively characterized using both experimental and theoretical techniques. Powder X-ray diffraction was used to determine the crystal structure, while scanning electron microscopy (SEM) revealed a high degree of densification and uniform grain distribution across the ceramic. Raman and Fourier-transform infrared (FTIR) absorption spectra of the powder present broad bands predominantly due to different stretching modes of the various SnO32−, InO32− and SbO32− octahedra in the region ν = 400–800 cm−1. An analysis of the UV-Vis diffuse reflectance spectrum shows excellent optical transparency and gives an estimation of an optical gap Eg ∼ 3.6 eV on bulk Sr2(Sn0.33Sb0.33In0.33)2O6, making this material a promising candidate for optoelectronic devices. Density Functional Theory calculations further validated the experimental findings, confirming the crystal structure and providing insight into the electronic and vibrational properties. Impedance spectroscopy revealed non-Debye dielectric relaxation and confirmed typical negative temperature coefficient of resistance (NTCR) behavior, underscoring the material's potential for temperature-sensing applications. The primary conduction mechanism, modeled as correlated barrier-hopping (CBH), was complemented by an Arrhenius-type process with activation energies of 0.33 eV and 0.9 eV across two distinct temperature ranges.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4ra05308g</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-2069 |
ispartof | RSC advances, 2024-10, Vol.14 (44), p.32292-32303 |
issn | 2046-2069 2046-2069 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11472220 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Absorption spectra Band theory Banded structure Bulk density Chemical synthesis Chemistry Crystal structure Debye temperature Densification Density functional theory Dielectric properties Dielectric relaxation First principles Fourier transforms Hopping conduction Infrared analysis Infrared spectra Optical properties Optoelectronic devices Perovskites Spectrum analysis X ray powder diffraction |
title | First principles approach and experimental exploration of a new double perovskite phase Sr2(In0.33 Sn0.33Sb0.33)2O6: evaluation of structural, optical, and dielectric properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T15%3A14%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20principles%20approach%20and%20experimental%20exploration%20of%20a%20new%20double%20perovskite%20phase%20Sr2(In0.33%20Sn0.33Sb0.33)2O6:%20evaluation%20of%20structural,%20optical,%20and%20dielectric%20properties&rft.jtitle=RSC%20advances&rft.au=Besma%20Belgacem&rft.date=2024-10-09&rft.volume=14&rft.issue=44&rft.spage=32292&rft.epage=32303&rft.pages=32292-32303&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d4ra05308g&rft_dat=%3Cproquest_pubme%3E3117332702%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117332702&rft_id=info:pmid/&rfr_iscdi=true |