Fabrication and Characterization of PDMS Waveguides for Flexible Optrodes

With the growth of optogenetic research, the demand for optical probes tailored to specific applications is ever rising. Specifically, for applications like the coiled cochlea of the inner ear, where planar, stiff, and nonconformable probes can hardly be used, transitioning from commonly used stiff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced healthcare materials 2024-06, Vol.13 (16), p.e2304513-n/a
Hauptverfasser: Rudmann, Linda, Scholz, Daniel, Alt, Marie T., Dieter, Alexander, Fiedler, Eva, Moser, Tobias, Stieglitz, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 16
container_start_page e2304513
container_title Advanced healthcare materials
container_volume 13
creator Rudmann, Linda
Scholz, Daniel
Alt, Marie T.
Dieter, Alexander
Fiedler, Eva
Moser, Tobias
Stieglitz, Thomas
description With the growth of optogenetic research, the demand for optical probes tailored to specific applications is ever rising. Specifically, for applications like the coiled cochlea of the inner ear, where planar, stiff, and nonconformable probes can hardly be used, transitioning from commonly used stiff glass fibers to flexible probes is required, especially for long‐term use. Following this demand, polydimethylsiloxane (PDMS) with its lower Young's modulus compared to glass fibers can serve as material of choice. Hence, the long‐term usability of PDMS as a waveguide material with respect to variations in transmission and refractive index over time is investigated. Different manufacturing methods for PDMS‐based flexible waveguides are established and compared with the aim to minimize optical losses and thus maximize optical output power. Finally, the waveguides with lowest optical losses (−4.8 dB cm−1 ± 1.3 dB cm−1 at 472 nm) are successfully inserted into the optogenetically modified cochlea of a Mongolian gerbil (Meriones unguiculatus), where optical stimuli delivered by the waveguides evoked robust neuronal responses in the auditory pathway. The demand for optical probes tailored to applications is ever rising for optogenetic research. Specifically, for applications such as the cochlea, transitioning from stiff glass fibers to flexible probes is required, especially for long‐term use. Polydimethylsiloxane with its low Young's modulus can serve as material of choice. Its long‐term usability as a waveguide material is investigated, and different manufacturing methods are established. The waveguides with lowest optical losses are successfully inserted into the optogenetically modified cochlea of a Mongolian gerbil (Meriones unguiculatus).
doi_str_mv 10.1002/adhm.202304513
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11469164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3071691075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3843-a1ba9f9e9b8a31c7f091d8052dbf0a691085d1959e9dadbbd13d5d87550235013</originalsourceid><addsrcrecordid>eNqFkc1P4zAQxS3EChDLdY8oEhcuLZ44TuwTQi2FSlQgsas9WpPYoUZpXOyEr78eV4XCcllfbM38_PSeHiG_gA6B0vQE9XwxTGnKaMaBbZG9FGQ6SHMutzfvjO6SgxDuaTw5h1zADtllIqcizeUemU6w9LbCzro2wVYnozl6rDrj7et66OrkZjy7Tf7io7nrrTYhqZ1PJo15tmVjkutl512c_iQ_amyCOXi_98mfyfnv0eXg6vpiOjq7GlRMZGyAUKKspZGlQAZVUVMJWlCe6rKmmEuggmuQPBIadVlqYJprUXAec3IKbJ-crnWXfbkwujJt57FRS28X6F-UQ6v-3bR2ru7cowLIonyeRYXjdwXvHnoTOrWwoTJNg61xfVCMrpwWuZARPfqG3rvetzFfpApY2S14pIZrqvIuBG_qjRugatWUWjWlNk3FD4dfM2zwj14iINfAk23My3_k1Nn4cvYp_gbkzZ8e</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3071691075</pqid></control><display><type>article</type><title>Fabrication and Characterization of PDMS Waveguides for Flexible Optrodes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rudmann, Linda ; Scholz, Daniel ; Alt, Marie T. ; Dieter, Alexander ; Fiedler, Eva ; Moser, Tobias ; Stieglitz, Thomas</creator><creatorcontrib>Rudmann, Linda ; Scholz, Daniel ; Alt, Marie T. ; Dieter, Alexander ; Fiedler, Eva ; Moser, Tobias ; Stieglitz, Thomas</creatorcontrib><description>With the growth of optogenetic research, the demand for optical probes tailored to specific applications is ever rising. Specifically, for applications like the coiled cochlea of the inner ear, where planar, stiff, and nonconformable probes can hardly be used, transitioning from commonly used stiff glass fibers to flexible probes is required, especially for long‐term use. Following this demand, polydimethylsiloxane (PDMS) with its lower Young's modulus compared to glass fibers can serve as material of choice. Hence, the long‐term usability of PDMS as a waveguide material with respect to variations in transmission and refractive index over time is investigated. Different manufacturing methods for PDMS‐based flexible waveguides are established and compared with the aim to minimize optical losses and thus maximize optical output power. Finally, the waveguides with lowest optical losses (−4.8 dB cm−1 ± 1.3 dB cm−1 at 472 nm) are successfully inserted into the optogenetically modified cochlea of a Mongolian gerbil (Meriones unguiculatus), where optical stimuli delivered by the waveguides evoked robust neuronal responses in the auditory pathway. The demand for optical probes tailored to applications is ever rising for optogenetic research. Specifically, for applications such as the cochlea, transitioning from stiff glass fibers to flexible probes is required, especially for long‐term use. Polydimethylsiloxane with its low Young's modulus can serve as material of choice. Its long‐term usability as a waveguide material is investigated, and different manufacturing methods are established. The waveguides with lowest optical losses are successfully inserted into the optogenetically modified cochlea of a Mongolian gerbil (Meriones unguiculatus).</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202304513</identifier><identifier>PMID: 38608269</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Cochlea ; Fibers ; Glass fibers ; in vivo ; Inner ear ; Mechanical properties ; Modulus of elasticity ; optogenetics ; PDMS ; Polydimethylsiloxane ; Probes ; Production methods ; Refractivity ; waveguide ; Waveguides</subject><ispartof>Advanced healthcare materials, 2024-06, Vol.13 (16), p.e2304513-n/a</ispartof><rights>2024 The Authors. Advanced Healthcare Materials published by Wiley‐VCH GmbH</rights><rights>2024 The Authors. Advanced Healthcare Materials published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3843-a1ba9f9e9b8a31c7f091d8052dbf0a691085d1959e9dadbbd13d5d87550235013</cites><orcidid>0009-0001-0539-5959 ; 0000-0002-8453-5963 ; 0000-0002-7336-5794 ; 0000-0002-9154-4833 ; 0000-0002-7349-4254 ; 0000-0001-7145-0533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.202304513$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.202304513$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38608269$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rudmann, Linda</creatorcontrib><creatorcontrib>Scholz, Daniel</creatorcontrib><creatorcontrib>Alt, Marie T.</creatorcontrib><creatorcontrib>Dieter, Alexander</creatorcontrib><creatorcontrib>Fiedler, Eva</creatorcontrib><creatorcontrib>Moser, Tobias</creatorcontrib><creatorcontrib>Stieglitz, Thomas</creatorcontrib><title>Fabrication and Characterization of PDMS Waveguides for Flexible Optrodes</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>With the growth of optogenetic research, the demand for optical probes tailored to specific applications is ever rising. Specifically, for applications like the coiled cochlea of the inner ear, where planar, stiff, and nonconformable probes can hardly be used, transitioning from commonly used stiff glass fibers to flexible probes is required, especially for long‐term use. Following this demand, polydimethylsiloxane (PDMS) with its lower Young's modulus compared to