Bioinspired Functionally Graded Composite Assembled Using Cellulose Nanocrystals and Genetically Engineered Proteins with Controlled Biomineralization
Nature provides unique insights into design strategies evolved by living organisms to construct robust materials with a combination of mechanical properties that are challenging to replicate synthetically. Hereby, inspired by the impact‐resistant dactyl club of the stomatopod, a mineralized biocompo...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2021-10, Vol.33 (42), p.e2102658-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 42 |
container_start_page | e2102658 |
container_title | Advanced materials (Weinheim) |
container_volume | 33 |
creator | Mohammadi, Pezhman Gandier, Julie‐Anne Nonappa Wagermaier, Wolfgang Miserez, Ali Penttilä, Merja |
description | Nature provides unique insights into design strategies evolved by living organisms to construct robust materials with a combination of mechanical properties that are challenging to replicate synthetically. Hereby, inspired by the impact‐resistant dactyl club of the stomatopod, a mineralized biocomposite is rationally designed and produced in the complex shapes of dental implant crowns exhibiting high strength, stiffness, and fracture toughness. This material consists of an expanded helicoidal organization of cellulose nanocrystals (CNCs) mixed with genetically engineered proteins that regulate both binding to CNCs and in situ growth of reinforcing apatite crystals. Critically, the structural properties emerge from controlled self‐assembly across multiple length scales regulated by rational engineering and phase separation of the protein components. This work replicates multiscale biomanufacturing of a model biological material and also offers an innovative platform to synthesize multifunctional biocomposites whose properties can be finely regulated by colloidal self‐assembly and engineering of its constitutive protein building blocks.
Formulation of a graded multiphase nanocomposite that mimics key molecular and architectural features of the mantis shrimp dactyl club in the complex shape of dental implant crown, exhibiting high strength, stiffness, and toughness, is reported. The material consists of expanded helicoidally organized cellulose nanocrystals (CNCs) mixed with genetically engineered proteins regulating both binding to CNCs and the growth of reinforcing apatite crystals. |
doi_str_mv | 10.1002/adma.202102658 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11469223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568252278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4698-bf8ff863f6531bc2042d4fec13ad6330cb4be94f9f0afed461e539dbb0095be03</originalsourceid><addsrcrecordid>eNqFkctuEzEYhS0EomlhyxKNxIZNgi9jx7NCIbQBqVwWdG15PL9TVx472DNU6YPwvHhICZcNK0v258_H_0HoGcELgjF9pbteLyimBFPB5QM0I5ySeY0b_hDNcMP4vBG1PEGnOd9gjBuBxWN0wupaLPmSztD3Ny66kHcuQVddjMEMLgbt_b7aJN2VvXXsdzG7AapVztC3vuxdZRe21Rq8H33MUH3UIZq0z4P2udKhqzYQYHDmp-c8bF0AmPyfUxygvFbduuG6mMOQop-EJURfoKS9u9NTgifokS0yeHq_nqGri_Mv63fzy0-b9-vV5dzUopHz1kprpWBWcEZaQ3FNu9qCIUx3gjFs2rqFpraNxdpCVwsCnDVd25ZJ8BYwO0OvD97d2PbQGSiRtFe75Hqd9ipqp_4-Ce5abeM3RUgJQCkrhpf3hhS_jpAH1btsymh0gDhmRbmQlFO6lAV98Q96E8dUpj1RkmFJpVgWanGgTIo5J7DHNASrqXM1da6OnZcLz__8wxH_VXIBmgNw6zzs_6NTq7cfVr_lPwCwKr3t</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2583082867</pqid></control><display><type>article</type><title>Bioinspired Functionally Graded Composite Assembled Using Cellulose Nanocrystals and Genetically Engineered Proteins with Controlled Biomineralization</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Mohammadi, Pezhman ; Gandier, Julie‐Anne ; Nonappa ; Wagermaier, Wolfgang ; Miserez, Ali ; Penttilä, Merja</creator><creatorcontrib>Mohammadi, Pezhman ; Gandier, Julie‐Anne ; Nonappa ; Wagermaier, Wolfgang ; Miserez, Ali ; Penttilä, Merja</creatorcontrib><description>Nature provides unique insights into design strategies evolved by living organisms to construct robust materials with a combination of mechanical properties that are challenging to replicate synthetically. Hereby, inspired by the impact‐resistant dactyl club of the stomatopod, a mineralized biocomposite is rationally designed and produced in the complex shapes of dental implant crowns exhibiting high strength, stiffness, and fracture toughness. This material consists of an expanded helicoidal organization of cellulose nanocrystals (CNCs) mixed with genetically engineered proteins that regulate both binding to CNCs and in situ growth of reinforcing apatite crystals. Critically, the structural properties emerge from controlled self‐assembly across multiple length scales regulated by rational engineering and phase separation of the protein components. This work replicates multiscale biomanufacturing of a model biological material and also offers an innovative platform to synthesize multifunctional biocomposites whose properties can be finely regulated by colloidal self‐assembly and engineering of its constitutive protein building blocks.
