Quantitative Photothermal Characterization with Bioprinted 3D Complex Tissue Constructs for Early‐Stage Breast Cancer Therapy Using Gold Nanorods

Plasmonic photothermal therapy (PPTT) using gold nanoparticles (AuNPs) has shown great potential for use in selective tumor treatment, because the AuNPs can generate destructive heat preferentially upon irradiation. However, PPTT using AuNPs has not been added to practice, owing to insufficient heat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced healthcare materials 2021-09, Vol.10 (18), p.e2100636-n/a
Hauptverfasser: Nam, Ki‐Hwan, Jeong, Chan Bae, Kim, HyeMi, Ahn, Minjun, Ahn, Sung‐Jun, Hur, Hwan, Kim, Dong Uk, Jang, Jinah, Gwon, Hui‐Jeong, Lim, Youn‐Mook, Cho, Dong‐Woo, Lee, Kye‐Sung, Bae, Ji Yong, Chang, Ki Soo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 18
container_start_page e2100636
container_title Advanced healthcare materials
container_volume 10
creator Nam, Ki‐Hwan
Jeong, Chan Bae
Kim, HyeMi
Ahn, Minjun
Ahn, Sung‐Jun
Hur, Hwan
Kim, Dong Uk
Jang, Jinah
Gwon, Hui‐Jeong
Lim, Youn‐Mook
Cho, Dong‐Woo
Lee, Kye‐Sung
Bae, Ji Yong
Chang, Ki Soo
description Plasmonic photothermal therapy (PPTT) using gold nanoparticles (AuNPs) has shown great potential for use in selective tumor treatment, because the AuNPs can generate destructive heat preferentially upon irradiation. However, PPTT using AuNPs has not been added to practice, owing to insufficient heating methods and tissue temperature measurement techniques, leading to unreliable and inaccurate treatments. Because the photothermal properties of AuNPs vary with laser power, particle optical density, and tissue depth, the accurate prediction of heat generation is indispensable for clinical treatment. In this report, bioprinted 3D complex tissue constructs comprising processed gel obtained from porcine skin and human decellularized adipose tissue are presented for characterization of the photothermal properties of gold nanorods (AuNRs) having an aspect ratio of 3.7 irradiated by a near‐infrared laser. Moreover, an analytical function is suggested for achieving PPTT that can cause thermal damage selectively on early‐stage human breast cancer by regulating the heat generation of the AuNRs in the tissue. The accurate prediction of heat generation on tumor tissue is indispensable for clinical plasmonic photothermal therapy (PPTT). An analytical function to predict the temperature variation is suggested by analyzing heat generation using various 3D tissue construct and computational biophysics analysis. Also, selective thermal damage on early‐stage human breast cancer is confirmed using bioprinted 3D complex tissue constructs.
doi_str_mv 10.1002/adhm.202100636
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11468621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2549690381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4296-389960975d8a0ca56feb791a1811baf1bfdb876ed995d165ded099aff08b26aa3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhSMEolXpliWyxIbNDLaTOPYKtWlpK5U_MV1bN7EzcZXYU9tpGVY8AhJvyJPUoynDzwZv7Kv7-dx7dLLsOcFzgjF9Daof5xTTVLCcPcr2KRF0RlkpHu_eBd7LDkO4xumwkjBOnmZ7eUHzkguyn_34NIGNJkI0txp97F10sdd-hAHVPXhoo_bma-o6i-5M7NGxcStvbNQK5SeoduNq0F_QwoQw6VTaEP3UxoA659Ep-GH989v3zxGWGh17DSGiGmyrPVqkKbBao6tg7BKduUGh92Cddyo8y550MAR9-HAfZFdvTxf1-ezyw9lFfXQ5awsq2CznQjAsqlJxwC2UrNNNJQgQTkgDHWk61fCKaSVEqQgrlVZYCOg6zBvKAPKD7M1WdzU1o1atttHDIJO9EfxaOjDy7441vVy6W0lIwTijJCm8elDw7mbSIcrRhFYPA1jtpiBpWQgmcM436Mt_0Gs3eZv8JaoqhKCV4Imab6nWuxC87nbbECw3mctN5nKXefrw4k8PO_xXwgkQW-DODHr9Hzl5dHL-7rf4PfakvO0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574992798</pqid></control><display><type>article</type><title>Quantitative