Powering Electronic Devices from Salt Gradients in AA‐Battery‐Sized Stacks of Hydrogel‐Infused Paper

Strongly electric fish use gradients of ions within their bodies to generate stunning external electrical discharges; the most powerful of these organisms, the Atlantic torpedo ray, can produce pulses of over 1 kW from its electric organs. Despite extensive study of this phenomenon in nature, the de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-08, Vol.33 (31), p.e2101757-n/a
Hauptverfasser: Guha, Anirvan, Kalkus, Trevor J., Schroeder, Thomas B. H., Willis, Oliver G., Rader, Chris, Ianiro, Alessandro, Mayer, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 31
container_start_page e2101757
container_title Advanced materials (Weinheim)
container_volume 33
creator Guha, Anirvan
Kalkus, Trevor J.
Schroeder, Thomas B. H.
Willis, Oliver G.
Rader, Chris
Ianiro, Alessandro
Mayer, Michael
description Strongly electric fish use gradients of ions within their bodies to generate stunning external electrical discharges; the most powerful of these organisms, the Atlantic torpedo ray, can produce pulses of over 1 kW from its electric organs. Despite extensive study of this phenomenon in nature, the development of artificial power generation schemes based on ion gradients for portable, wearable, or implantable human use has remained out of reach. Previously, an artificial electric organ inspired by the electric eel demonstrated that electricity generated from ion gradients within stacked hydrogels can exceed 100 V. The current of this power source, however, was too low to power standard electronics. Here, an artificial electric organ inspired by the unique morphologies of torpedo rays for maximal current output is introduced. This power source uses a hybrid material of hydrogel‐infused paper to create, organize, and reconfigure stacks of thin, arbitrarily large gel films in series and in parallel. The resulting increase in electrical power by almost two orders of magnitude compared to the original eel‐inspired design makes it possible to power electronic devices and establishes that biology's mechanism of generating significant electrical power can now be realized from benign and soft materials in a portable size. The most powerful electric fish, the Atlantic torpedo ray, uses sheet‐like electrically active cells within its electric organs to produce external electrical discharges of up to 1 kW. A paper‐based artificial electric organ is presented, which mimics the torpedo strategies for optimal power generation, resulting in a small and potentially biocompatible energy‐storage device capable of operating real‐world electronics.
doi_str_mv 10.1002/adma.202101757
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11468721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2544881055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4697-2903ac2247492c6c49c40536a0c70ac716ae026dfb2b449841bc0b6b00b465cf3</originalsourceid><addsrcrecordid>eNqFkctu1DAUhi0EokPLliWyxIZNpseO7cQrFHqXiqg0sLYcxxk8JPHUTloNqz4Cz8iT1NWU4bLpypb-73w6Rz9CbwjMCQA91E2v5xQoAVLw4hmaEU5JxkDy52gGMueZFKzcQ69iXAGAFCBeor2cEcFLKmZodeVvbXDDEp901ozBD87gY3vjjI24Db7HC92N-CzoxtlhjNgNuKp-3f38qMfRhk36LdwP2-DFqM33iH2LzzdN8EvbpehiaKeYwiu9tuEAvWh1F-3rx3cffT09-XJ0nl1-Prs4qi4zw4QsMioh14ZSVjBJjTBMGgY8FxpMAdoURGgLVDRtTWvGZMlIbaAWNUDNBDdtvo8-bL3rqe5tY9LaQXdqHVyvw0Z57dS_yeC-qaW_UYQwURaUJMP7R0Pw15ONo-pdNLbr9GD9FBXljJUlAc4T-u4_dOWnMKT7EsWLsqTAWaLmW8oEH2Ow7W4bAuqhR_XQo9r1mAbe_n3DDv9dXALkFrh1nd08oVPV8afqj_weCoasxw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557882054</pqid></control><display><type>article</type><title>Powering Electronic Devices from Salt Gradients in AA‐Battery‐Sized Stacks of Hydrogel‐Infused Paper</title><source>Wiley Online Library</source><creator>Guha, Anirvan ; Kalkus, Trevor J. ; Schroeder, Thomas B. H. ; Willis, Oliver G. ; Rader, Chris ; Ianiro, Alessandro ; Mayer, Michael</creator><creatorcontrib>Guha, Anirvan ; Kalkus, Trevor J. ; Schroeder, Thomas B. H. ; Willis, Oliver G. ; Rader, Chris ; Ianiro, Alessandro ; Mayer, Michael</creatorcontrib><description>Strongly electric fish use gradients of ions within their bodies to generate stunning external electrical discharges; the most powerful of these organisms, the Atlantic torpedo ray, can produce pulses of over 1 kW from its electric organs. Despite extensive study of this phenomenon in nature, the development of artificial power generation schemes based on ion gradients for portable, wearable, or implantable human use has remained out of reach. Previously, an artificial electric organ inspired by the electric eel demonstrated that electricity generated from ion gradients within stacked hydrogels can exceed 100 V. The current of this power source, however, was too low to power standard electronics. Here, an artificial electric organ inspired by the unique morphologies of torpedo rays for maximal current output is introduced. This power source uses a hybrid material of hydrogel‐infused paper to create, organize, and reconfigure stacks of thin, arbitrarily large gel films in series and in parallel. The resulting increase in electrical power by almost two orders of magnitude compared to the original eel‐inspired design makes it possible to power electronic devices and establishes that biology's mechanism of generating significant electrical power can now be realized from benign and soft materials in a portable size. The most powerful electric fish, the Atlantic torpedo ray, uses sheet‐like electrically active cells within its electric organs to produce external electrical discharges of up to 1 kW. A paper‐based artificial electric organ is presented, which mimics the torpedo strategies for optimal power generation, resulting in a small and potentially biocompatible energy‐storage device capable of operating real‐world electronics.