Formulation of a graded multiphase nanocomposite that mimics key molecular and architectural features of the mantis shrimp dactyl club in the complex shape of dental implant crown, exhibiting high strength, stiffness, and toughness, is reported. The material consists of expanded helicoidally organized cellulose nanocrystals (CNCs) mixed with genetically engineered proteins regulating both binding to CNCs and the growth of reinforcing apatite crystals.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202102658</identifier><identifier>PMID: 34467572</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Apatite ; Assembly ; Biocompatible Materials - chemistry ; Biological materials ; biomaterials ; Biomedical materials ; Biomineralization ; Cellulose ; Cellulose - chemistry ; cellulose nanocrystals ; Composite materials ; Crystal structure ; Decapoda - metabolism ; Dental Implants ; Dental materials ; Elastic Modulus ; Fibroins - chemistry ; Fibroins - genetics ; Fibroins - metabolism ; Fracture toughness ; functional gradients ; Functionally gradient materials ; Genetic engineering ; Humans ; Impact resistance ; Mechanical properties ; Nanocrystals ; Nanoparticles - chemistry ; Phase separation ; Protein Engineering ; Proteins ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - chemistry ; Stiffness</subject><ispartof>Advanced materials (Weinheim), 2021-10, Vol.33 (42), p.e2102658-n/a</ispartof><rights>2021 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4698-bf8ff863f6531bc2042d4fec13ad6330cb4be94f9f0afed461e539dbb0095be03</citedby><cites>FETCH-LOGICAL-c4698-bf8ff863f6531bc2042d4fec13ad6330cb4be94f9f0afed461e539dbb0095be03</cites><orcidid>0000-0003-0864-8170 ; 0000-0003-4593-5371 ; 0000-0001-8164-8543 ; 0000-0002-4283-8464 ; 0000-0002-6929-1032 ; 0000-0002-6804-4128</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202102658$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202102658$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34467572$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohammadi, Pezhman</creatorcontrib><creatorcontrib>Gandier, Julie‐Anne</creatorcontrib><creatorcontrib>Nonappa</creatorcontrib><creatorcontrib>Wagermaier, Wolfgang</creatorcontrib><creatorcontrib>Miserez, Ali</creatorcontrib><creatorcontrib>Penttilä, Merja</creatorcontrib><title>Bioinspired Functionally Graded Composite Assembled Using Cellulose Nanocrystals and Genetically Engineered Proteins with Controlled Biomineralization</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Nature provides unique insights into design strategies evolved by living organisms to construct robust materials with a combination of mechanical properties that are challenging to replicate synthetically. Hereby, inspired by the impact‐resistant dactyl club of the stomatopod, a mineralized biocomposite is rationally designed and produced in the complex shapes of dental implant crowns exhibiting high strength, stiffness, and fracture toughness. This material consists of an expanded helicoidal organization of cellulose nanocrystals (CNCs) mixed with genetically engineered proteins that regulate both binding to CNCs and in situ growth of reinforcing apatite crystals. Critically, the structural properties emerge from controlled self‐assembly across multiple length scales regulated by rational engineering and phase separation of the protein components. This work replicates multiscale biomanufacturing of a model biological material and also offers an innovative platform to synthesize multifunctional biocomposites whose properties can be finely regulated by colloidal self‐assembly and engineering of its constitutive protein building blocks.
