Quantitative Photothermal Characterization with Bioprinted 3D Complex Tissue Constructs for Early‐Stage Breast Cancer Therapy Using Gold Nanorods
Plasmonic photothermal therapy (PPTT) using gold nanoparticles (AuNPs) has shown great potential for use in selective tumor treatment, because the AuNPs can generate destructive heat preferentially upon irradiation. However, PPTT using AuNPs has not been added to practice, owing to insufficient heat...
Gespeichert in:
Veröffentlicht in: | Advanced healthcare materials 2021-09, Vol.10 (18), p.e2100636-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 18 |
container_start_page | e2100636 |
container_title | Advanced healthcare materials |
container_volume | 10 |
creator | Nam, Ki‐Hwan Jeong, Chan Bae Kim, HyeMi Ahn, Minjun Ahn, Sung‐Jun Hur, Hwan Kim, Dong Uk Jang, Jinah Gwon, Hui‐Jeong Lim, Youn‐Mook Cho, Dong‐Woo Lee, Kye‐Sung Bae, Ji Yong Chang, Ki Soo |
description | Plasmonic photothermal therapy (PPTT) using gold nanoparticles (AuNPs) has shown great potential for use in selective tumor treatment, because the AuNPs can generate destructive heat preferentially upon irradiation. However, PPTT using AuNPs has not been added to practice, owing to insufficient heating methods and tissue temperature measurement techniques, leading to unreliable and inaccurate treatments. Because the photothermal properties of AuNPs vary with laser power, particle optical density, and tissue depth, the accurate prediction of heat generation is indispensable for clinical treatment. In this report, bioprinted 3D complex tissue constructs comprising processed gel obtained from porcine skin and human decellularized adipose tissue are presented for characterization of the photothermal properties of gold nanorods (AuNRs) having an aspect ratio of 3.7 irradiated by a near‐infrared laser. Moreover, an analytical function is suggested for achieving PPTT that can cause thermal damage selectively on early‐stage human breast cancer by regulating the heat generation of the AuNRs in the tissue.
The accurate prediction of heat generation on tumor tissue is indispensable for clinical plasmonic photothermal therapy (PPTT). An analytical function to predict the temperature variation is suggested by analyzing heat generation using various 3D tissue construct and computational biophysics analysis. Also, selective thermal damage on early‐stage human breast cancer is confirmed using bioprinted 3D complex tissue constructs. |
doi_str_mv | 10.1002/adhm.202100636 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11468621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2549690381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4296-389960975d8a0ca56feb791a1811baf1bfdb876ed995d165ded099aff08b26aa3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhSMEolXpliWyxIbNDLaTOPYKtWlpK5U_MV1bN7EzcZXYU9tpGVY8AhJvyJPUoynDzwZv7Kv7-dx7dLLsOcFzgjF9Daof5xTTVLCcPcr2KRF0RlkpHu_eBd7LDkO4xumwkjBOnmZ7eUHzkguyn_34NIGNJkI0txp97F10sdd-hAHVPXhoo_bma-o6i-5M7NGxcStvbNQK5SeoduNq0F_QwoQw6VTaEP3UxoA659Ep-GH989v3zxGWGh17DSGiGmyrPVqkKbBao6tg7BKduUGh92Cddyo8y550MAR9-HAfZFdvTxf1-ezyw9lFfXQ5awsq2CznQjAsqlJxwC2UrNNNJQgQTkgDHWk61fCKaSVEqQgrlVZYCOg6zBvKAPKD7M1WdzU1o1atttHDIJO9EfxaOjDy7441vVy6W0lIwTijJCm8elDw7mbSIcrRhFYPA1jtpiBpWQgmcM436Mt_0Gs3eZv8JaoqhKCV4Imab6nWuxC87nbbECw3mctN5nKXefrw4k8PO_xXwgkQW-DODHr9Hzl5dHL-7rf4PfakvO0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574992798</pqid></control><display><type>article</type><title>Quantitative Photothermal Characterization with Bioprinted 3D Complex Tissue Constructs for Early‐Stage Breast Cancer Therapy Using Gold