Controlled Quenching of Agarose Defines Hydrogels with Tunable Structural, Bulk Mechanical, Surface Nanomechanical, and Cell Response in 2D Cultures
The scaffolding of agarose hydrogel networks depends critically on the rate of cooling (quenching) after heating. Efforts are made to understand the kinetics and evolution of biopolymer self-assembly upon cooling, but information is lacking on whether quenching might affect the final hydrogel struct...
Gespeichert in:
Veröffentlicht in: | Advanced healthcare materials 2023-10, Vol.12 (26), p.e2300973 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 26 |
container_start_page | e2300973 |
container_title | Advanced healthcare materials |
container_volume | 12 |
creator | Piazza, Francesco Parisse, Pietro Passerino, Julia Marsich, Eleonora Bersanini, Luca Porrelli, Davide Baj, Gabriele Donati, Ivan Sacco, Pasquale |
description | The scaffolding of agarose hydrogel networks depends critically on the rate of cooling (quenching) after heating. Efforts are made to understand the kinetics and evolution of biopolymer self-assembly upon cooling, but information is lacking on whether quenching might affect the final hydrogel structure and performance. Here, a material strategy for the fine modulation of quenching that involves temperature-curing steps of agarose is reported. Combining microscopy techniques, standard and advanced macro/nanomechanical tools, it is revealed that agarose accumulates on the surface when the curing temperature is set at 121 °C. The inhomogeneity can be mostly recovered when it is reduced to 42 °C. This has a drastic effect on the stiffness of the surface, but not on the viscoelasticity, roughness, and wettability. When hydrogels are strained at small/large deformations, the curing temperature has no effect on the viscoelastic response of the hydrogel bulk but does play a role in the onset of the non-linear region. Cells cultured on these hydrogels exhibit surface stiffness-sensing that affects cell adhesion, spreading, F-actin fiber tension, and assembly of vinculin-rich focal adhesions. Collectively, the results indicate that the temperature curing of agarose is an efficient strategy to produce networks with tunable mechanics and is suitable for mechanobiology studies. |
doi_str_mv | 10.1002/adhm.202300973 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11468619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2830672632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-47d02822ed1c2415d2d85e834fe49888482e2dbd86fd6b1e08f91a89752dc3793</originalsourceid><addsrcrecordid>eNpdkUFv1DAQhSMEolXplSOyxIUDu9jjxHFOqKSUIhUQtJwjrz3ZpDj2Yseg_o_-YBy1rAq-2Bp_fuM3ryieM7pmlMIbZYZpDRQ4pU3NHxWHwBpYgaiax_tzSQ-K4xivaV6iYkKyp8UBr7loGKeHxW3r3Ry8tWjI14ROD6PbEt-Tk60KPiI5xX50GMn5jQl-izaS3-M8kKvk1MYiuZxD0nMKyr4m75L9QT6hHpQb9VK4TKFXGsln5fz0oK6cIS1aS75h3HmXu4yOwClpk81SGJ8VT3plIx7f70fF97P3V-356uLLh4_tycVKl6yZV2VtKEgANExDySoDRlYoedlj2UgpSwkIZmOk6I3YMKSyb5iSTV2B0bxu-FHx9k53lzYTGo15FMp2uzBOKtx0Xo3dvzduHLqt_9UxVgop2KLw6l4h-J8J49xNY9TZmnLoU-xAcipqEBwy-vI_9Nqn4LK_TNUSKAOxUOs7Sufpx4D9_jeMdkvo3RJ6tw89P3jx0MMe_xsx_wOMpqkP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878201262</pqid></control><display><type>article</type><title>Controlled Quenching of Agarose Defines Hydrogels with Tunable Structural, Bulk Mechanical, Surface Nanomechanical, and Cell Response in 2D Cultures</title><source>Wiley</source><source>MEDLINE</source><creator>Piazza, Francesco ; Parisse, Pietro ; Passerino, Julia ; Marsich, Eleonora ; Bersanini, Luca ; Porrelli, Davide ; Baj, Gabriele ; Donati, Ivan ; Sacco, Pasquale</creator><creatorcontrib>Piazza, Francesco ; Parisse, Pietro ; Passerino, Julia ; Marsich, Eleonora ; Bersanini, Luca ; Porrelli, Davide ; Baj, Gabriele ; Donati, Ivan ; Sacco, Pasquale</creatorcontrib><description>The scaffolding of agarose hydrogel networks depends critically on the rate of cooling (quenching) after heating. Efforts are made to understand the kinetics and evolution of biopolymer self-assembly upon cooling, but information is lacking on whether quenching might affect the final hydrogel structure and performance. Here, a material strategy for the fine modulation of quenching that involves temperature-curing steps of agarose is reported. Combining microscopy techniques, standard and advanced macro/nanomechanical tools, it is revealed that agarose accumulates on the surface when the curing temperature is set at 121 °C. The inhomogeneity can be mostly recovered when it is reduced to 42 °C. This has a drastic effect on the stiffness of the surface, but not on the viscoelasticity, roughness, and wettability. When hydrogels are strained at small/large deformations, the curing temperature has no effect on the viscoelastic response of the hydrogel bulk but does play a role in the onset of the non-linear region. Cells cultured on these hydrogels exhibit surface stiffness-sensing that affects cell adhesion, spreading, F-actin fiber tension, and assembly of vinculin-rich focal adhesions. Collectively, the results indicate that the temperature curing of agarose is an efficient strategy to produce networks with tunable mechanics and is suitable for mechanobiology studies.