Formulation of a graded multiphase nanocomposite that mimics key molecular and architectural features of the mantis shrimp dactyl club in the complex shape of dental implant crown, exhibiting high strength, stiffness, and toughness, is reported. The material consists of expanded helicoidally organized cellulose nanocrystals (CNCs) mixed with genetically engineered proteins regulating both binding to CNCs and the growth of reinforcing apatite crystals.</description><subject>Animals</subject><subject>Apatite</subject><subject>Assembly</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biological materials</subject><subject>biomaterials</subject><subject>Biomedical materials</subject><subject>Biomineralization</subject><subject>Cellulose</subject><subject>Cellulose - chemistry</subject><subject>cellulose nanocrystals</subject><subject>Composite materials</subject><subject>Crystal structure</subject><subject>Decapoda - metabolism</subject><subject>Dental Implants</subject><subject>Dental materials</subject><subject>Elastic Modulus</subject><subject>Fibroins - chemistry</subject><subject>Fibroins - genetics</subject><subject>Fibroins - metabolism</subject><subject>Fracture toughness</subject><subject>functional gradients</subject><subject>Functionally gradient materials</subject><subject>Genetic engineering</subject><subject>Humans</subject><subject>Impact resistance</subject><subject>Mechanical properties</subject><subject>Nanocrystals</subject><subject>Nanoparticles - chemistry</subject><subject>Phase separation</subject><subject>Protein Engineering</subject><subject>Proteins</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - chemistry</subject><subject>Stiffness</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkctuEzEYhS0EomlhyxKNxIZNgi9jx7NCIbQBqVwWdG15PL9TVx472DNU6YPwvHhICZcNK0v258_H_0HoGcELgjF9pbteLyimBFPB5QM0I5ySeY0b_hDNcMP4vBG1PEGnOd9gjBuBxWN0wupaLPmSztD3Ny66kHcuQVddjMEMLgbt_b7aJN2VvXXsdzG7AapVztC3vuxdZRe21Rq8H33MUH3UIZq0z4P2udKhqzYQYHDmp-c8bF0AmPyfUxygvFbduuG6mMOQop-EJURfoKS9u9NTgifokS0yeHq_nqGri_Mv63fzy0-b9-vV5dzUopHz1kprpWBWcEZaQ3FNu9qCIUx3gjFs2rqFpraNxdpCVwsCnDVd25ZJ8BYwO0OvD97d2PbQGSiRtFe75Hqd9ipqp_4-Ce5abeM3RUgJQCkrhpf3hhS_jpAH1btsymh0gDhmRbmQlFO6lAV98Q96E8dUpj1RkmFJpVgWanGgTIo5J7DHNASrqXM1da6OnZcLz__8wxH_VXIBmgNw6zzs_6NTq7cfVr_lPwCwKr3t</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Mohammadi, Pezhman</creator><creator>Gandier, Julie‐Anne</creator><creator>Nonappa</creator><creator>Wagermaier, Wolfgang</creator><creator>Miserez, Ali</creator><creator>Penttilä, Merja</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0864-8170</orcidid><orcidid>https://orcid.org/0000-0003-4593-5371</orcidid><orcidid>https://orcid.org/0000-0001-8164-8543</orcidid><orcidid>https://orcid.org/0000-0002-4283-8464</orcidid><orcidid>https://orcid.org/0000-0002-6929-1032</orcidid><orcidid>https://orcid.org/0000-0002-6804-4128</orcidid></search><sort><creationdate>20211001</creationdate><title>Bioinspired Functionally Graded Composite Assembled Using Cellulose Nanocrystals and Genetically Engineered Proteins with Controlled Biomineralization</title><author>Mohammadi, Pezhman ; Gandier, Julie‐Anne ; Nonappa ; Wagermaier, Wolfgang ; Miserez, Ali ; Penttilä, Merja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4698-bf8ff863f6531bc2042d4fec13ad6330cb4be94f9f0afed461e539dbb0095be03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Apatite</topic><topic>Assembly</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biological materials</topic><topic>biomaterials</topic><topic>Biomedical materials</topic><topic>Biomineralization</topic><topic>Cellulose</topic><topic>Cellulose - chemistry</topic><topic>cellulose nanocrystals</topic><topic>Composite materials</topic><topic>Crystal structure</topic><topic>Decapoda - metabolism</topic><topic>Dental Implants</topic><topic>Dental materials</topic><topic>Elastic Modulus</topic><topic>Fibroins - chemistry</topic><topic>Fibroins - genetics</topic><topic>Fibroins - metabolism</topic><topic>Fracture toughness</topic><topic>functional gradients</topic><topic>Functionally gradient materials</topic><topic>Genetic engineering</topic><topic>Humans</topic><topic>Impact resistance</topic><topic>Mechanical properties</topic><topic>Nanocrystals</topic><topic>Nanoparticles - chemistry</topic><topic>Phase separation</topic><topic>Protein