Powering Electronic Devices from Salt Gradients in AA‐Battery‐Sized Stacks of Hydrogel‐Infused Paper
Strongly electric fish use gradients of ions within their bodies to generate stunning external electrical discharges; the most powerful of these organisms, the Atlantic torpedo ray, can produce pulses of over 1 kW from its electric organs. Despite extensive study of this phenomenon in nature, the de...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2021-08, Vol.33 (31), p.e2101757-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 31 |
container_start_page | e2101757 |
container_title | Advanced materials (Weinheim) |
container_volume | 33 |
creator | Guha, Anirvan Kalkus, Trevor J. Schroeder, Thomas B. H. Willis, Oliver G. Rader, Chris Ianiro, Alessandro Mayer, Michael |
description | Strongly electric fish use gradients of ions within their bodies to generate stunning external electrical discharges; the most powerful of these organisms, the Atlantic torpedo ray, can produce pulses of over 1 kW from its electric organs. Despite extensive study of this phenomenon in nature, the development of artificial power generation schemes based on ion gradients for portable, wearable, or implantable human use has remained out of reach. Previously, an artificial electric organ inspired by the electric eel demonstrated that electricity generated from ion gradients within stacked hydrogels can exceed 100 V. The current of this power source, however, was too low to power standard electronics. Here, an artificial electric organ inspired by the unique morphologies of torpedo rays for maximal current output is introduced. This power source uses a hybrid material of hydrogel‐infused paper to create, organize, and reconfigure stacks of thin, arbitrarily large gel films in series and in parallel. The resulting increase in electrical power by almost two orders of magnitude compared to the original eel‐inspired design makes it possible to power electronic devices and establishes that biology's mechanism of generating significant electrical power can now be realized from benign and soft materials in a portable size.
The most powerful electric fish, the Atlantic torpedo ray, uses sheet‐like electrically active cells within its electric organs to produce external electrical discharges of up to 1 kW. A paper‐based artificial electric organ is presented, which mimics the torpedo strategies for optimal power generation, resulting in a small and potentially biocompatible energy‐storage device capable of operating real‐world electronics. |
doi_str_mv | 10.1002/adma.202101757 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11468721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2544881055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4697-2903ac2247492c6c49c40536a0c70ac716ae026dfb2b449841bc0b6b00b465cf3</originalsourceid><addsrcrecordid>eNqFkctu1DAUhi0EokPLliWyxIZNpseO7cQrFHqXiqg0sLYcxxk8JPHUTloNqz4Cz8iT1NWU4bLpypb-73w6Rz9CbwjMCQA91E2v5xQoAVLw4hmaEU5JxkDy52gGMueZFKzcQ69iXAGAFCBeor2cEcFLKmZodeVvbXDDEp901ozBD87gY3vjjI24Db7HC92N-CzoxtlhjNgNuKp-3f38qMfRhk36LdwP2-DFqM33iH2LzzdN8EvbpehiaKeYwiu9tuEAvWh1F-3rx3cffT09-XJ0nl1-Prs4qi4zw4QsMioh14ZSVjBJjTBMGgY8FxpMAdoURGgLVDRtTWvGZMlIbaAWNUDNBDdtvo8-bL3rqe5tY9LaQXdqHVyvw0Z57dS_yeC-qaW_UYQwURaUJMP7R0Pw15ONo-pdNLbr9GD9FBXljJUlAc4T-u4_dOWnMKT7EsWLsqTAWaLmW8oEH2Ow7W4bAuqhR_XQo9r1mAbe_n3DDv9dXALkFrh1nd08oVPV8afqj_weCoasxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557882054</pqid></control><display><type>article</type><title>Powering Electronic Devices from Salt Gradients in AA‐Battery‐Sized Stacks of Hydrogel‐Infused Paper</title><source>Wiley Online Library</source><creator>Guha, Anirvan ; Kalkus, Trevor J. ; Schroeder, Thomas B. H. ; Willis, Oliver G. ; Rader, Chris ; Ianiro, Alessandro ; Mayer, Michael</creator><creatorcontrib>Guha, Anirvan ; Kalkus, Trevor J. ; Schroeder, Thomas B. H. ; Willis, Oliver G. ; Rader, Chris ; Ianiro, Alessandro ; Mayer, Michael</creatorcontrib><description>Strongly electric fish use gradients of ions within their bodies to generate stunning external electrical discharges; the most powerful of these organisms, the Atlantic torpedo ray, can produce pulses of over 1 kW from its electric organs. Despite extensive study of this phenomenon in nature, the development of artificial power generation schemes based on ion gradients for portable, wearable, or implantable human use has remained out of reach. Previously, an artificial electric organ inspired by the electric eel demonstrated that electricity generated from ion gradients within stacked hydrogels can exceed 100 V. The current of this power source, however, was too low to power standard electronics. Here, an artificial electric organ inspired by the unique morphologies of torpedo rays for maximal current output is introduced. This power source uses a hybrid material of hydrogel‐infused paper to create, organize, and reconfigure stacks of thin, arbitrarily large gel films in series and in parallel. The resulting increase in electrical power by almost two orders of magnitude compared to the original eel‐inspired design makes it possible to power electronic devices and establishes that biology's mechanism of generating significant electrical power can now be realized from benign and soft materials in a portable size.