</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202300973</identifier><identifier>PMID: 37369130</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Actin ; Actins ; Biopolymers ; Cell Adhesion ; Cooling ; Curing ; Deformation effects ; Hydrogels ; Hydrogels - chemistry ; Inhomogeneity ; Kinetics ; Quenching ; Scaffolding ; Self-assembly ; Sepharose - chemistry ; Stiffness ; Vinculin ; Viscoelasticity ; Wettability</subject><ispartof>Advanced healthcare materials, 2023-10, Vol.12 (26), p.e2300973</ispartof><rights>2023 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 The Authors. Advanced Healthcare Materials published by Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-47d02822ed1c2415d2d85e834fe49888482e2dbd86fd6b1e08f91a89752dc3793</citedby><cites>FETCH-LOGICAL-c419t-47d02822ed1c2415d2d85e834fe49888482e2dbd86fd6b1e08f91a89752dc3793</cites><orcidid>0000-0002-4483-5099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37369130$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Piazza, Francesco</creatorcontrib><creatorcontrib>Parisse, Pietro</creatorcontrib><creatorcontrib>Passerino, Julia</creatorcontrib><creatorcontrib>Marsich, Eleonora</creatorcontrib><creatorcontrib>Bersanini, Luca</creatorcontrib><creatorcontrib>Porrelli, Davide</creatorcontrib><creatorcontrib>Baj, Gabriele</creatorcontrib><creatorcontrib>Donati, Ivan</creatorcontrib><creatorcontrib>Sacco, Pasquale</creatorcontrib><title>Controlled Quenching of Agarose Defines Hydrogels with Tunable Structural, Bulk Mechanical, Surface Nanomechanical, and Cell Response in 2D Cultures</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>The scaffolding of agarose hydrogel networks depends critically on the rate of cooling (quenching) after heating. Efforts are made to understand the kinetics and evolution of biopolymer self-assembly upon cooling, but information is lacking on whether quenching might affect the final hydrogel structure and performance. Here, a material strategy for the fine modulation of quenching that involves temperature-curing steps of agarose is reported. Combining microscopy techniques, standard and advanced macro/nanomechanical tools, it is revealed that agarose accumulates on the surface when the curing temperature is set at 121 °C. The inhomogeneity can be mostly recovered when it is reduced to 42 °C. This has a drastic effect on the stiffness of the surface, but not on the viscoelasticity, roughness, and wettability. When hydrogels are strained at small/large deformations, the curing temperature has no effect on the viscoelastic response of the hydrogel bulk but does play a role in the onset of the non-linear region. Cells cultured on these hydrogels exhibit surface stiffness-sensing that affects cell adhesion, spreading, F-actin fiber tension, and assembly of vinculin-rich focal adhesions. Collectively, the results indicate that the temperature curing of agarose is an efficient strategy to produce networks with tunable mechanics and is suitable for mechanobiology studies.</description><subject>Actin</subject><subject>Actins</subject><subject>Biopolymers</subject><subject>Cell Adhesion</subject><subject>Cooling</subject><subject>Curing</subject><subject>Deformation effects</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Inhomogeneity</subject><subject>Kinetics</subject><subject>Quenching</subject><subject>Scaffolding</subject><subject>Self-assembly</subject><subject>Sepharose - chemistry</subject><subject>Stiffness</subject><subject>Vinculin</subject><subject>Viscoelasticity</subject><subject>Wettability</subject><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUFv1DAQhSMEolXplSOyxIUDu9jjxHFOqKSUIhUQtJwjrz3ZpDj2Yseg_o_-YBy1rAq-2Bp_fuM3ryieM7pmlMIbZYZpDRQ4pU3NHxWHwBpYgaiax_tzSQ-K4xivaV6iYkKyp8UBr7loGKeHxW3r3Ry8tWjI14ROD6PbEt-Tk60KPiI5xX50GMn5jQl-izaS3-M8kKvk1MYiuZxD0nMKyr4m75L9QT6hHpQb9VK4TKFXGsln5fz0oK6cIS1aS75h3HmXu4yOwClpk81SGJ8VT3plIx7f70fF97P3V-356uLLh4_tycVKl6yZV2VtKEgANExDySoDRlYoedlj2UgpSwkIZmOk6I3YMKSyb5iSTV2B0bxu-FHx9k53lzYTGo15FMp2uzBOKtx0Xo3dvzduHLqt_9UxVgop2KLw6l4h-J8J49xNY9TZmnLoU-xAcipqEBwy-vI_9Nqn4LK_TNUSKAOxUOs7Sufpx4D9_jeMdkvo3RJ6tw89P3jx0MMe_xsx_wOMpqkP</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Piazza, Francesco</creator><creator>Parisse, Pietro</creator><creator>Passerino, Julia</creator><creator>Marsich, Eleonora</creator><creator>Bersanini, Luca</creator><creator>Porrelli, Davide</creator><creator>Baj, Gabriele</creator><creator>Donati, Ivan</creator><creator>Sacco, Pasquale</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4483-5099</orcidid></search><sort><creationdate>20231001</creationdate><title>Controlled