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202101757</identifier><identifier>PMID: 34165826</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>bioinspired materials ; Electric discharges ; Electric instruments ; Electronic devices ; energy storage ; Hydrogels ; Materials science ; Morphology ; Organs ; Power ; Power management ; Power sources ; Stacks ; Thin films</subject><ispartof>Advanced materials (Weinheim), 2021-08, Vol.33 (31), p.e2101757-n/a</ispartof><rights>2021 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4697-2903ac2247492c6c49c40536a0c70ac716ae026dfb2b449841bc0b6b00b465cf3</citedby><cites>FETCH-LOGICAL-c4697-2903ac2247492c6c49c40536a0c70ac716ae026dfb2b449841bc0b6b00b465cf3</cites><orcidid>0000-0001-6018-1438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202101757$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202101757$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34165826$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guha, Anirvan</creatorcontrib><creatorcontrib>Kalkus, Trevor J.</creatorcontrib><creatorcontrib>Schroeder, Thomas B. H.</creatorcontrib><creatorcontrib>Willis, Oliver G.</creatorcontrib><creatorcontrib>Rader, Chris</creatorcontrib><creatorcontrib>Ianiro, Alessandro</creatorcontrib><creatorcontrib>Mayer, Michael</creatorcontrib><title>Powering Electronic Devices from Salt Gradients in AA‐Battery‐Sized Stacks of Hydrogel‐Infused Paper</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Strongly electric fish use gradients of ions within their bodies to generate stunning external electrical discharges; the most powerful of these organisms, the Atlantic torpedo ray, can produce pulses of over 1 kW from its electric organs. Despite extensive study of this phenomenon in nature, the development of artificial power generation schemes based on ion gradients for portable, wearable, or implantable human use has remained out of reach. Previously, an artificial electric organ inspired by the electric eel demonstrated that electricity generated from ion gradients within stacked hydrogels can exceed 100 V. The current of this power source, however, was too low to power standard electronics. Here, an artificial electric organ inspired by the unique morphologies of torpedo rays for maximal current output is introduced. This power source uses a hybrid material of hydrogel‐infused paper to create, organize, and reconfigure stacks of thin, arbitrarily large gel films in series and in parallel. The resulting increase in electrical power by almost two orders of magnitude compared to the original eel‐inspired design makes it possible to power electronic devices and establishes that biology's mechanism of generating significant electrical power can now be realized from benign and soft materials in a portable size. The most powerful electric fish, the Atlantic torpedo ray, uses sheet‐like electrically active cells within its electric organs to produce external electrical discharges of up to 1 kW. A paper‐based artificial electric organ is presented, which mimics the torpedo strategies for optimal power generation, resulting in a small and potentially biocompatible energy‐storage device capable of operating real‐world electronics.</description><subject>bioinspired materials</subject><subject>Electric discharges</subject><subject>Electric instruments</subject><subject>Electronic devices</subject><subject>energy storage</subject><subject>Hydrogels</subject><subject>Materials science</subject><subject>Morphology</subject><subject>Organs</subject><subject>Power</subject><subject>Power management</subject><subject>Power sources</subject><subject>Stacks</subject><subject>Thin films</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkctu1DAUhi0EokPLliWyxIZNpseO7cQrFHqXiqg0sLYcxxk8JPHUTloNqz4Cz8iT1NWU4bLpypb-73w6Rz9CbwjMCQA91E2v5xQoAVLw4hmaEU5JxkDy52gGMueZFKzcQ69iXAGAFCBeor2cEcFLKmZodeVvbXDDEp901ozBD87gY3vjjI24Db7HC92N-CzoxtlhjNgNuKp-3f38qMfRhk36LdwP2-DFqM33iH2LzzdN8EvbpehiaKeYwiu9tuEAvWh1F-3rx3cffT09-XJ0nl1-Prs4qi4zw4QsMioh14ZSVjBJjTBMGgY8FxpMAdoURGgLVDRtTWvGZMlIbaAWNUDNBDdtvo8-bL3rqe5tY9LaQXdqHVyvw0Z57dS_yeC-qaW_UYQwURaUJMP7R0Pw15ONo-pdNLbr9GD9FBXljJUlAc4T-u4_dOWnMKT7EsWLsqTAWaLmW8oEH2Ow7W4bAuqhR_XQo9r1mAbe_n3DDv9dXALkFrh1nd08oVPV8afqj_weCoasxw</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Guha, Anirvan</creator><creator>Kalkus, Trevor J.