The most powerful electric fish, the Atlantic torpedo ray, uses sheet‐like electrically active cells within its electric organs to produce external electrical discharges of up to 1 kW. A paper‐based artificial electric organ is presented, which mimics the torpedo strategies for optimal power generation, resulting in a small and potentially biocompatible energy‐storage device capable of operating real‐world electronics.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202101757</identifier><identifier>PMID: 34165826</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>bioinspired materials ; Electric discharges ; Electric instruments ; Electronic devices ; energy storage ; Hydrogels ; Materials science ; Morphology ; Organs ; Power ; Power management ; Power sources ; Stacks ; Thin films</subject><ispartof>Advanced materials (Weinheim), 2021-08, Vol.33 (31), p.e2101757-n/a</ispartof><rights>2021 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4697-2903ac2247492c6c49c40536a0c70ac716ae026dfb2b449841bc0b6b00b465cf3</citedby><cites>FETCH-LOGICAL-c4697-2903ac2247492c6c49c40536a0c70ac716ae026dfb2b449841bc0b6b00b465cf3</cites><orcidid>0000-0001-6018-1438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202101757$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202101757$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34165826$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guha, Anirvan</creatorcontrib><creatorcontrib>Kalkus, Trevor J.</creatorcontrib><creatorcontrib>Schroeder, Thomas B. H.</creatorcontrib><creatorcontrib>Willis, Oliver G.</creatorcontrib><creatorcontrib>Rader, Chris</creatorcontrib><creatorcontrib>Ianiro, Alessandro</creatorcontrib><creatorcontrib>Mayer, Michael</creatorcontrib><title>Powering Electronic Devices from Salt Gradients in AA‐Battery‐Sized Stacks of Hydrogel‐Infused Paper</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Strongly electric fish use gradients of ions within their bodies to generate stunning external electrical discharges; the most powerful of these organisms, the Atlantic torpedo ray, can produce pulses of over 1 kW from its electric organs. Despite extensive study of this phenomenon in nature, the development of artificial power generation schemes based on ion gradients for portable, wearable, or implantable human use has remained out of reach. Previously, an artificial electric organ inspired by the electric eel demonstrated that electricity generated from ion gradients within stacked hydrogels can exceed 100 V. The current of this power source, however, was too low to power standard electronics. Here, an artificial electric organ inspired by the unique morphologies of torpedo rays for maximal current output is introduced. This power source uses a hybrid material of hydrogel‐infused paper to create, organize, and reconfigure stacks of thin, arbitrarily large gel films in series and in parallel. The resulting increase in electrical power by almost two orders of magnitude compared to the original eel‐inspired design makes it possible to power electronic devices and establishes that biology's mechanism of generating significant electrical power can now be realized from benign and soft materials in a portable size.
The most powerful electric fish, the Atlantic torpedo ray, uses sheet‐like electrically active cells within its electric organs to produce external electrical discharges of up to 1 kW. A paper‐based artificial electric organ is presented, which mimics the torpedo strategies for optimal power generation, resulting in a small and potentially biocompatible energy‐storage device capable of operating real‐world electronics.</description><subject>bioinspired materials</subject><subject>Electric discharges</subject><subject>Electric instruments</subject><subject>Electronic devices</subject><subject>energy storage</subject><subject>Hydrogels</subject><subject>Materials science</subject><subject>Morphology</subject><subject>Organs</subject><subject>Power</subject><subject>Power management</subject><subject>Power sources</subject><subject>Stacks</subject><subject>Thin films</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkctu1DAUhi0EokPLliWyxIZNpseO7cQrFHqXiqg0sLYcxxk8JPHUTloNqz4Cz8iT1NWU4bLpypb-73w6Rz9CbwjMCQA91E2v5xQoAVLw4hmaEU5JxkDy52gGMueZFKzcQ69iXAGAFCBeor2cEcFLKmZodeVvbXDDEp901ozBD87gY3vjjI24Db7HC92N-CzoxtlhjNgNuKp-3f38qMfRhk36LdwP2-DFqM33iH2LzzdN8EvbpehiaKeYwiu9tuEAvWh1F-3rx3cffT09-XJ0nl1-Prs4qi4zw4QsMioh14ZSVjBJjTBMGgY8FxpMAdoURGgLVDRtTWvGZMlIbaAWNUDNBDdtvo8-bL3rqe5tY9LaQXdqHVyvw0Z57dS_yeC-qaW_UYQwURaUJMP7R0Pw15ONo-pdNLbr9GD9FBXljJUlAc4T-u4_dOWnMKT7EsWLsqTAWaLmW8oEH2Ow7W4bAuqhR_XQo9r1mAbe_n3DDv9dXALkFrh1nd08oVPV8afqj_weCoasxw</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Guha, Anirvan</creator><creator>Kalkus, Trevor J.</creator><creator>Schroeder, Thomas B. H.</creator><creator>Willis, Oliver G.