Biosensor‐Enabled Multiplexed On‐Site Therapeutic Drug Monitoring of Antibiotics
Personalized antibiotherapy ensures that the antibiotic concentration remains in the optimal therapeutic window to maximize efficacy, minimize side effects, and avoid the emergence of drug resistance due to insufficient dosing. However, such individualized schemes need frequent sampling to tailor th...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2022-01, Vol.34 (2), p.e2104555-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | e2104555 |
container_title | Advanced materials (Weinheim) |
container_volume | 34 |
creator | Ates, H. Ceren Mohsenin, Hasti Wenzel, Christin Glatz, Regina T. Wagner, Hanna J. Bruch, Richard Hoefflin, Nico Spassov, Sashko Streicher, Lea Lozano‐Zahonero, Sara Flamm, Bernd Trittler, Rainer Hug, Martin J. Köhn, Maja Schmidt, Johannes Schumann, Stefan Urban, Gerald A. Weber, Wilfried Dincer, Can |
description | Personalized antibiotherapy ensures that the antibiotic concentration remains in the optimal therapeutic window to maximize efficacy, minimize side effects, and avoid the emergence of drug resistance due to insufficient dosing. However, such individualized schemes need frequent sampling to tailor the blood antibiotic concentrations. To optimally integrate therapeutic drug monitoring (TDM) into the clinical workflow, antibiotic levels can either be measured in blood using point‐of‐care testing (POCT), or can rely on noninvasive sampling. Here, a versatile biosensor with an antibody‐free assay for on‐site TDM is presented. The platform is evaluated with an animal study, where antibiotic concentrations are quantified in different matrices including whole blood, plasma, urine, saliva, and exhaled breath condensate (EBC). The clearance and the temporal evaluation of antibiotic levels in EBC and plasma are demonstrated. Influence of matrix effects on measured drug concentrations is determined by comparing the plasma levels with those in noninvasive samples. The system's potential for blood‐based POCT is further illustrated by tracking ß‑lactam concentrations in untreated blood samples. Finally, multiplexing capabilities are explored successfully for multianalyte/sample analysis. By enabling a rapid, low‐cost, sample‐independent, and multiplexed on‐site TDM, this system can shift the paradigm of “one‑size‐fits‐all” strategy.
The first electrochemical biosensor, with a synthetic‐biology‐enabled antibody‐free assay, for temporal monitoring of piperacillin/tazobactam in exhaled breath condensate, along with a correlation study exploring the link between monitored drug levels, is presented. The validation of the findings with gold‐standard measurements demonstrates the suitability of the system as a low‐cost, rapid, and sample‐independent tool for multiplexed on‐site therapeutic drug monitoring. |
doi_str_mv | 10.1002/adma.202104555 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11468941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2575070021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4695-bd52862ff6082abbfb70129affade43fda7281a2764b4218088e8e259bb223d23</originalsourceid><addsrcrecordid>eNqFkctuGyEUhlHVKHHTbLuMRuqmm3HhDDCwitxc2kqxsqi7RjADDtEYHJhpm10foc-YJ-lYTp3LpiuQ_o9PnPMj9I7gKcEYPup2paeAgWDKGHuFJoQBKSmW7DWaYFmxUnIqDtCbnG8wxpJjvo8OKsoo44xM0OKTj9mGHNP97z_nQZvOtsV86Hq_7uyv8X4VxuCb722xuLZJr-3Q-6Y4S8OymMfg-5h8WBbRFbPQe-PjmOa3aM_pLtujh_MQfb84X5x-KS-vPn89nV2WDeWSlaZlIDg4x7EAbYwzNSYgtXO6tbRyra5BEA01p4YCEVgIKywwaQxA1UJ1iE623vVgVrZtbOiT7tQ6-ZVOdypqr54nwV-rZfyhCKFcSEpGw4cHQ4q3g829Wvnc2K7TwcYhK2A1w_W46A36_gV6E4cUxvkUcCJJRUW1oaZbqkkx52Td7jcEq01jatOY2jU2Pjh-OsMO_1fRCMgt8NN39u4_OjU7m88e5X8BQzGlHg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619134831</pqid></control><display><type>article</type><title>Biosensor‐Enabled Multiplexed On‐Site