glass fibers can serve as material of choice. Hence, the long‐term usability of PDMS as a waveguide material with respect to variations in transmission and refractive index over time is investigated. Different manufacturing methods for PDMS‐based flexible waveguides are established and compared with the aim to minimize optical losses and thus maximize optical output power. Finally, the waveguides with lowest optical losses (−4.8 dB cm−1 ± 1.3 dB cm−1 at 472 nm) are successfully inserted into the optogenetically modified cochlea of a Mongolian gerbil (Meriones unguiculatus), where optical stimuli delivered by the waveguides evoked robust neuronal responses in the auditory pathway. The demand for optical probes tailored to applications is ever rising for optogenetic research. Specifically, for applications such as the cochlea, transitioning from stiff glass fibers to flexible probes is required, especially for long‐term use. Polydimethylsiloxane with its low Young's modulus can serve as material of choice. Its long‐term usability as a waveguide material is investigated, and different manufacturing methods are established. The waveguides with lowest optical losses are successfully inserted into the optogenetically modified cochlea of a Mongolian gerbil (Meriones unguiculatus).</description><subject>Cochlea</subject><subject>Fibers</subject><subject>Glass fibers</subject><subject>in vivo</subject><subject>Inner ear</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>optogenetics</subject><subject>PDMS</subject><subject>Polydimethylsiloxane</subject><subject>Probes</subject><subject>Production methods</subject><subject>Refractivity</subject><subject>waveguide</subject><subject>Waveguides</subject><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkc1P4zAQxS3EChDLdY8oEhcuLZ44TuwTQi2FSlQgsas9WpPYoUZpXOyEr78eV4XCcllfbM38_PSeHiG_gA6B0vQE9XwxTGnKaMaBbZG9FGQ6SHMutzfvjO6SgxDuaTw5h1zADtllIqcizeUemU6w9LbCzro2wVYnozl6rDrj7et66OrkZjy7Tf7io7nrrTYhqZ1PJo15tmVjkutl512c_iQ_amyCOXi_98mfyfnv0eXg6vpiOjq7GlRMZGyAUKKspZGlQAZVUVMJWlCe6rKmmEuggmuQPBIadVlqYJprUXAec3IKbJ-crnWXfbkwujJt57FRS28X6F-UQ6v-3bR2ru7cowLIonyeRYXjdwXvHnoTOrWwoTJNg61xfVCMrpwWuZARPfqG3rvetzFfpApY2S14pIZrqvIuBG_qjRugatWUWjWlNk3FD4dfM2zwj14iINfAk23My3_k1Nn4cvYp_gbkzZ8e</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Rudmann, Linda</creator><creator>Scholz, Daniel</creator><creator>Alt, Marie T.</creator><creator>Dieter, Alexander</creator><creator>Fiedler, Eva</creator><creator>Moser, Tobias</creator><creator>Stieglitz, Thomas</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0001-0539-5959</orcidid><orcidid>https://orcid.org/0000-0002-8453-5963</orcidid><orcidid>https://orcid.org/0000-0002-7336-5794</orcidid><orcidid>https://orcid.org/0000-0002-9154-4833</orcidid><orcidid>https://orcid.org/0000-0002-7349-4254</orcidid><orcidid>https://orcid.org/0000-0001-7145-0533</orcidid></search><sort><creationdate>20240601</creationdate><title>Fabrication and Characterization of PDMS Waveguides for Flexible Optrodes</title><author>Rudmann, Linda ; Scholz, Daniel ; Alt, Marie T. ; Dieter, Alexander ; Fiedler, Eva ; Moser, Tobias ; Stieglitz, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3843-a1ba9f9e9b8a31c7f091d8052dbf0a691085d1959e9dadbbd13d5d87550235013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cochlea</topic><topic>Fibers</topic><topic>Glass fibers</topic><topic>in vivo</topic><topic>Inner ear</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>optogenetics</topic><topic>PDMS</topic><topic>Polydimethylsiloxane</topic><topic>Probes</topic><topic>Production methods</topic><topic>Refractivity</topic><topic>waveguide</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rudmann, Linda</creatorcontrib><creatorcontrib>Scholz, Daniel</creatorcontrib><creatorcontrib>Alt, Marie T.