Nanorods</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nam, Ki‐Hwan ; Jeong, Chan Bae ; Kim, HyeMi ; Ahn, Minjun ; Ahn, Sung‐Jun ; Hur, Hwan ; Kim, Dong Uk ; Jang, Jinah ; Gwon, Hui‐Jeong ; Lim, Youn‐Mook ; Cho, Dong‐Woo ; Lee, Kye‐Sung ; Bae, Ji Yong ; Chang, Ki Soo</creator><creatorcontrib>Nam, Ki‐Hwan ; Jeong, Chan Bae ; Kim, HyeMi ; Ahn, Minjun ; Ahn, Sung‐Jun ; Hur, Hwan ; Kim, Dong Uk ; Jang, Jinah ; Gwon, Hui‐Jeong ; Lim, Youn‐Mook ; Cho, Dong‐Woo ; Lee, Kye‐Sung ; Bae, Ji Yong ; Chang, Ki Soo</creatorcontrib><description>Plasmonic photothermal therapy (PPTT) using gold nanoparticles (AuNPs) has shown great potential for use in selective tumor treatment, because the AuNPs can generate destructive heat preferentially upon irradiation. However, PPTT using AuNPs has not been added to practice, owing to insufficient heating methods and tissue temperature measurement techniques, leading to unreliable and inaccurate treatments. Because the photothermal properties of AuNPs vary with laser power, particle optical density, and tissue depth, the accurate prediction of heat generation is indispensable for clinical treatment. In this report, bioprinted 3D complex tissue constructs comprising processed gel obtained from porcine skin and human decellularized adipose tissue are presented for characterization of the photothermal properties of gold nanorods (AuNRs) having an aspect ratio of 3.7 irradiated by a near‐infrared laser. Moreover, an analytical function is suggested for achieving PPTT that can cause thermal damage selectively on early‐stage human breast cancer by regulating the heat generation of the AuNRs in the tissue.
The accurate prediction of heat generation on tumor tissue is indispensable for clinical plasmonic photothermal therapy (PPTT). An analytical function to predict the temperature variation is suggested by analyzing heat generation using various 3D tissue construct and computational biophysics analysis. Also, selective thermal damage on early‐stage human breast cancer is confirmed using bioprinted 3D complex tissue constructs.</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202100636</identifier><identifier>PMID: 34235891</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>3D tissue constructs ; Adipose tissue ; Aspect ratio ; Bioengineering ; Breast cancer ; breast cancer models ; Breast Neoplasms - therapy ; Cancer therapies ; Cell Line, Tumor ; computational biophysics analysis ; Female ; Gold ; gold nanorods ; Heat generation ; Humans ; Infrared analysis ; Infrared lasers ; Irradiation ; Measurement techniques ; Metal Nanoparticles - therapeutic use ; Nanoparticles ; Nanorods ; Nanotubes ; Optical density ; Optical properties ; Phototherapy ; plasmonic photothermal therapy ; Temperature measurement ; Three dimensional printing ; Tissue engineering</subject><ispartof>Advanced healthcare materials, 2021-09, Vol.10 (18), p.e2100636-n/a</ispartof><rights>2021 The Authors. Advanced Healthcare Materials published by Wiley‐VCH GmbH</rights><rights>2021 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4296-389960975d8a0ca56feb791a1811baf1bfdb876ed995d165ded099aff08b26aa3</citedby><cites>FETCH-LOGICAL-c4296-389960975d8a0ca56feb791a1811baf1bfdb876ed995d165ded099aff08b26aa3</cites><orcidid>0000-0002-6067-2066 ; 0000-0001-9943-6792 ; 0000-0003-0337-9223 ; 0000-0002-4897-6040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.202100636$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.202100636$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34235891$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nam, Ki‐Hwan</creatorcontrib><creatorcontrib>Jeong, Chan