Therapeutic Drug Monitoring of Antibiotics</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ates, H. Ceren ; Mohsenin, Hasti ; Wenzel, Christin ; Glatz, Regina T. ; Wagner, Hanna J. ; Bruch, Richard ; Hoefflin, Nico ; Spassov, Sashko ; Streicher, Lea ; Lozano‐Zahonero, Sara ; Flamm, Bernd ; Trittler, Rainer ; Hug, Martin J. ; Köhn, Maja ; Schmidt, Johannes ; Schumann, Stefan ; Urban, Gerald A. ; Weber, Wilfried ; Dincer, Can</creator><creatorcontrib>Ates, H. Ceren ; Mohsenin, Hasti ; Wenzel, Christin ; Glatz, Regina T. ; Wagner, Hanna J. ; Bruch, Richard ; Hoefflin, Nico ; Spassov, Sashko ; Streicher, Lea ; Lozano‐Zahonero, Sara ; Flamm, Bernd ; Trittler, Rainer ; Hug, Martin J. ; Köhn, Maja ; Schmidt, Johannes ; Schumann, Stefan ; Urban, Gerald A. ; Weber, Wilfried ; Dincer, Can</creatorcontrib><description>Personalized antibiotherapy ensures that the antibiotic concentration remains in the optimal therapeutic window to maximize efficacy, minimize side effects, and avoid the emergence of drug resistance due to insufficient dosing. However, such individualized schemes need frequent sampling to tailor the blood antibiotic concentrations. To optimally integrate therapeutic drug monitoring (TDM) into the clinical workflow, antibiotic levels can either be measured in blood using point‐of‐care testing (POCT), or can rely on noninvasive sampling. Here, a versatile biosensor with an antibody‐free assay for on‐site TDM is presented. The platform is evaluated with an animal study, where antibiotic concentrations are quantified in different matrices including whole blood, plasma, urine, saliva, and exhaled breath condensate (EBC). The clearance and the temporal evaluation of antibiotic levels in EBC and plasma are demonstrated. Influence of matrix effects on measured drug concentrations is determined by comparing the plasma levels with those in noninvasive samples. The system's potential for blood‐based POCT is further illustrated by tracking ß‑lactam concentrations in untreated blood samples. Finally, multiplexing capabilities are explored successfully for multianalyte/sample analysis. By enabling a rapid, low‐cost, sample‐independent, and multiplexed on‐site TDM, this system can shift the paradigm of “one‑size‐fits‐all” strategy.
The first electrochemical biosensor, with a synthetic‐biology‐enabled antibody‐free assay, for temporal monitoring of piperacillin/tazobactam in exhaled breath condensate, along with a correlation study exploring the link between monitored drug levels, is presented. The validation of the findings with gold‐standard measurements demonstrates the suitability of the system as a low‐cost, rapid, and sample‐independent tool for multiplexed on‐site therapeutic drug monitoring.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202104555</identifier><identifier>PMID: 34545651</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Amides ; Animals ; Anti-Bacterial Agents ; Antibiotics ; Antibodies ; Biosensing Techniques ; Biosensors ; Blood ; Cost analysis ; Drug Monitoring ; Evaluation ; exhaled breath condensate ; Materials science ; Monitoring ; multiplexing ; noninvasive diagnostics ; Optimization ; Point-of-Care Testing ; Sampling ; Side effects ; Time division multiplexing ; Workflow ; ß‐lactam antibiotics</subject><ispartof>Advanced materials (Weinheim), 2022-01, Vol.34 (2), p.e2104555-n/a</ispartof><rights>2021 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4695-bd52862ff6082abbfb70129affade43fda7281a2764b4218088e8e259bb223d23</citedby><cites>FETCH-LOGICAL-c4695-bd52862ff6082abbfb70129affade43fda7281a2764b4218088e8e259bb223d23</cites><orcidid>0000-0003-3301-1198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202104555$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202104555$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34545651$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ates, H. Ceren</creatorcontrib><creatorcontrib>Mohsenin, Hasti</creatorcontrib><creatorcontrib>Wenzel, Christin</creatorcontrib><creatorcontrib>Glatz, Regina T.