Photothermal Characterization with Bioprinted 3D Complex Tissue Constructs for Early‐Stage Breast Cancer Therapy Using Gold Nanorods</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nam, Ki‐Hwan ; Jeong, Chan Bae ; Kim, HyeMi ; Ahn, Minjun ; Ahn, Sung‐Jun ; Hur, Hwan ; Kim, Dong Uk ; Jang, Jinah ; Gwon, Hui‐Jeong ; Lim, Youn‐Mook ; Cho, Dong‐Woo ; Lee, Kye‐Sung ; Bae, Ji Yong ; Chang, Ki Soo</creator><creatorcontrib>Nam, Ki‐Hwan ; Jeong, Chan Bae ; Kim, HyeMi ; Ahn, Minjun ; Ahn, Sung‐Jun ; Hur, Hwan ; Kim, Dong Uk ; Jang, Jinah ; Gwon, Hui‐Jeong ; Lim, Youn‐Mook ; Cho, Dong‐Woo ; Lee, Kye‐Sung ; Bae, Ji Yong ; Chang, Ki Soo</creatorcontrib><description>Plasmonic photothermal therapy (PPTT) using gold nanoparticles (AuNPs) has shown great potential for use in selective tumor treatment, because the AuNPs can generate destructive heat preferentially upon irradiation. However, PPTT using AuNPs has not been added to practice, owing to insufficient heating methods and tissue temperature measurement techniques, leading to unreliable and inaccurate treatments. Because the photothermal properties of AuNPs vary with laser power, particle optical density, and tissue depth, the accurate prediction of heat generation is indispensable for clinical treatment. In this report, bioprinted 3D complex tissue constructs comprising processed gel obtained from porcine skin and human decellularized adipose tissue are presented for characterization of the photothermal properties of gold nanorods (AuNRs) having an aspect ratio of 3.7 irradiated by a near‐infrared laser. Moreover, an analytical function is suggested for achieving PPTT that can cause thermal damage selectively on early‐stage human breast cancer by regulating the heat generation of the AuNRs in the tissue. The accurate prediction of heat generation on tumor tissue is indispensable for clinical plasmonic photothermal therapy (PPTT). An analytical function to predict the temperature variation is suggested by analyzing heat generation using various 3D tissue construct and computational biophysics analysis. Also, selective thermal damage on early‐stage human breast cancer is confirmed using bioprinted 3D complex tissue constructs.</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202100636</identifier><identifier>PMID: 34235891</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>3D tissue constructs ; Adipose tissue ; Aspect ratio ; Bioengineering ; Breast cancer ; breast cancer models ; Breast Neoplasms - therapy ; Cancer therapies ; Cell Line, Tumor ; computational biophysics analysis ; Female ; Gold ; gold nanorods ; Heat generation ; Humans ; Infrared analysis ; Infrared lasers ; Irradiation ; Measurement techniques ; Metal Nanoparticles - therapeutic use ; Nanoparticles ; Nanorods ; Nanotubes ; Optical density ; Optical properties ; Phototherapy ; plasmonic photothermal therapy ; Temperature measurement ; Three dimensional printing ; Tissue engineering</subject><ispartof>Advanced healthcare materials, 2021-09, Vol.10 (18), p.e2100636-n/a</ispartof><rights>2021 The Authors. Advanced Healthcare Materials published by Wiley‐VCH GmbH</rights><rights>2021 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4296-389960975d8a0ca56feb791a1811baf1bfdb876ed995d165ded099aff08b26aa3</citedby><cites>FETCH-LOGICAL-c4296-389960975d8a0ca56feb791a1811baf1bfdb876ed995d165ded099aff08b26aa3</cites><orcidid>0000-0002-6067-2066 ; 0000-0001-9943-6792 ; 0000-0003-0337-9223 ; 0000-0002-4897-6040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.202100636$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.202100636$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34235891$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nam, Ki‐Hwan</creatorcontrib><creatorcontrib>Jeong, Chan