Bae</creatorcontrib><creatorcontrib>Kim, HyeMi</creatorcontrib><creatorcontrib>Ahn, Minjun</creatorcontrib><creatorcontrib>Ahn, Sung‐Jun</creatorcontrib><creatorcontrib>Hur, Hwan</creatorcontrib><creatorcontrib>Kim, Dong Uk</creatorcontrib><creatorcontrib>Jang, Jinah</creatorcontrib><creatorcontrib>Gwon, Hui‐Jeong</creatorcontrib><creatorcontrib>Lim, Youn‐Mook</creatorcontrib><creatorcontrib>Cho, Dong‐Woo</creatorcontrib><creatorcontrib>Lee, Kye‐Sung</creatorcontrib><creatorcontrib>Bae, Ji Yong</creatorcontrib><creatorcontrib>Chang, Ki Soo</creatorcontrib><title>Quantitative Photothermal Characterization with Bioprinted 3D Complex Tissue Constructs for Early‐Stage Breast Cancer Therapy Using Gold Nanorods</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Plasmonic photothermal therapy (PPTT) using gold nanoparticles (AuNPs) has shown great potential for use in selective tumor treatment, because the AuNPs can generate destructive heat preferentially upon irradiation. However, PPTT using AuNPs has not been added to practice, owing to insufficient heating methods and tissue temperature measurement techniques, leading to unreliable and inaccurate treatments. Because the photothermal properties of AuNPs vary with laser power, particle optical density, and tissue depth, the accurate prediction of heat generation is indispensable for clinical treatment. In this report, bioprinted 3D complex tissue constructs comprising processed gel obtained from porcine skin and human decellularized adipose tissue are presented for characterization of the photothermal properties of gold nanorods (AuNRs) having an aspect ratio of 3.7 irradiated by a near‐infrared laser. Moreover, an analytical function is suggested for achieving PPTT that can cause thermal damage selectively on early‐stage human breast cancer by regulating the heat generation of the AuNRs in the tissue.
The accurate prediction of heat generation on tumor tissue is indispensable for clinical plasmonic photothermal therapy (PPTT). An analytical function to predict the temperature variation is suggested by analyzing heat generation using various 3D tissue construct and computational biophysics analysis. Also, selective thermal damage on early‐stage human breast cancer is confirmed using bioprinted 3D complex tissue constructs.</description><subject>3D tissue constructs</subject><subject>Adipose tissue</subject><subject>Aspect ratio</subject><subject>Bioengineering</subject><subject>Breast cancer</subject><subject>breast cancer models</subject><subject>Breast Neoplasms - therapy</subject><subject>Cancer therapies</subject><subject>Cell Line, Tumor</subject><subject>computational biophysics analysis</subject><subject>Female</subject><subject>Gold</subject><subject>gold nanorods</subject><subject>Heat generation</subject><subject>Humans</subject><subject>Infrared analysis</subject><subject>Infrared lasers</subject><subject>Irradiation</subject><subject>Measurement techniques</subject><subject>Metal Nanoparticles - therapeutic use</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Nanotubes</subject><subject>Optical density</subject><subject>Optical properties</subject><subject>Phototherapy</subject><subject>plasmonic photothermal therapy</subject><subject>Temperature measurement</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhSMEolXpliWyxIbNDLaTOPYKtWlpK5U_MV1bN7EzcZXYU9tpGVY8AhJvyJPUoynDzwZv7Kv7-dx7dLLsOcFzgjF9Daof5xTTVLCcPcr2KRF0RlkpHu_eBd7LDkO4xumwkjBOnmZ7eUHzkguyn_34NIGNJkI0txp97F10sdd-hAHVPXhoo_bma-o6i-5M7NGxcStvbNQK5SeoduNq0F_QwoQw6VTaEP3UxoA659Ep-GH989v3zxGWGh17DSGiGmyrPVqkKbBao6tg7BKduUGh92Cddyo8y550MAR9-HAfZFdvTxf1-ezyw9lFfXQ5awsq2CznQjAsqlJxwC2UrNNNJQgQTkgDHWk61fCKaSVEqQgrlVZYCOg6zBvKAPKD7M1WdzU1o1atttHDIJO9EfxaOjDy7441vVy6W0lIwTijJCm8elDw7mbSIcrRhFYPA1jtpiBpWQgmcM436Mt_0Gs3eZv8JaoqhKCV4Imab6nWuxC87nbbECw3mctN5nKXefrw4k8PO_xXwgkQW-DODHr9Hzl5dHL-7rf4PfakvO0</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Nam, Ki‐Hwan</creator><creator>Jeong, Chan