</creatorcontrib><creatorcontrib>Wagner, Hanna J.</creatorcontrib><creatorcontrib>Bruch, Richard</creatorcontrib><creatorcontrib>Hoefflin, Nico</creatorcontrib><creatorcontrib>Spassov, Sashko</creatorcontrib><creatorcontrib>Streicher, Lea</creatorcontrib><creatorcontrib>Lozano‐Zahonero, Sara</creatorcontrib><creatorcontrib>Flamm, Bernd</creatorcontrib><creatorcontrib>Trittler, Rainer</creatorcontrib><creatorcontrib>Hug, Martin J.</creatorcontrib><creatorcontrib>Köhn, Maja</creatorcontrib><creatorcontrib>Schmidt, Johannes</creatorcontrib><creatorcontrib>Schumann, Stefan</creatorcontrib><creatorcontrib>Urban, Gerald A.</creatorcontrib><creatorcontrib>Weber, Wilfried</creatorcontrib><creatorcontrib>Dincer, Can</creatorcontrib><title>Biosensor‐Enabled Multiplexed On‐Site Therapeutic Drug Monitoring of Antibiotics</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Personalized antibiotherapy ensures that the antibiotic concentration remains in the optimal therapeutic window to maximize efficacy, minimize side effects, and avoid the emergence of drug resistance due to insufficient dosing. However, such individualized schemes need frequent sampling to tailor the blood antibiotic concentrations. To optimally integrate therapeutic drug monitoring (TDM) into the clinical workflow, antibiotic levels can either be measured in blood using point‐of‐care testing (POCT), or can rely on noninvasive sampling. Here, a versatile biosensor with an antibody‐free assay for on‐site TDM is presented. The platform is evaluated with an animal study, where antibiotic concentrations are quantified in different matrices including whole blood, plasma, urine, saliva, and exhaled breath condensate (EBC). The clearance and the temporal evaluation of antibiotic levels in EBC and plasma are demonstrated. Influence of matrix effects on measured drug concentrations is determined by comparing the plasma levels with those in noninvasive samples. The system's potential for blood‐based POCT is further illustrated by tracking ß‑lactam concentrations in untreated blood samples. Finally, multiplexing capabilities are explored successfully for multianalyte/sample analysis. By enabling a rapid, low‐cost, sample‐independent, and multiplexed on‐site TDM, this system can shift the paradigm of “one‑size‐fits‐all” strategy.
The first electrochemical biosensor, with a synthetic‐biology‐enabled antibody‐free assay, for temporal monitoring of piperacillin/tazobactam in exhaled breath condensate, along with a correlation study exploring the link between monitored drug levels, is presented. The validation of the findings with gold‐standard measurements demonstrates the suitability of the system as a low‐cost, rapid, and sample‐independent tool for multiplexed on‐site therapeutic drug monitoring.</description><subject>Amides</subject><subject>Animals</subject><subject>Anti-Bacterial Agents</subject><subject>Antibiotics</subject><subject>Antibodies</subject><subject>Biosensing Techniques</subject><subject>Biosensors</subject><subject>Blood</subject><subject>Cost analysis</subject><subject>Drug Monitoring</subject><subject>Evaluation</subject><subject>exhaled breath condensate</subject><subject>Materials science</subject><subject>Monitoring</subject><subject>multiplexing</subject><subject>noninvasive diagnostics</subject><subject>Optimization</subject><subject>Point-of-Care Testing</subject><subject>Sampling</subject><subject>Side effects</subject><subject>Time division multiplexing</subject><subject>Workflow</subject><subject>ß‐lactam