</creatorcontrib><creatorcontrib>Dieter, Alexander</creatorcontrib><creatorcontrib>Fiedler, Eva</creatorcontrib><creatorcontrib>Moser, Tobias</creatorcontrib><creatorcontrib>Stieglitz, Thomas</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rudmann, Linda</au><au>Scholz, Daniel</au><au>Alt, Marie T.</au><au>Dieter, Alexander</au><au>Fiedler, Eva</au><au>Moser, Tobias</au><au>Stieglitz, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication and Characterization of PDMS Waveguides for Flexible Optrodes</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>13</volume><issue>16</issue><spage>e2304513</spage><epage>n/a</epage><pages>e2304513-n/a</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>With the growth of optogenetic research, the demand for optical probes tailored to specific applications is ever rising. Specifically, for applications like the coiled cochlea of the inner ear, where planar, stiff, and nonconformable probes can hardly be used, transitioning from commonly used stiff glass fibers to flexible probes is required, especially for long‐term use. Following this demand, polydimethylsiloxane (PDMS) with its lower Young's modulus compared to glass fibers can serve as material of choice. Hence, the long‐term usability of PDMS as a waveguide material with respect to variations in transmission and refractive index over time is investigated. Different manufacturing methods for PDMS‐based flexible waveguides are established and compared with the aim to minimize optical losses and thus maximize optical output power. Finally, the waveguides with lowest optical losses (−4.8 dB cm−1 ± 1.3 dB cm−1 at 472 nm) are successfully inserted into the optogenetically modified cochlea of a Mongolian gerbil (Meriones unguiculatus), where optical stimuli delivered by the waveguides evoked robust neuronal responses in the auditory pathway. The demand for optical probes tailored to applications is ever rising for optogenetic research. Specifically, for applications such as the cochlea, transitioning from stiff glass fibers to flexible probes is required, especially for long‐term use. Polydimethylsiloxane with its low Young's modulus can serve as material of choice. Its long‐term usability as a waveguide material is investigated, and different manufacturing methods are established. The waveguides with lowest optical losses are successfully inserted into the optogenetically modified cochlea of a Mongolian gerbil (Meriones unguiculatus).</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38608269</pmid><doi>10.1002/adhm.202304513</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0001-0539-5959</orcidid><orcidid>https://orcid.org/0000-0002-8453-5963</orcidid><orcidid>https://orcid.org/0000-0002-7336-5794</orcidid><orcidid>https://orcid.org/0000-0002-9154-4833</orcidid><orcidid>https://orcid.org/0000-0002-7349-4254</orcidid><orcidid>https://orcid.org/0000-0001-7145-0533</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2024-06, Vol.13 (16), p.e2304513-n/a
issn 2192-2640
2192-2659
2192-2659
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11469164
source Wiley Online Library Journals Frontfile Complete
subjects Cochlea
Fibers
Glass fibers
in vivo
Inner ear
Mechanical properties
Modulus of elasticity
optogenetics
PDMS
Polydimethylsiloxane
Probes
Production methods
Refractivity
waveguide
Waveguides
title Fabrication and Characterization of PDMS Waveguides for Flexible Optrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A07%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20and%20Characterization%20of%20PDMS%20Waveguides%20for%20Flexible%20Optrodes&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Rudmann,%20Linda&rft.date=2024-06-01&rft.volume=13&rft.issue=16&rft.spage=e2304513&rft.epage=n/a&rft.pages=e2304513-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202304513&rft_dat=%3Cproquest_pubme%3E3071691075%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3071691075&rft_id=info:pmid/38608269&rfr_iscdi=true