Bae</creator><creator>Kim, HyeMi</creator><creator>Ahn, Minjun</creator><creator>Ahn, Sung‐Jun</creator><creator>Hur, Hwan</creator><creator>Kim, Dong Uk</creator><creator>Jang, Jinah</creator><creator>Gwon, Hui‐Jeong</creator><creator>Lim, Youn‐Mook</creator><creator>Cho, Dong‐Woo</creator><creator>Lee, Kye‐Sung</creator><creator>Bae, Ji Yong</creator><creator>Chang, Ki Soo</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6067-2066</orcidid><orcidid>https://orcid.org/0000-0001-9943-6792</orcidid><orcidid>https://orcid.org/0000-0003-0337-9223</orcidid><orcidid>https://orcid.org/0000-0002-4897-6040</orcidid></search><sort><creationdate>20210901</creationdate><title>Quantitative Photothermal Characterization with Bioprinted 3D Complex Tissue Constructs for Early‐Stage Breast Cancer Therapy Using Gold Nanorods</title><author>Nam, Ki‐Hwan ; Jeong, Chan Bae ; Kim, HyeMi ; Ahn, Minjun ; Ahn, Sung‐Jun ; Hur, Hwan ; Kim, Dong Uk ; Jang, Jinah ; Gwon, Hui‐Jeong ; Lim, Youn‐Mook ; Cho, Dong‐Woo ; Lee, Kye‐Sung ; Bae, Ji Yong ; Chang, Ki Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4296-389960975d8a0ca56feb791a1811baf1bfdb876ed995d165ded099aff08b26aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D tissue constructs</topic><topic>Adipose tissue</topic><topic>Aspect ratio</topic><topic>Bioengineering</topic><topic>Breast cancer</topic><topic>breast cancer models</topic><topic>Breast Neoplasms - therapy</topic><topic>Cancer therapies</topic><topic>Cell Line, Tumor</topic><topic>computational biophysics analysis</topic><topic>Female</topic><topic>Gold</topic><topic>gold nanorods</topic><topic>Heat generation</topic><topic>Humans</topic><topic>Infrared analysis</topic><topic>Infrared lasers</topic><topic>Irradiation</topic><topic>Measurement techniques</topic><topic>Metal Nanoparticles - therapeutic use</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Nanotubes</topic><topic>Optical density</topic><topic>Optical properties</topic><topic>Phototherapy</topic><topic>plasmonic photothermal therapy</topic><topic>Temperature measurement</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nam, Ki‐Hwan</creatorcontrib><creatorcontrib>Jeong, Chan Bae</creatorcontrib><creatorcontrib>Kim, HyeMi</creatorcontrib><creatorcontrib>Ahn, Minjun</creatorcontrib><creatorcontrib>Ahn, Sung‐Jun</creatorcontrib><creatorcontrib>Hur, Hwan</creatorcontrib><creatorcontrib>Kim, Dong Uk</creatorcontrib><creatorcontrib>Jang, Jinah</creatorcontrib><creatorcontrib>Gwon, Hui‐Jeong</creatorcontrib><creatorcontrib>Lim, Youn‐Mook</creatorcontrib><creatorcontrib>Cho, Dong‐Woo</creatorcontrib><creatorcontrib>Lee, Kye‐Sung</creatorcontrib><creatorcontrib>Bae, Ji Yong</creatorcontrib><creatorcontrib>Chang, Ki Soo</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nam, Ki‐Hwan</au><au>Jeong, Chan Bae</au><au>Kim, HyeMi</au><au>Ahn, Minjun</au><au>Ahn, Sung‐Jun</au><au>Hur, Hwan</au><au>Kim, Dong Uk</au><au>Jang, Jinah</au><au>Gwon, Hui‐Jeong</au><au>Lim, Youn‐Mook</au><au>Cho, Dong‐Woo</au><au>Lee, Kye‐Sung</au><au>Bae, Ji Yong</au><au>Chang, Ki Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Photothermal Characterization with Bioprinted 3D Complex Tissue Constructs for Early‐Stage Breast Cancer Therapy Using Gold