antibiotics</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkctuGyEUhlHVKHHTbLuMRuqmm3HhDDCwitxc2kqxsqi7RjADDtEYHJhpm10foc-YJ-lYTp3LpiuQ_o9PnPMj9I7gKcEYPup2paeAgWDKGHuFJoQBKSmW7DWaYFmxUnIqDtCbnG8wxpJjvo8OKsoo44xM0OKTj9mGHNP97z_nQZvOtsV86Hq_7uyv8X4VxuCb722xuLZJr-3Q-6Y4S8OymMfg-5h8WBbRFbPQe-PjmOa3aM_pLtujh_MQfb84X5x-KS-vPn89nV2WDeWSlaZlIDg4x7EAbYwzNSYgtXO6tbRyra5BEA01p4YCEVgIKywwaQxA1UJ1iE623vVgVrZtbOiT7tQ6-ZVOdypqr54nwV-rZfyhCKFcSEpGw4cHQ4q3g829Wvnc2K7TwcYhK2A1w_W46A36_gV6E4cUxvkUcCJJRUW1oaZbqkkx52Td7jcEq01jatOY2jU2Pjh-OsMO_1fRCMgt8NN39u4_OjU7m88e5X8BQzGlHg</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Ates, H. Ceren</creator><creator>Mohsenin, Hasti</creator><creator>Wenzel, Christin</creator><creator>Glatz, Regina T.</creator><creator>Wagner, Hanna J.</creator><creator>Bruch, Richard</creator><creator>Hoefflin, Nico</creator><creator>Spassov, Sashko</creator><creator>Streicher, Lea</creator><creator>Lozano‐Zahonero, Sara</creator><creator>Flamm, Bernd</creator><creator>Trittler, Rainer</creator><creator>Hug, Martin J.</creator><creator>Köhn, Maja</creator><creator>Schmidt, Johannes</creator><creator>Schumann, Stefan</creator><creator>Urban, Gerald A.</creator><creator>Weber, Wilfried</creator><creator>Dincer, Can</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3301-1198</orcidid></search><sort><creationdate>20220101</creationdate><title>Biosensor‐Enabled Multiplexed On‐Site Therapeutic Drug Monitoring of Antibiotics</title><author>Ates, H. Ceren ; Mohsenin, Hasti ; Wenzel, Christin ; Glatz, Regina T. ; Wagner, Hanna J. ; Bruch, Richard ; Hoefflin, Nico ; Spassov, Sashko ; Streicher, Lea ; Lozano‐Zahonero, Sara ; Flamm, Bernd ; Trittler, Rainer ; Hug, Martin J. ; Köhn, Maja ; Schmidt, Johannes ; Schumann, Stefan ; Urban, Gerald A. ; Weber, Wilfried ; Dincer, Can</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4695-bd52862ff6082abbfb70129affade43fda7281a2764b4218088e8e259bb223d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amides</topic><topic>Animals</topic><topic>Anti-Bacterial Agents</topic><topic>Antibiotics</topic><topic>Antibodies</topic><topic>Biosensing Techniques</topic><topic>Biosensors</topic><topic>Blood</topic><topic>Cost analysis</topic><topic>Drug Monitoring</topic><topic>Evaluation</topic><topic>exhaled breath condensate</topic><topic>Materials science</topic><topic>Monitoring</topic><topic>multiplexing</topic><topic>noninvasive diagnostics</topic><topic>Optimization</topic><topic>Point-of-Care Testing</topic><topic>Sampling</topic><topic>Side effects</topic><topic>Time division multiplexing</topic><topic>Workflow</topic><topic>ß‐lactam antibiotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ates, H. Ceren</creatorcontrib><creatorcontrib>Mohsenin, Hasti</creatorcontrib><creatorcontrib>Wenzel, Christin</creatorcontrib><creatorcontrib>Glatz, Regina T.</creatorcontrib><creatorcontrib>Wagner, Hanna J.</creatorcontrib><creatorcontrib>Bruch, Richard</creatorcontrib><creatorcontrib>Hoefflin, Nico</creatorcontrib><creatorcontrib>Spassov, Sashko</creatorcontrib><creatorcontrib>Streicher, Lea</creatorcontrib><creatorcontrib>Lozano‐Zahonero, Sara</creatorcontrib><creatorcontrib>Flamm, Bernd</creatorcontrib><creatorcontrib>Trittler, Rainer</creatorcontrib><creatorcontrib>Hug, Martin J.</creatorcontrib><creatorcontrib>Köhn, Maja</creatorcontrib><creatorcontrib>Schmidt, Johannes</creatorcontrib><creatorcontrib>Schumann, Stefan</creatorcontrib><creatorcontrib>Urban, Gerald A.</creatorcontrib><creatorcontrib>Weber, Wilfried</creatorcontrib><creatorcontrib>Dincer, Can</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ates, H. Ceren</au><au>Mohsenin, Hasti</au><au>Wenzel, Christin</au><au>Glatz, Regina T.</au><au>Wagner, Hanna J.</au><au>Bruch, Richard</au><au>Hoefflin, Nico</au><au>Spassov, Sashko</au><au>Streicher, Lea</au><au>Lozano‐Zahonero, Sara</au><au>Flamm, Bernd</au><au>Trittler, Rainer</au><au>Hug, Martin J.