Bae</creatorcontrib><creatorcontrib>Kim, HyeMi</creatorcontrib><creatorcontrib>Ahn, Minjun</creatorcontrib><creatorcontrib>Ahn, Sung‐Jun</creatorcontrib><creatorcontrib>Hur, Hwan</creatorcontrib><creatorcontrib>Kim, Dong Uk</creatorcontrib><creatorcontrib>Jang, Jinah</creatorcontrib><creatorcontrib>Gwon, Hui‐Jeong</creatorcontrib><creatorcontrib>Lim, Youn‐Mook</creatorcontrib><creatorcontrib>Cho, Dong‐Woo</creatorcontrib><creatorcontrib>Lee, Kye‐Sung</creatorcontrib><creatorcontrib>Bae, Ji Yong</creatorcontrib><creatorcontrib>Chang, Ki Soo</creatorcontrib><title>Quantitative Photothermal Characterization with Bioprinted 3D Complex Tissue Constructs for Early‐Stage Breast Cancer Therapy Using Gold Nanorods</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Plasmonic photothermal therapy (PPTT) using gold nanoparticles (AuNPs) has shown great potential for use in selective tumor treatment, because the AuNPs can generate destructive heat preferentially upon irradiation. However, PPTT using AuNPs has not been added to practice, owing to insufficient heating methods and tissue temperature measurement techniques, leading to unreliable and inaccurate treatments. Because the photothermal properties of AuNPs vary with laser power, particle optical density, and tissue depth, the accurate prediction of heat generation is indispensable for clinical treatment. In this report, bioprinted 3D complex tissue constructs comprising processed gel obtained from porcine skin and human decellularized adipose tissue are presented for characterization of the photothermal properties of gold nanorods (AuNRs) having an aspect ratio of 3.7 irradiated by a near‐infrared laser. Moreover, an analytical function is suggested for achieving PPTT that can cause thermal damage selectively on early‐stage human breast cancer by regulating the heat generation of the AuNRs in the tissue. The accurate prediction of heat generation on tumor tissue is indispensable for clinical plasmonic photothermal therapy (PPTT). An analytical function to predict the temperature variation is suggested by analyzing heat generation using various 3D tissue construct and computational biophysics analysis. Also, selective thermal damage on early‐stage human breast cancer is confirmed using bioprinted 3D complex tissue constructs.</description><subject>3D tissue constructs</subject><subject>Adipose tissue</subject><subject>Aspect ratio</subject><subject>Bioengineering</subject><subject>Breast cancer</subject><subject>breast cancer models</subject><subject>Breast Neoplasms - therapy</subject><subject>Cancer therapies</subject><subject>Cell Line, Tumor</subject><subject>computational biophysics analysis</subject><subject>Female</subject><subject>Gold</subject><subject>gold nanorods</subject><subject>Heat generation</subject><subject>Humans</subject><subject>Infrared analysis</subject><subject>Infrared lasers</subject><subject>Irradiation</subject><subject>Measurement techniques</subject><subject>Metal Nanoparticles - therapeutic use</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Nanotubes</subject><subject>Optical density</subject><subject>Optical properties</subject><subject>Phototherapy</subject><subject>plasmonic photothermal therapy</subject><subject>Temperature