Controlled Quenching of Agarose Defines Hydrogels with Tunable Structural, Bulk Mechanical, Surface Nanomechanical, and Cell Response in 2D Cultures

The scaffolding of agarose hydrogel networks depends critically on the rate of cooling (quenching) after heating. Efforts are made to understand the kinetics and evolution of biopolymer self-assembly upon cooling, but information is lacking on whether quenching might affect the final hydrogel struct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced healthcare materials 2023-10, Vol.12 (26), p.e2300973
Hauptverfasser: Piazza, Francesco, Parisse, Pietro, Passerino, Julia, Marsich, Eleonora, Bersanini, Luca, Porrelli, Davide, Baj, Gabriele, Donati, Ivan, Sacco, Pasquale
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 26
container_start_page e2300973
container_title Advanced healthcare materials
container_volume 12
creator Piazza, Francesco
Parisse, Pietro
Passerino, Julia
Marsich, Eleonora
Bersanini, Luca
Porrelli, Davide
Baj, Gabriele
Donati, Ivan
Sacco, Pasquale
description The scaffolding of agarose hydrogel networks depends critically on the rate of cooling (quenching) after heating. Efforts are made to understand the kinetics and evolution of biopolymer self-assembly upon cooling, but information is lacking on whether quenching might affect the final hydrogel structure and performance. Here, a material strategy for the fine modulation of quenching that involves temperature-curing steps of agarose is reported. Combining microscopy techniques, standard and advanced macro/nanomechanical tools, it is revealed that agarose accumulates on the surface when the curing temperature is set at 121 °C. The inhomogeneity can be mostly recovered when it is reduced to 42 °C. This has a drastic effect on the stiffness of the surface, but not on the viscoelasticity, roughness, and wettability. When hydrogels are strained at small/large deformations, the curing temperature has no effect on the viscoelastic response of the hydrogel bulk but does play a role in the onset of the non-linear region. Cells cultured on these hydrogels exhibit surface stiffness-sensing that affects cell adhesion, spreading, F-actin fiber tension, and assembly of vinculin-rich focal adhesions. Collectively, the results indicate that the temperature curing of agarose is an efficient strategy to produce networks with tunable mechanics and is suitable for mechanobiology studies.
doi_str_mv 10.1002/adhm.202300973
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11468619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2830672632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-47d02822ed1c2415d2d85e834fe49888482e2dbd86fd6b1e08f91a89752dc3793</originalsourceid><addsrcrecordid>eNpdkUFv1DAQhSMEolXplSOyxIUDu9jjxHFOqKSUIhUQtJwjrz3ZpDj2Yseg_o_-YBy1rAq-2Bp_fuM3ryieM7pmlMIbZYZpDRQ4pU3NHxWHwBpYgaiax_tzSQ-K4xivaV6iYkKyp8UBr7loGKeHxW3r3Ry8tWjI14ROD6PbEt-Tk60KPiI5xX50GMn5jQl-izaS3-M8kKvk1MYiuZxD0nMKyr4m75L9QT6hHpQb9VK4TKFXGsln5fz0oK6cIS1aS75h3HmXu4yOwClpk81SGJ8VT3plIx7f70fF97P3V-356uLLh4_tycVKl6yZV2VtKEgANExDySoDRlYoedlj2UgpSwkIZmOk6I3YMKSyb5iSTV2B0bxu-FHx9k53lzYTGo15FMp2uzBOKtx0Xo3dvzduHLqt_9UxVgop2KLw6l4h-J8J49xNY9TZmnLoU-xAcipqEBwy-vI_9Nqn4LK_TNUSKAOxUOs7Sufpx4D9_jeMdkvo3RJ6tw89P3jx0MMe_xsx_wOMpqkP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878201262</pqid></control><display><type>article</type><title>Controlled Quenching of Agarose Defines Hydrogels with Tunable Structural, Bulk Mechanical, Surface Nanomechanical, and Cell Response in 2D Cultures</title><source>Wiley</source><source>MEDLINE</source><creator>Piazza, Francesco ; Parisse, Pietro ; Passerino, Julia ; Marsich, Eleonora ; Bersanini, Luca ; Porrelli, Davide ; Baj, Gabriele ; Donati, Ivan ; Sacco, Pasquale</creator><creatorcontrib>Piazza, Francesco ; Parisse, Pietro ; Passerino, Julia ; Marsich, Eleonora ; Bersanini, Luca ; Porrelli, Davide ; Baj, Gabriele ; Donati, Ivan ; Sacco, Pasquale</creatorcontrib><description>The scaffolding of agarose hydrogel networks depends critically on the rate of cooling (quenching) after heating. Efforts are made to understand the kinetics and evolution of biopolymer self-assembly upon cooling, but information is lacking on whether quenching might affect the final hydrogel structure and performance. Here, a material strategy for the fine modulation of quenching that involves temperature-curing steps of agarose is reported. Combining microscopy techniques, standard and advanced macro/nanomechanical tools, it is revealed that agarose accumulates on the surface when the curing temperature is set at 121 °C. The inhomogeneity can be mostly recovered when it is reduced to 42 °C. This has a drastic effect on the stiffness of the surface, but not on the viscoelasticity, roughness, and wettability. When hydrogels are strained at small/large deformations, the curing temperature has no effect on the viscoelastic response of the hydrogel bulk but does play a role in the onset of the non-linear region. Cells cultured on these hydrogels exhibit surface stiffness-sensing that affects cell adhesion, spreading, F-actin fiber tension, and assembly of vinculin-rich focal adhesions. Collectively, the results indicate that the temperature curing of agarose is an efficient strategy to produce networks with tunable mechanics and is suitable for mechanobiology studies.