Engineering</topic><topic>Proteins</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - chemistry</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohammadi, Pezhman</creatorcontrib><creatorcontrib>Gandier, Julie‐Anne</creatorcontrib><creatorcontrib>Nonappa</creatorcontrib><creatorcontrib>Wagermaier, Wolfgang</creatorcontrib><creatorcontrib>Miserez, Ali</creatorcontrib><creatorcontrib>Penttilä, Merja</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohammadi, Pezhman</au><au>Gandier, Julie‐Anne</au><au>Nonappa</au><au>Wagermaier, Wolfgang</au><au>Miserez, Ali</au><au>Penttilä, Merja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioinspired Functionally Graded Composite Assembled Using Cellulose Nanocrystals and Genetically Engineered Proteins with Controlled Biomineralization</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>33</volume><issue>42</issue><spage>e2102658</spage><epage>n/a</epage><pages>e2102658-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Nature provides unique insights into design strategies evolved by living organisms to construct robust materials with a combination of mechanical properties that are challenging to replicate synthetically. Hereby, inspired by the impact‐resistant dactyl club of the stomatopod, a mineralized biocomposite is rationally designed and produced in the complex shapes of dental implant crowns exhibiting high strength, stiffness, and fracture toughness. This material consists of an expanded helicoidal organization of cellulose nanocrystals (CNCs) mixed with genetically engineered proteins that regulate both binding to CNCs and in situ growth of reinforcing apatite crystals. Critically, the structural properties emerge from controlled self‐assembly across multiple length scales regulated by rational engineering and phase separation of the protein components. This work replicates multiscale biomanufacturing of a model biological material and also offers an innovative platform to synthesize multifunctional biocomposites whose properties can be finely regulated by colloidal self‐assembly and engineering of its constitutive protein building blocks.
Formulation of a graded multiphase nanocomposite that mimics key molecular and architectural features of the mantis shrimp dactyl club in the complex shape of dental implant crown, exhibiting high strength, stiffness, and toughness, is reported. The material consists of expanded helicoidally organized cellulose nanocrystals (CNCs) mixed with genetically engineered proteins regulating both binding to CNCs and the growth of reinforcing apatite crystals.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34467572</pmid><doi>10.1002/adma.202102658</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0864-8170</orcidid><orcidid>https://orcid.org/0000-0003-4593-5371</orcidid><orcidid>https://orcid.org/0000-0001-8164-8543</orcidid><orcidid>https://orcid.org/0000-0002-4283-8464</orcidid><orcidid>https://orcid.org/0000-0002-6929-1032</orcidid><orcidid>https://orcid.org/0000-0002-6804-4128</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2021-10, Vol.33 (42), p.e2102658-n/a |
issn | 0935-9648 1521-4095 1521-4095 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11469223 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Animals Apatite Assembly Biocompatible Materials - chemistry Biological materials biomaterials Biomedical materials Biomineralization Cellulose Cellulose - chemistry cellulose nanocrystals Composite materials Crystal structure Decapoda - metabolism Dental Implants Dental materials Elastic Modulus Fibroins - chemistry Fibroins - genetics Fibroins - metabolism Fracture toughness functional gradients Functionally gradient materials Genetic engineering Humans Impact resistance Mechanical properties Nanocrystals Nanoparticles - chemistry Phase separation Protein Engineering Proteins Recombinant Proteins - biosynthesis Recombinant Proteins - chemistry Stiffness |
title | Bioinspired Functionally Graded Composite Assembled Using Cellulose Nanocrystals and Genetically Engineered Proteins with Controlled Biomineralization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A34%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioinspired%20Functionally%20Graded%20Composite%20Assembled%20Using%20Cellulose%20Nanocrystals%20and%20Genetically%20Engineered%20Proteins%20with%20Controlled%20Biomineralization&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Mohammadi,%20Pezhman&rft.date=2021-10-01&rft.volume=33&rft.issue=42&rft.spage=e2102658&rft.epage=n/a&rft.pages=e2102658-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202102658&rft_dat=%3Cproquest_pubme%3E2568252278%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2583082867&rft_id=info:pmid/34467572&rfr_iscdi=true |