measurement</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhSMEolXpliWyxIbNDLaTOPYKtWlpK5U_MV1bN7EzcZXYU9tpGVY8AhJvyJPUoynDzwZv7Kv7-dx7dLLsOcFzgjF9Daof5xTTVLCcPcr2KRF0RlkpHu_eBd7LDkO4xumwkjBOnmZ7eUHzkguyn_34NIGNJkI0txp97F10sdd-hAHVPXhoo_bma-o6i-5M7NGxcStvbNQK5SeoduNq0F_QwoQw6VTaEP3UxoA659Ep-GH989v3zxGWGh17DSGiGmyrPVqkKbBao6tg7BKduUGh92Cddyo8y550MAR9-HAfZFdvTxf1-ezyw9lFfXQ5awsq2CznQjAsqlJxwC2UrNNNJQgQTkgDHWk61fCKaSVEqQgrlVZYCOg6zBvKAPKD7M1WdzU1o1atttHDIJO9EfxaOjDy7441vVy6W0lIwTijJCm8elDw7mbSIcrRhFYPA1jtpiBpWQgmcM436Mt_0Gs3eZv8JaoqhKCV4Imab6nWuxC87nbbECw3mctN5nKXefrw4k8PO_xXwgkQW-DODHr9Hzl5dHL-7rf4PfakvO0</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Nam, Ki‐Hwan</creator><creator>Jeong, Chan Bae</creator><creator>Kim, HyeMi</creator><creator>Ahn, Minjun</creator><creator>Ahn, Sung‐Jun</creator><creator>Hur, Hwan</creator><creator>Kim, Dong Uk</creator><creator>Jang, Jinah</creator><creator>Gwon, Hui‐Jeong</creator><creator>Lim, Youn‐Mook</creator><creator>Cho, Dong‐Woo</creator><creator>Lee, Kye‐Sung</creator><creator>Bae, Ji Yong</creator><creator>Chang, Ki Soo</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6067-2066</orcidid><orcidid>https://orcid.org/0000-0001-9943-6792</orcidid><orcidid>https://orcid.org/0000-0003-0337-9223</orcidid><orcidid>https://orcid.org/0000-0002-4897-6040</orcidid></search><sort><creationdate>20210901</creationdate><title>Quantitative Photothermal Characterization with Bioprinted 3D Complex Tissue Constructs for Early‐Stage Breast Cancer Therapy Using Gold Nanorods</title><author>Nam, Ki‐Hwan ; Jeong, Chan Bae ; Kim, HyeMi ; Ahn, Minjun ; Ahn, Sung‐Jun ; Hur, Hwan ; Kim, Dong Uk ; Jang, Jinah ; Gwon, Hui‐Jeong ; Lim, Youn‐Mook ; Cho, Dong‐Woo ; Lee, Kye‐Sung ; Bae, Ji Yong ; Chang, Ki Soo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4296-389960975d8a0ca56feb791a1811baf1bfdb876ed995d165ded099aff08b26aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D tissue constructs</topic><topic>Adipose tissue</topic><topic>Aspect ratio</topic><topic>Bioengineering</topic><topic>Breast cancer</topic><topic>breast cancer models</topic><topic>Breast Neoplasms - therapy</topic><topic>Cancer therapies</topic><topic>Cell Line, Tumor</topic><topic>computational biophysics analysis</topic><topic>Female</topic><topic>Gold</topic><topic>gold nanorods</topic><topic>Heat generation</topic><topic>Humans</topic><topic>Infrared analysis</topic><topic>Infrared lasers</topic><topic>Irradiation</topic><topic>Measurement techniques</topic><topic>Metal Nanoparticles - therapeutic use</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Nanotubes</topic><topic>Optical density</topic><topic>Optical properties</topic><topic>Phototherapy</topic><topic>plasmonic photothermal therapy</topic><topic>Temperature measurement</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nam, Ki‐Hwan</creatorcontrib><creatorcontrib>Jeong, Chan Bae</creatorcontrib><creatorcontrib>Kim, HyeMi</creatorcontrib><creatorcontrib>Ahn, Minjun</creatorcontrib><creatorcontrib>Ahn, Sung‐Jun</creatorcontrib><creatorcontrib>Hur, Hwan</creatorcontrib><creatorcontrib>Kim, Dong Uk</creatorcontrib><creatorcontrib>Jang, Jinah</creatorcontrib><creatorcontrib>Gwon, Hui‐Jeong</creatorcontrib><creatorcontrib>Lim, Youn‐Mook</creatorcontrib><creatorcontrib>Cho, Dong‐Woo</creatorcontrib><creatorcontrib>Lee, Kye‐Sung</creatorcontrib><creatorcontrib>Bae, Ji Yong</creatorcontrib><creatorcontrib>Chang, Ki Soo</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nam, Ki‐Hwan</au><au>Jeong, Chan Bae</au><au>Kim, HyeMi</au><au>Ahn, Minjun</au><au>Ahn, Sung‐Jun</au><au>Hur, Hwan</au><au>Kim, Dong Uk</au><au>Jang, Jinah</au><au>Gwon, Hui‐Jeong</au><au>Lim, Youn‐Mook</au><au>Cho, Dong‐Woo</au><au>Lee, Kye‐Sung</au><au>Bae, Ji Yong</au><au>Chang, Ki Soo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Photothermal Characterization with Bioprinted 3D Complex Tissue Constructs for Early‐Stage Breast Cancer Therapy