</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202300973</identifier><identifier>PMID: 37369130</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Actin ; Actins ; Biopolymers ; Cell Adhesion ; Cooling ; Curing ; Deformation effects ; Hydrogels ; Hydrogels - chemistry ; Inhomogeneity ; Kinetics ; Quenching ; Scaffolding ; Self-assembly ; Sepharose - chemistry ; Stiffness ; Vinculin ; Viscoelasticity ; Wettability</subject><ispartof>Advanced healthcare materials, 2023-10, Vol.12 (26), p.e2300973</ispartof><rights>2023 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 The Authors. Advanced Healthcare Materials published by Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-47d02822ed1c2415d2d85e834fe49888482e2dbd86fd6b1e08f91a89752dc3793</citedby><cites>FETCH-LOGICAL-c419t-47d02822ed1c2415d2d85e834fe49888482e2dbd86fd6b1e08f91a89752dc3793</cites><orcidid>0000-0002-4483-5099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37369130$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Piazza, Francesco</creatorcontrib><creatorcontrib>Parisse, Pietro</creatorcontrib><creatorcontrib>Passerino, Julia</creatorcontrib><creatorcontrib>Marsich, Eleonora</creatorcontrib><creatorcontrib>Bersanini, Luca</creatorcontrib><creatorcontrib>Porrelli, Davide</creatorcontrib><creatorcontrib>Baj, Gabriele</creatorcontrib><creatorcontrib>Donati, Ivan</creatorcontrib><creatorcontrib>Sacco, Pasquale</creatorcontrib><title>Controlled Quenching of Agarose Defines Hydrogels with Tunable Structural, Bulk Mechanical, Surface Nanomechanical, and Cell Response in 2D Cultures</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>The scaffolding of agarose hydrogel networks depends critically on the rate of cooling (quenching) after heating. Efforts are made to understand the kinetics and evolution of biopolymer self-assembly upon cooling, but information is lacking on whether quenching might affect the final hydrogel structure and performance. Here, a material strategy for the fine modulation of quenching that involves temperature-curing steps of agarose is reported. Combining microscopy techniques, standard and advanced macro/nanomechanical tools, it is revealed that agarose accumulates on the surface when the curing temperature is set at 121 °C. The inhomogeneity can be mostly recovered when it is reduced to 42 °C. This has a drastic effect on the stiffness of the surface, but not on the viscoelasticity, roughness, and wettability. When hydrogels are strained at small/large deformations, the curing temperature has no effect on the viscoelastic response of the hydrogel bulk but does play a role in the onset of the non-linear region. Cells cultured on these hydrogels exhibit surface stiffness-sensing that affects cell adhesion, spreading, F-actin fiber tension, and assembly of vinculin-rich focal adhesions. Collectively, the results indicate that the temperature curing of agarose is an efficient strategy to produce networks with tunable mechanics and is suitable for mechanobiology studies.</description><subject>Actin</subject><subject>Actins</subject><subject>Biopolymers</subject><subject>Cell Adhesion</subject><subject>Cooling</subject><subject>Curing</subject><subject>Deformation effects</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Inhomogeneity</subject><subject>Kinetics</subject><subject>Quenching</subject><subject>Scaffolding</subject><subject>Self-assembly</subject><subject>Sepharose - chemistry</subject><subject>Stiffness</subject><subject>Vinculin</subject><subject>Viscoelasticity</subject><subject>Wettability</subject><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUFv1DAQhSMEolXplSOyxIUDu9jjxHFOqKSUIhUQtJwjrz3ZpDj2Yseg_o_-YBy1rAq-2Bp_fuM3ryieM7pmlMIbZYZpDRQ4pU3NHxWHwBpYgaiax_tzSQ-K4xivaV6iYkKyp8UBr7loGKeHxW3r3Ry8tWjI14ROD6PbEt-Tk60KPiI5xX50GMn5jQl-izaS3-M8kKvk1MYiuZxD0nMKyr4m75L9QT6hHpQb9VK4TKFXGsln5fz0oK6cIS1aS75h3HmXu4yOwClpk81SGJ8VT3plIx7f70fF97P3V-356uLLh4_tycVKl6yZV2VtKEgANExDySoDRlYoedlj2UgpSwkIZmOk6I3YMKSyb5iSTV2B0bxu-FHx9k53lzYTGo15FMp2uzBOKtx0Xo3dvzduHLqt_9UxVgop2KLw6l4h-J8J49xNY9TZmnLoU-xAcipqEBwy-vI_9Nqn4LK_TNUSKAOxUOs7Sufpx4D9_jeMdkvo3RJ6tw89P3jx0MMe_xsx_wOMpqkP</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Piazza, Francesco</creator><creator>Parisse, Pietro</creator><creator>Passerino, Julia</creator><creator>Marsich, Eleonora</creator><creator>Bersanini, Luca</creator><creator>Porrelli, Davide</creator><creator>Baj, Gabriele</creator><creator>Donati, Ivan</creator><creator>Sacco, Pasquale</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4483-5099</orcidid></search><sort><creationdate>20231001</creationdate><title>Controlled