Nanorods</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>10</volume><issue>18</issue><spage>e2100636</spage><epage>n/a</epage><pages>e2100636-n/a</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>Plasmonic photothermal therapy (PPTT) using gold nanoparticles (AuNPs) has shown great potential for use in selective tumor treatment, because the AuNPs can generate destructive heat preferentially upon irradiation. However, PPTT using AuNPs has not been added to practice, owing to insufficient heating methods and tissue temperature measurement techniques, leading to unreliable and inaccurate treatments. Because the photothermal properties of AuNPs vary with laser power, particle optical density, and tissue depth, the accurate prediction of heat generation is indispensable for clinical treatment. In this report, bioprinted 3D complex tissue constructs comprising processed gel obtained from porcine skin and human decellularized adipose tissue are presented for characterization of the photothermal properties of gold nanorods (AuNRs) having an aspect ratio of 3.7 irradiated by a near‐infrared laser. Moreover, an analytical function is suggested for achieving PPTT that can cause thermal damage selectively on early‐stage human breast cancer by regulating the heat generation of the AuNRs in the tissue.
The accurate prediction of heat generation on tumor tissue is indispensable for clinical plasmonic photothermal therapy (PPTT). An analytical function to predict the temperature variation is suggested by analyzing heat generation using various 3D tissue construct and computational biophysics analysis. Also, selective thermal damage on early‐stage human breast cancer is confirmed using bioprinted 3D complex tissue constructs.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34235891</pmid><doi>10.1002/adhm.202100636</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6067-2066</orcidid><orcidid>https://orcid.org/0000-0001-9943-6792</orcidid><orcidid>https://orcid.org/0000-0003-0337-9223</orcidid><orcidid>https://orcid.org/0000-0002-4897-6040</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2021-09, Vol.10 (18), p.e2100636-n/a |
issn | 2192-2640 2192-2659 2192-2659 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11468621 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | 3D tissue constructs Adipose tissue Aspect ratio Bioengineering Breast cancer breast cancer models Breast Neoplasms - therapy Cancer therapies Cell Line, Tumor computational biophysics analysis Female Gold gold nanorods Heat generation Humans Infrared analysis Infrared lasers Irradiation Measurement techniques Metal Nanoparticles - therapeutic use Nanoparticles Nanorods Nanotubes Optical density Optical properties Phototherapy plasmonic photothermal therapy Temperature measurement Three dimensional printing Tissue engineering |
title | Quantitative Photothermal Characterization with Bioprinted 3D Complex Tissue Constructs for Early‐Stage Breast Cancer Therapy Using Gold Nanorods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A09%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Photothermal%20Characterization%20with%20Bioprinted%203D%20Complex%20Tissue%20Constructs%20for%20Early%E2%80%90Stage%20Breast%20Cancer%20Therapy%20Using%20Gold%20Nanorods&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Nam,%20Ki%E2%80%90Hwan&rft.date=2021-09-01&rft.volume=10&rft.issue=18&rft.spage=e2100636&rft.epage=n/a&rft.pages=e2100636-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202100636&rft_dat=%3Cproquest_pubme%3E2549690381%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574992798&rft_id=info:pmid/34235891&rfr_iscdi=true |