Nano‐in‐Microparticles for Aerosol Delivery of Antibiotic‐Loaded, Fucose‐Derivatized, and Macrophage‐Targeted Liposomes to Combat Mycobacterial Infections: In Vitro Deposition, Pulmonary Barrier Interactions, and Targeted Delivery

Nontuberculous mycobacterial infections rapidly emerge and demand potent medications to cope with resistance. In this context, targeted loco‐regional delivery of aerosol medicines to the lungs is an advantage. However, sufficient antibiotic delivery requires engineered aerosols for optimized deposit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced healthcare materials 2022-06, Vol.11 (11), p.e2102117-n/a
Hauptverfasser: Huck, Benedikt C., Thiyagarajan, Durairaj, Bali, Aghiad, Boese, Annette, Besecke, Karen F. W., Hozsa, Constantin, Gieseler, Robert K., Furch, Marcus, Carvalho‐Wodarz, Cristiane, Waldow, Franziska, Schwudke, Dominik, Metelkina, Olga, Titz, Alexander, Huwer, Hanno, Schwarzkopf, Konrad, Hoppstädter, Jessica, Kiemer, Alexandra K., Koch, Marcus, Loretz, Brigitta, Lehr, Claus‐Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page e2102117
container_title Advanced healthcare materials
container_volume 11
creator Huck, Benedikt C.
Thiyagarajan, Durairaj
Bali, Aghiad
Boese, Annette
Besecke, Karen F. W.
Hozsa, Constantin
Gieseler, Robert K.
Furch, Marcus
Carvalho‐Wodarz, Cristiane
Waldow, Franziska
Schwudke, Dominik
Metelkina, Olga
Titz, Alexander
Huwer, Hanno
Schwarzkopf, Konrad
Hoppstädter, Jessica
Kiemer, Alexandra K.
Koch, Marcus
Loretz, Brigitta
Lehr, Claus‐Michael
description Nontuberculous mycobacterial infections rapidly emerge and demand potent medications to cope with resistance. In this context, targeted loco‐regional delivery of aerosol medicines to the lungs is an advantage. However, sufficient antibiotic delivery requires engineered aerosols for optimized deposition. Here, the effect of bedaquiline‐encapsulating fucosylated versus nonfucosylated liposomes on cellular uptake and delivery is investigated. Notably, this comparison includes critical parameters for pulmonary delivery, i.e., aerosol deposition and the noncellular barriers of pulmonary surfactant (PS) and mucus. Targeting increases liposomal uptake into THP‐1 cells as well as peripheral blood monocyte‐ and lung‐tissue derived macrophages. Aerosol deposition in the presence of PS, however, masks the effect of active targeting. PS alters antibiotic release that depends on the drug's hydrophobicity, while mucus reduces the mobility of nontargeted more than fucosylated liposomes. Dry‐powder microparticles of spray‐dried bedaquiline‐loaded liposomes display a high fine particle fraction of >70%, as well as preserved liposomal integrity and targeting function. The antibiotic effect is maintained when deposited as powder aerosol on cultured Mycobacterium abscessus. When treating M. abscessus infected THP‐1 cells, the fucosylated variant enabled enhanced bacterial killing, thus opening up a clear perspective for the improved treatment of nontuberculous mycobacterial infections. Nano‐in‐microparticles for aerosol delivery of antibiotic‐loaded and fucose‐derivatized liposomes are developed to combat mycobacterial infections. In vitro studies with various phagocytic cell types reveal the benefits of macrophage‐targeted pulmonary delivery, which oftentimes is complicated by the interaction of antibiotics with pulmonary barriers, if delivered in nonencapsulated form. The inclusion of pulmonary mucus and surfactant into such models helps to estimate key factors that may influence therapeutic outcomes.