Using Gold Nanorods</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>10</volume><issue>18</issue><spage>e2100636</spage><epage>n/a</epage><pages>e2100636-n/a</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>Plasmonic photothermal therapy (PPTT) using gold nanoparticles (AuNPs) has shown great potential for use in selective tumor treatment, because the AuNPs can generate destructive heat preferentially upon irradiation. However, PPTT using AuNPs has not been added to practice, owing to insufficient heating methods and tissue temperature measurement techniques, leading to unreliable and inaccurate treatments. Because the photothermal properties of AuNPs vary with laser power, particle optical density, and tissue depth, the accurate prediction of heat generation is indispensable for clinical treatment. In this report, bioprinted 3D complex tissue constructs comprising processed gel obtained from porcine skin and human decellularized adipose tissue are presented for characterization of the photothermal properties of gold nanorods (AuNRs) having an aspect ratio of 3.7 irradiated by a near‐infrared laser. Moreover, an analytical function is suggested for achieving PPTT that can cause thermal damage selectively on early‐stage human breast cancer by regulating the heat generation of the AuNRs in the tissue. The accurate prediction of heat generation on tumor tissue is indispensable for clinical plasmonic photothermal therapy (PPTT). An analytical function to predict the temperature variation is suggested by analyzing heat generation using various 3D tissue construct and computational biophysics analysis. Also, selective thermal damage on early‐stage human breast cancer is confirmed using bioprinted 3D complex tissue constructs.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34235891</pmid><doi>10.1002/adhm.202100636</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6067-2066</orcidid><orcidid>https://orcid.org/0000-0001-9943-6792</orcidid><orcidid>https://orcid.org/0000-0003-0337-9223</orcidid><orcidid>https://orcid.org/0000-0002-4897-6040</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2021-09, Vol.10 (18), p.e2100636-n/a
issn 2192-2640
2192-2659
2192-2659
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11468621
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects 3D tissue constructs
Adipose tissue
Aspect ratio
Bioengineering
Breast cancer
breast cancer models
Breast Neoplasms - therapy
Cancer therapies
Cell Line, Tumor
computational biophysics analysis
Female
Gold
gold nanorods
Heat generation
Humans
Infrared analysis
Infrared lasers
Irradiation
Measurement techniques
Metal Nanoparticles - therapeutic use
Nanoparticles
Nanorods
Nanotubes
Optical density
Optical properties
Phototherapy
plasmonic photothermal therapy
Temperature measurement
Three dimensional printing
Tissue engineering
title Quantitative Photothermal Characterization with Bioprinted 3D Complex Tissue Constructs for Early‐Stage Breast Cancer Therapy Using Gold Nanorods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A09%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Photothermal%20Characterization%20with%20Bioprinted%203D%20Complex%20Tissue%20Constructs%20for%20Early%E2%80%90Stage%20Breast%20Cancer%20Therapy%20Using%20Gold%20Nanorods&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Nam,%20Ki%E2%80%90Hwan&rft.date=2021-09-01&rft.volume=10&rft.issue=18&rft.spage=e2100636&rft.epage=n/a&rft.pages=e2100636-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202100636&rft_dat=%3Cproquest_pubme%3E2549690381%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574992798&rft_id=info:pmid/34235891&rfr_iscdi=true