</creator><creator>Schroeder, Thomas B. H.</creator><creator>Willis, Oliver G.</creator><creator>Rader, Chris</creator><creator>Ianiro, Alessandro</creator><creator>Mayer, Michael</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6018-1438</orcidid></search><sort><creationdate>20210801</creationdate><title>Powering Electronic Devices from Salt Gradients in AA‐Battery‐Sized Stacks of Hydrogel‐Infused Paper</title><author>Guha, Anirvan ; Kalkus, Trevor J. ; Schroeder, Thomas B. H. ; Willis, Oliver G. ; Rader, Chris ; Ianiro, Alessandro ; Mayer, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4697-2903ac2247492c6c49c40536a0c70ac716ae026dfb2b449841bc0b6b00b465cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>bioinspired materials</topic><topic>Electric discharges</topic><topic>Electric instruments</topic><topic>Electronic devices</topic><topic>energy storage</topic><topic>Hydrogels</topic><topic>Materials science</topic><topic>Morphology</topic><topic>Organs</topic><topic>Power</topic><topic>Power management</topic><topic>Power sources</topic><topic>Stacks</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guha, Anirvan</creatorcontrib><creatorcontrib>Kalkus, Trevor J.</creatorcontrib><creatorcontrib>Schroeder, Thomas B. H.</creatorcontrib><creatorcontrib>Willis, Oliver G.</creatorcontrib><creatorcontrib>Rader, Chris</creatorcontrib><creatorcontrib>Ianiro, Alessandro</creatorcontrib><creatorcontrib>Mayer, Michael</creatorcontrib><collection>Wiley-Blackwell Titles (Open access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guha, Anirvan</au><au>Kalkus, Trevor J.</au><au>Schroeder, Thomas B. H.</au><au>Willis, Oliver G.</au><au>Rader, Chris</au><au>Ianiro, Alessandro</au><au>Mayer, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Powering Electronic Devices from Salt Gradients in AA‐Battery‐Sized Stacks of Hydrogel‐Infused Paper</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>33</volume><issue>31</issue><spage>e2101757</spage><epage>n/a</epage><pages>e2101757-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Strongly electric fish use gradients of ions within their bodies to generate stunning external electrical discharges; the most powerful of these organisms, the Atlantic torpedo ray, can produce pulses of over 1 kW from its electric organs. Despite extensive study of this phenomenon in nature, the development of artificial power generation schemes based on ion gradients for portable, wearable, or implantable human use has remained out of reach. Previously, an artificial electric organ inspired by the electric eel demonstrated that electricity generated from ion gradients within stacked hydrogels can exceed 100 V. The current of this power source, however, was too low to power standard electronics. Here, an artificial electric organ inspired by the unique morphologies of torpedo rays for maximal current output is introduced. This power source uses a hybrid material of hydrogel‐infused paper to create, organize, and reconfigure stacks of thin, arbitrarily large gel films in series and in parallel. The resulting increase in electrical power by almost two orders of magnitude compared to the original eel‐inspired design makes it possible to power electronic devices and establishes that biology's mechanism of generating significant electrical power can now be realized from benign and soft materials in a portable size. The most powerful electric fish, the Atlantic torpedo ray, uses sheet‐like electrically active cells within its electric organs to produce external electrical discharges of up to 1 kW. A paper‐based artificial electric organ is presented, which mimics the torpedo strategies for optimal power generation, resulting in a small and potentially biocompatible energy‐storage device capable of operating real‐world electronics.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34165826</pmid><doi>10.1002/adma.202101757</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6018-1438</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-08, Vol.33 (31), p.e2101757-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11468721
source Wiley Online Library
subjects bioinspired materials
Electric discharges
Electric instruments
Electronic devices
energy storage
Hydrogels
Materials science
Morphology
Organs
Power
Power management
Power sources
Stacks
Thin films
title Powering Electronic Devices from Salt Gradients in AA‐Battery‐Sized Stacks of Hydrogel‐Infused Paper
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A51%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Powering%20Electronic%20Devices%20from%20Salt%20Gradients%20in%20AA%E2%80%90Battery%E2%80%90Sized%20Stacks%20of%20Hydrogel%E2%80%90Infused%20Paper&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Guha,%20Anirvan&rft.date=2021-08-01&rft.volume=33&rft.issue=31&rft.spage=e2101757&rft.epage=n/a&rft.pages=e2101757-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202101757&rft_dat=%3Cproquest_pubme%3E2544881055%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557882054&rft_id=info:pmid/34165826&rfr_iscdi=true