doi_str_mv 10.1002/adhm.202102117
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11468583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2625272357</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4697-41cbb2b1dbee6c8bd9f52a931e943d63b0a4ba6341acf47bec4ba8811f4dd203</originalsourceid><addsrcrecordid>eNqFks2O0zAQxyMEYlfLXjkiS1w4bEts55MLKi3LrtQCh4qrNXYmXa-SuNhJUTnxCDwjT8AjMFF3y8eFKErs8e__nxl5ougpj6c8jsVLqG7aqYgFp5fnD6JTwUsxEVlaPjyuk_gkOg_hNqYnS3lW8MfRiUw5F0UsTqOf76FzP759tx19VtZ4twXfW9NgYLXzbIbeBdewBTZ2h37PXM1mXW-1dUSRZumgwuqCXQ7GBaTAAr3dQW-_jlHoKraC0fUGNuPpGvwGe6zY0m7JuKU0vWNz12ro2WpvnAbTkwM07Lqr0fTWdeEVrdkn23tHdZDMjtEL9nFoWtcBFfUGvLfoCSMtHESH5Md89w08iR7V0AQ8v_ufRevLt-v51WT54d31fLacmCQr80nCjdZC80ojZqbQVVmnAkrJsUxklUkdQ6IhkwkHUye5RkPbouC8TqpKxPIsen2w3Q66xcpg13to1NbblgpWDqz6-6SzN2rjdorzJCvSQpLDizsH7z4PGHrV2mCwaaBDNwQlMpGKXMg0J_T5P-itG3xH7RGVy4JLITOipgeKriMEj_WxGh6rcZ7UOE_qOE8kePZnD0f8fnoIKA_AF9vg_j92ara4Wv02_wXHo-L-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673813236</pqid></control><display><type>article</type><title>Nano‐in‐Microparticles for Aerosol Delivery of Antibiotic‐Loaded, Fucose‐Derivatized, and Macrophage‐Targeted Liposomes to Combat Mycobacterial Infections: In Vitro Deposition, Pulmonary Barrier Interactions, and Targeted Delivery</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huck, Benedikt C. ; Thiyagarajan, Durairaj ; Bali, Aghiad ; Boese, Annette ; Besecke, Karen F. W. ; Hozsa, Constantin ; Gieseler, Robert K. ; Furch, Marcus ; Carvalho‐Wodarz, Cristiane ; Waldow, Franziska ; Schwudke, Dominik ; Metelkina, Olga ; Titz, Alexander ; Huwer, Hanno ; Schwarzkopf, Konrad ; Hoppstädter, Jessica ; Kiemer, Alexandra K. ; Koch, Marcus ; Loretz, Brigitta ; Lehr, Claus‐Michael</creator><creatorcontrib>Huck, Benedikt C. ; Thiyagarajan, Durairaj ; Bali, Aghiad ; Boese, Annette ; Besecke, Karen F. W. ; Hozsa, Constantin ; Gieseler, Robert K. ; Furch, Marcus ; Carvalho‐Wodarz, Cristiane ; Waldow, Franziska ; Schwudke, Dominik ; Metelkina, Olga ; Titz, Alexander ; Huwer, Hanno ; Schwarzkopf, Konrad ; Hoppstädter, Jessica ; Kiemer, Alexandra K. ; Koch, Marcus ; Loretz, Brigitta ; Lehr, Claus‐Michael</creatorcontrib><description>Nontuberculous mycobacterial infections rapidly emerge and demand potent medications to cope with resistance. In this context, targeted loco‐regional delivery of aerosol medicines to the lungs is an advantage. However, sufficient antibiotic delivery requires engineered aerosols for optimized deposition. Here, the effect of bedaquiline‐encapsulating fucosylated versus nonfucosylated liposomes on cellular uptake and delivery is investigated. Notably, this comparison includes critical parameters for pulmonary delivery, i.e., aerosol deposition and the noncellular barriers of pulmonary surfactant (PS) and mucus. Targeting increases liposomal uptake into THP‐1 cells as well as peripheral blood monocyte‐ and lung‐tissue derived macrophages. Aerosol deposition in the presence of PS, however, masks the effect of active targeting. PS alters antibiotic release that depends on the drug's hydrophobicity, while mucus reduces the mobility of nontargeted more than fucosylated liposomes. Dry‐powder microparticles of spray‐dried bedaquiline‐loaded liposomes display a high fine particle fraction of &gt;70%, as well as preserved liposomal integrity and targeting function. The antibiotic effect is maintained when deposited as powder aerosol on cultured Mycobacterium abscessus. When treating M. abscessus infected THP‐1 cells, the fucosylated variant enabled enhanced bacterial killing, thus opening up a clear perspective for the improved treatment of nontuberculous mycobacterial infections. Nano‐in‐microparticles for aerosol delivery of antibiotic‐loaded and fucose‐derivatized liposomes are developed to combat mycobacterial infections. In vitro studies with various phagocytic cell types reveal the benefits of macrophage‐targeted pulmonary delivery, which oftentimes is complicated by the interaction of antibiotics with pulmonary barriers, if delivered in nonencapsulated form. The inclusion of pulmonary mucus and surfactant into such models helps to estimate key factors that may influence therapeutic outcomes.