</creator><creator>Rader, Chris</creator><creator>Ianiro, Alessandro</creator><creator>Mayer, Michael</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6018-1438</orcidid></search><sort><creationdate>20210801</creationdate><title>Powering Electronic Devices from Salt Gradients in AA‐Battery‐Sized Stacks of Hydrogel‐Infused Paper</title><author>Guha, Anirvan ; Kalkus, Trevor J. ; Schroeder, Thomas B. H. ; Willis, Oliver G. ; Rader, Chris ; Ianiro, Alessandro ; Mayer, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4697-2903ac2247492c6c49c40536a0c70ac716ae026dfb2b449841bc0b6b00b465cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>bioinspired materials</topic><topic>Electric discharges</topic><topic>Electric instruments</topic><topic>Electronic devices</topic><topic>energy storage</topic><topic>Hydrogels</topic><topic>Materials science</topic><topic>Morphology</topic><topic>Organs</topic><topic>Power</topic><topic>Power management</topic><topic>Power sources</topic><topic>Stacks</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guha, Anirvan</creatorcontrib><creatorcontrib>Kalkus, Trevor J.</creatorcontrib><creatorcontrib>Schroeder, Thomas B. H.</creatorcontrib><creatorcontrib>Willis, Oliver G.</creatorcontrib><creatorcontrib>Rader, Chris</creatorcontrib><creatorcontrib>Ianiro, Alessandro</creatorcontrib><creatorcontrib>Mayer, Michael</creatorcontrib><collection>Wiley-Blackwell Titles (Open access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guha, Anirvan</au><au>Kalkus, Trevor J.</au><au>Schroeder, Thomas B. H.</au><au>Willis, Oliver G.</au><au>Rader, Chris</au><au>Ianiro, Alessandro</au><au>Mayer, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Powering Electronic Devices from Salt Gradients in AA‐Battery‐Sized Stacks of Hydrogel‐Infused Paper</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>33</volume><issue>31</issue><spage>e2101757</spage><epage>n/a</epage><pages>e2101757-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Strongly electric fish use gradients of ions within their bodies to generate stunning external electrical discharges; the most powerful of these organisms, the Atlantic torpedo ray, can produce pulses of over 1 kW from its electric organs. Despite extensive study of this phenomenon in nature, the development of artificial power generation schemes based on ion gradients for portable, wearable, or implantable human use has remained out of reach. Previously, an artificial electric organ inspired by the electric eel demonstrated that electricity generated from ion gradients within stacked hydrogels can exceed 100 V. The current of this power source, however, was too low to power standard electronics. Here, an artificial electric organ inspired by the unique morphologies of torpedo rays for maximal current output is introduced. This power source uses a hybrid material of hydrogel‐infused paper to create, organize, and reconfigure stacks of thin, arbitrarily large gel films in series and in parallel. The resulting increase in electrical power by almost two orders of magnitude compared to the original eel‐inspired design makes it possible to power electronic devices and establishes that biology's mechanism of generating significant electrical power can now be realized from benign and soft materials in a portable size.
The most powerful electric fish, the Atlantic torpedo ray, uses sheet‐like electrically active cells within its electric organs to produce external electrical discharges of up to 1 kW. A paper‐based artificial electric organ is presented, which mimics the torpedo strategies for optimal power generation, resulting in a small and potentially biocompatible energy‐storage device capable of operating real‐world electronics.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34165826</pmid><doi>10.1002/adma.202101757</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6018-1438</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2021-08, Vol.33 (31), p.e2101757-n/a |
issn | 0935-9648 1521-4095 1521-4095 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11468721 |
source | Wiley Online Library |
subjects | bioinspired materials Electric discharges Electric instruments Electronic devices energy storage Hydrogels Materials science Morphology Organs Power Power management Power sources Stacks Thin films |
title | Powering Electronic Devices from Salt Gradients in AA‐Battery‐Sized Stacks of Hydrogel‐Infused Paper |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A51%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Powering%20Electronic%20Devices%20from%20Salt%20Gradients%20in%20AA%E2%80%90Battery%E2%80%90Sized%20Stacks%20of%20Hydrogel%E2%80%90Infused%20Paper&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Guha,%20Anirvan&rft.date=2021-08-01&rft.volume=33&rft.issue=31&rft.spage=e2101757&rft.epage=n/a&rft.pages=e2101757-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202101757&rft_dat=%3Cproquest_pubme%3E2544881055%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557882054&rft_id=info:pmid/34165826&rfr_iscdi=true |