</au><au>Köhn, Maja</au><au>Schmidt, Johannes</au><au>Schumann, Stefan</au><au>Urban, Gerald A.</au><au>Weber, Wilfried</au><au>Dincer, Can</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biosensor‐Enabled Multiplexed On‐Site Therapeutic Drug Monitoring of Antibiotics</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>34</volume><issue>2</issue><spage>e2104555</spage><epage>n/a</epage><pages>e2104555-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Personalized antibiotherapy ensures that the antibiotic concentration remains in the optimal therapeutic window to maximize efficacy, minimize side effects, and avoid the emergence of drug resistance due to insufficient dosing. However, such individualized schemes need frequent sampling to tailor the blood antibiotic concentrations. To optimally integrate therapeutic drug monitoring (TDM) into the clinical workflow, antibiotic levels can either be measured in blood using point‐of‐care testing (POCT), or can rely on noninvasive sampling. Here, a versatile biosensor with an antibody‐free assay for on‐site TDM is presented. The platform is evaluated with an animal study, where antibiotic concentrations are quantified in different matrices including whole blood, plasma, urine, saliva, and exhaled breath condensate (EBC). The clearance and the temporal evaluation of antibiotic levels in EBC and plasma are demonstrated. Influence of matrix effects on measured drug concentrations is determined by comparing the plasma levels with those in noninvasive samples. The system's potential for blood‐based POCT is further illustrated by tracking ß‑lactam concentrations in untreated blood samples. Finally, multiplexing capabilities are explored successfully for multianalyte/sample analysis. By enabling a rapid, low‐cost, sample‐independent, and multiplexed on‐site TDM, this system can shift the paradigm of “one‑size‐fits‐all” strategy.
The first electrochemical biosensor, with a synthetic‐biology‐enabled antibody‐free assay, for temporal monitoring of piperacillin/tazobactam in exhaled breath condensate, along with a correlation study exploring the link between monitored drug levels, is presented. The validation of the findings with gold‐standard measurements demonstrates the suitability of the system as a low‐cost, rapid, and sample‐independent tool for multiplexed on‐site therapeutic drug monitoring.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34545651</pmid><doi>10.1002/adma.202104555</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3301-1198</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2022-01, Vol.34 (2), p.e2104555-n/a |
issn | 0935-9648 1521-4095 1521-4095 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11468941 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Amides Animals Anti-Bacterial Agents Antibiotics Antibodies Biosensing Techniques Biosensors Blood Cost analysis Drug Monitoring Evaluation exhaled breath condensate Materials science Monitoring multiplexing noninvasive diagnostics Optimization Point-of-Care Testing Sampling Side effects Time division multiplexing Workflow ß‐lactam antibiotics |
title | Biosensor‐Enabled Multiplexed On‐Site Therapeutic Drug Monitoring of Antibiotics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A28%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biosensor%E2%80%90Enabled%20Multiplexed%20On%E2%80%90Site%20Therapeutic%20Drug%20Monitoring%20of%20Antibiotics&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Ates,%20H.%20Ceren&rft.date=2022-01-01&rft.volume=34&rft.issue=2&rft.spage=e2104555&rft.epage=n/a&rft.pages=e2104555-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202104555&rft_dat=%3Cproquest_pubme%3E2575070021%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619134831&rft_id=info:pmid/34545651&rfr_iscdi=true |