Quenching of Agarose Defines Hydrogels with Tunable Structural, Bulk Mechanical, Surface Nanomechanical, and Cell Response in 2D Cultures</title><author>Piazza, Francesco ; Parisse, Pietro ; Passerino, Julia ; Marsich, Eleonora ; Bersanini, Luca ; Porrelli, Davide ; Baj, Gabriele ; Donati, Ivan ; Sacco, Pasquale</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-47d02822ed1c2415d2d85e834fe49888482e2dbd86fd6b1e08f91a89752dc3793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Actin</topic><topic>Actins</topic><topic>Biopolymers</topic><topic>Cell Adhesion</topic><topic>Cooling</topic><topic>Curing</topic><topic>Deformation effects</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Inhomogeneity</topic><topic>Kinetics</topic><topic>Quenching</topic><topic>Scaffolding</topic><topic>Self-assembly</topic><topic>Sepharose - chemistry</topic><topic>Stiffness</topic><topic>Vinculin</topic><topic>Viscoelasticity</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piazza, Francesco</creatorcontrib><creatorcontrib>Parisse, Pietro</creatorcontrib><creatorcontrib>Passerino, Julia</creatorcontrib><creatorcontrib>Marsich, Eleonora</creatorcontrib><creatorcontrib>Bersanini, Luca</creatorcontrib><creatorcontrib>Porrelli, Davide</creatorcontrib><creatorcontrib>Baj, Gabriele</creatorcontrib><creatorcontrib>Donati, Ivan</creatorcontrib><creatorcontrib>Sacco, Pasquale</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piazza, Francesco</au><au>Parisse, Pietro</au><au>Passerino, Julia</au><au>Marsich, Eleonora</au><au>Bersanini, Luca</au><au>Porrelli, Davide</au><au>Baj, Gabriele</au><au>Donati, Ivan</au><au>Sacco, Pasquale</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlled Quenching of Agarose Defines Hydrogels with Tunable Structural, Bulk Mechanical, Surface Nanomechanical, and Cell Response in 2D Cultures</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>12</volume><issue>26</issue><spage>e2300973</spage><pages>e2300973-</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>The scaffolding of agarose hydrogel networks depends critically on the rate of cooling (quenching) after heating. Efforts are made to understand the kinetics and evolution of biopolymer self-assembly upon cooling, but information is lacking on whether quenching might affect the final hydrogel structure and performance. Here, a material strategy for the fine modulation of quenching that involves temperature-curing steps of agarose is reported. Combining microscopy techniques, standard and advanced macro/nanomechanical tools, it is revealed that agarose accumulates on the surface when the curing temperature is set at 121 °C. The inhomogeneity can be mostly recovered when it is reduced to 42 °C. This has a drastic effect on the stiffness of the surface, but not on the viscoelasticity, roughness, and wettability. When hydrogels are strained at small/large deformations, the curing temperature has no effect on the viscoelastic response of the hydrogel bulk but does play a role in the onset of the non-linear region. Cells cultured on these hydrogels exhibit surface stiffness-sensing that affects cell adhesion, spreading, F-actin fiber tension, and assembly of vinculin-rich focal adhesions. Collectively, the results indicate that the temperature curing of agarose is an efficient strategy to produce networks with tunable mechanics and is suitable for mechanobiology studies.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37369130</pmid><doi>10.1002/adhm.202300973</doi><orcidid>https://orcid.org/0000-0002-4483-5099</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2023-10, Vol.12 (26), p.e2300973 |
issn | 2192-2640 2192-2659 2192-2659 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11468619 |
source | Wiley; MEDLINE |
subjects | Actin Actins Biopolymers Cell Adhesion Cooling Curing Deformation effects Hydrogels Hydrogels - chemistry Inhomogeneity Kinetics Quenching Scaffolding Self-assembly Sepharose - chemistry Stiffness Vinculin Viscoelasticity Wettability |
title | Controlled Quenching of Agarose Defines Hydrogels with Tunable Structural, Bulk Mechanical, Surface Nanomechanical, and Cell Response in 2D Cultures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A15%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlled%20Quenching%20of%20Agarose%20Defines%20Hydrogels%20with%20Tunable%20Structural,%20Bulk%20Mechanical,%20Surface%20Nanomechanical,%20and%20Cell%20Response%20in%202D%20Cultures&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Piazza,%20Francesco&rft.date=2023-10-01&rft.volume=12&rft.issue=26&rft.spage=e2300973&rft.pages=e2300973-&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202300973&rft_dat=%3Cproquest_pubme%3E2830672632%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878201262&rft_id=info:pmid/37369130&rfr_iscdi=true |