Quenching of Agarose Defines Hydrogels with Tunable Structural, Bulk Mechanical, Surface Nanomechanical, and Cell Response in 2D Cultures</title><author>Piazza, Francesco ; Parisse, Pietro ; Passerino, Julia ; Marsich, Eleonora ; Bersanini, Luca ; Porrelli, Davide ; Baj, Gabriele ; Donati, Ivan ; Sacco, Pasquale</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-47d02822ed1c2415d2d85e834fe49888482e2dbd86fd6b1e08f91a89752dc3793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actin</topic><topic>Actins</topic><topic>Biopolymers</topic><topic>Cell Adhesion</topic><topic>Cooling</topic><topic>Curing</topic><topic>Deformation effects</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Inhomogeneity</topic><topic>Kinetics</topic><topic>Quenching</topic><topic>Scaffolding</topic><topic>Self-assembly</topic><topic>Sepharose - chemistry</topic><topic>Stiffness</topic><topic>Vinculin</topic><topic>Viscoelasticity</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piazza, Francesco</creatorcontrib><creatorcontrib>Parisse, Pietro</creatorcontrib><creatorcontrib>Passerino, Julia</creatorcontrib><creatorcontrib>Marsich, Eleonora</creatorcontrib><creatorcontrib>Bersanini, Luca</creatorcontrib><creatorcontrib>Porrelli, Davide</creatorcontrib><creatorcontrib>Baj, Gabriele</creatorcontrib><creatorcontrib>Donati, Ivan</creatorcontrib><creatorcontrib>Sacco, Pasquale</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piazza, Francesco</au><au>Parisse, Pietro</au><au>Passerino, Julia</au><au>Marsich, Eleonora</au><au>Bersanini, Luca</au><au>Porrelli, Davide</au><au>Baj, Gabriele</au><au>Donati, Ivan</au><au>Sacco, Pasquale</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled Quenching of Agarose Defines Hydrogels with Tunable Structural, Bulk Mechanical, Surface Nanomechanical, and Cell Response in 2D Cultures</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>12</volume><issue>26</issue><spage>e2300973</spage><pages>e2300973-</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>The scaffolding of agarose hydrogel networks depends critically on the rate of cooling (quenching) after heating. Efforts are made to understand the kinetics and evolution of biopolymer self-assembly upon cooling, but information is lacking on whether quenching might affect the final hydrogel structure and performance. Here, a material strategy for the fine modulation of quenching that involves temperature-curing steps of agarose is reported. Combining microscopy techniques, standard and advanced macro/nanomechanical tools, it is revealed that agarose accumulates on the surface when the curing temperature is set at 121 °C. The inhomogeneity can be mostly recovered when it is reduced to 42 °C. This has a drastic effect on the stiffness of the surface, but not on the viscoelasticity, roughness, and wettability. When hydrogels are strained at small/large deformations, the curing temperature has no effect on the viscoelastic response of the hydrogel bulk but does play a role in the onset of the non-linear region. Cells cultured on these hydrogels exhibit surface stiffness-sensing that affects cell adhesion, spreading, F-actin fiber tension, and assembly of vinculin-rich focal adhesions. Collectively, the results indicate that the temperature curing of agarose is an efficient strategy to produce networks with tunable mechanics and is suitable for mechanobiology studies.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37369130</pmid><doi>10.1002/adhm.202300973</doi><orcidid>https://orcid.org/0000-0002-4483-5099</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2023-10, Vol.12 (26), p.e2300973
issn 2192-2640
2192-2659
2192-2659
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11468619
source Wiley; MEDLINE
subjects Actin
Actins
Biopolymers
Cell Adhesion
Cooling
Curing
Deformation effects
Hydrogels
Hydrogels - chemistry
Inhomogeneity
Kinetics
Quenching
Scaffolding
Self-assembly
Sepharose - chemistry
Stiffness
Vinculin
Viscoelasticity
Wettability
title Controlled Quenching of Agarose Defines Hydrogels with Tunable Structural, Bulk Mechanical, Surface Nanomechanical, and Cell Response in 2D Cultures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A15%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20Quenching%20of%20Agarose%20Defines%20Hydrogels%20with%20Tunable%20Structural,%20Bulk%20Mechanical,%20Surface%20Nanomechanical,%20and%20Cell%20Response%20in%202D%20Cultures&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Piazza,%20Francesco&rft.date=2023-10-01&rft.volume=12&rft.issue=26&rft.spage=e2300973&rft.pages=e2300973-&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202300973&rft_dat=%3Cproquest_pubme%3E2830672632%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878201262&rft_id=info:pmid/37369130&rfr_iscdi=true