</description><identifier>ISSN: 2192-2640</identifier><identifier>ISSN: 2192-2659</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202102117</identifier><identifier>PMID: 35112802</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Administration, Inhalation ; Aerosols ; air–liquid interfaces ; Anti-Bacterial Agents - pharmacology ; Antibiotics ; bedaquiline ; Deposition ; Dry Powder Inhalers ; Fucose ; Hydrophobicity ; Infections ; liposomal dry powders ; Liposomes ; Lung ; Lungs ; Macrophages ; Microparticles ; Monocytes ; Mucus ; Particle Size ; particle tracking ; Peripheral blood ; Powders ; pulmonary surfactants</subject><ispartof>Advanced healthcare materials, 2022-06, Vol.11 (11), p.e2102117-n/a</ispartof><rights>2022 The Authors. Advanced Healthcare Materials published by Wiley‐VCH GmbH</rights><rights>2022 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4697-41cbb2b1dbee6c8bd9f52a931e943d63b0a4ba6341acf47bec4ba8811f4dd203</citedby><cites>FETCH-LOGICAL-c4697-41cbb2b1dbee6c8bd9f52a931e943d63b0a4ba6341acf47bec4ba8811f4dd203</cites><orcidid>0000-0002-5864-8462 ; 0000-0003-0057-5181</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.202102117$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.202102117$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35112802$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huck, Benedikt C.</creatorcontrib><creatorcontrib>Thiyagarajan, Durairaj</creatorcontrib><creatorcontrib>Bali, Aghiad</creatorcontrib><creatorcontrib>Boese, Annette</creatorcontrib><creatorcontrib>Besecke, Karen F. W.</creatorcontrib><creatorcontrib>Hozsa, Constantin</creatorcontrib><creatorcontrib>Gieseler, Robert K.</creatorcontrib><creatorcontrib>Furch, Marcus</creatorcontrib><creatorcontrib>Carvalho‐Wodarz, Cristiane</creatorcontrib><creatorcontrib>Waldow, Franziska</creatorcontrib><creatorcontrib>Schwudke, Dominik</creatorcontrib><creatorcontrib>Metelkina, Olga</creatorcontrib><creatorcontrib>Titz, Alexander</creatorcontrib><creatorcontrib>Huwer, Hanno</creatorcontrib><creatorcontrib>Schwarzkopf, Konrad</creatorcontrib><creatorcontrib>Hoppstädter, Jessica</creatorcontrib><creatorcontrib>Kiemer, Alexandra K.</creatorcontrib><creatorcontrib>Koch, Marcus</creatorcontrib><creatorcontrib>Loretz, Brigitta</creatorcontrib><creatorcontrib>Lehr, Claus‐Michael</creatorcontrib><title>Nano‐in‐Microparticles for Aerosol Delivery of Antibiotic‐Loaded, Fucose‐Derivatized, and Macrophage‐Targeted Liposomes to Combat Mycobacterial Infections: In Vitro Deposition, Pulmonary Barrier Interactions, and Targeted Delivery</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>Nontuberculous mycobacterial infections rapidly emerge and demand potent medications to cope with resistance. In this context, targeted loco‐regional delivery of aerosol medicines to the lungs is an advantage. However, sufficient antibiotic delivery requires engineered aerosols for optimized deposition. Here, the effect of bedaquiline‐encapsulating fucosylated versus nonfucosylated liposomes on cellular uptake and delivery is investigated. Notably, this comparison includes critical parameters for pulmonary delivery, i.e., aerosol deposition and the noncellular barriers of pulmonary surfactant (PS) and mucus. Targeting increases liposomal uptake into THP‐1 cells as well as peripheral blood monocyte‐ and lung‐tissue derived macrophages. Aerosol deposition in the presence of PS, however, masks the effect of active targeting. PS alters antibiotic release that depends on the drug's hydrophobicity, while mucus reduces the mobility of nontargeted more than fucosylated liposomes. Dry‐powder microparticles of spray‐dried bedaquiline‐loaded liposomes display a high fine particle fraction of &gt;70%, as well as preserved liposomal integrity and targeting function. The antibiotic effect is maintained when deposited as powder aerosol on cultured Mycobacterium abscessus. When treating M. abscessus infected THP‐1 cells, the fucosylated variant enabled enhanced bacterial killing, thus opening up a clear perspective for the improved treatment of nontuberculous mycobacterial infections. Nano‐in‐microparticles for aerosol delivery of antibiotic‐loaded and fucose‐derivatized liposomes are developed to combat mycobacterial infections. In vitro studies with various phagocytic cell types reveal the benefits of macrophage‐targeted pulmonary delivery, which oftentimes is complicated by the interaction of antibiotics with pulmonary barriers, if delivered in nonencapsulated form. The inclusion of pulmonary mucus and surfactant into such models helps to estimate key factors that may influence therapeutic outcomes.</description><subject>Administration, Inhalation</subject><subject>Aerosols</subject><subject>air–liquid interfaces</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotics</subject><subject>bedaquiline</subject><subject>Deposition</subject><subject>Dry Powder Inhalers</subject><subject>Fucose</subject><subject>Hydrophobicity</subject><subject>Infections</subject><subject>liposomal dry powders</subject><subject>Liposomes</subject><subject>Lung</subject><subject>Lungs</subject><subject>Macrophages</subject><subject>Microparticles</subject><subject>Monocytes</subject><subject>Mucus</subject><subject>Particle Size</subject><subject>particle tracking</subject><subject>Peripheral blood</subject><subject>Powders</subject><subject>pulmonary surfactants</subject><issn>2192-2640</issn><issn>2192-2659</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFks2O0zAQxyMEYlfLXjkiS1w4bEts55MLKi3LrtQCh4qrNXYmXa-SuNhJUTnxCDwjT8AjMFF3y8eFKErs8e__nxl5ougpj6c8jsVLqG7aqYgFp5fnD6JTwUsxEVlaPjyuk_gkOg_hNqYnS3lW8MfRiUw5F0UsTqOf76FzP759tx19VtZ4twXfW9NgYLXzbIbeBdewBTZ2h37PXM1mXW-1dUSRZumgwuqCXQ7GBaTAAr3dQW-_jlHoKraC0fUGNuPpGvwGe6zY0m7JuKU0vWNz12ro2WpvnAbTkwM07Lqr0fTWdeEVrdkn23tHdZDMjtEL9nFoWtcBFfUGvLfoCSMtHESH5Md89w08iR7V0AQ8v_ufRevLt-v51WT54d31fLacmCQr80nCjdZC80ojZqbQVVmnAkrJsUxklUkdQ6IhkwkHUye5RkPbouC8TqpKxPIsen2w3Q66xcpg13to1NbblgpWDqz6-6SzN2rjdorzJCvSQpLDizsH7z4PGHrV2mCwaaBDNwQlMpGKXMg0J_T5P-itG3xH7RGVy4JLITOipgeKriMEj_WxGh6rcZ7UOE_qOE8kePZnD0f8fnoIKA_AF9vg_j92ara4Wv02_wXHo-L-</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Huck, Benedikt C.</creator><creator>Thiyagarajan, Durairaj</creator><creator>Bali, Aghiad</creator><creator>Boese, Annette</creator><creator>Besecke, Karen F. W.</creator><creator>Hozsa, Constantin</creator><creator>Gieseler, Robert K.</creator><creator>Furch, Marcus</creator><creator>Carvalho‐Wodarz, Cristiane</creator><creator>Waldow, Franziska</creator><creator>Schwudke, Dominik</creator><creator>Metelkina, Olga</creator><creator>Titz, Alexander</creator><creator>Huwer, Hanno</creator><creator>Schwarzkopf, Konrad</creator><creator>Hoppstädter, Jessica</creator><creator>Kiemer, Alexandra K.</creator><creator>Koch, Marcus</creator><creator>Loretz, Brigitta</creator><creator>Lehr, Claus‐Michael</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5864-8462</orcidid><orcidid>https://orcid.org/0000-0003-0057-5181</orcidid></search><sort><creationdate>20220601</creationdate><title>Nano‐in‐Microparticles for Aerosol Delivery of Antibiotic‐Loaded, Fucose‐Derivatized, and Macrophage‐Targeted Liposomes to Combat Mycobacterial Infections: In Vitro Deposition, Pulmonary Barrier Interactions, and Targeted Delivery</title><author>Huck, Benedikt C. ; Thiyagarajan, Durairaj ; Bali, Aghiad ; Boese, Annette ; Besecke, Karen F. W. ; Hozsa, Constantin ; Gieseler, Robert K. ; Furch, Marcus ; Carvalho‐Wodarz, Cristiane ; Waldow, Franziska ; Schwudke, Dominik ; Metelkina, Olga ; Titz, Alexander ; Huwer, Hanno ; Schwarzkopf, Konrad ; Hoppstädter, Jessica ; Kiemer, Alexandra K. ; Koch, Marcus ; Loretz, Brigitta ; Lehr, Claus‐Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4697-41cbb2b1dbee6c8bd9f52a931e943d63b0a4ba6341acf47bec4ba8811f4dd203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Administration, Inhalation</topic><topic>Aerosols</topic><topic>air–liquid interfaces</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotics</topic><topic>bedaquiline</topic><topic>Deposition</topic><topic>Dry Powder Inhalers</topic><topic>Fucose</topic><topic>Hydrophobicity</topic><topic>Infections</topic><topic>liposomal dry powders</topic><topic>Liposomes</topic><topic>Lung</topic><topic>Lungs</topic><topic>Macrophages</topic><topic>Microparticles</topic><topic>Monocytes</topic><topic>Mucus</topic><topic>Particle Size</topic><topic>particle tracking</topic><topic>Peripheral blood</topic><topic>Powders</topic><topic>pulmonary surfactants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huck, Benedikt C.</creatorcontrib><creatorcontrib>Thiyagarajan, Durairaj</creatorcontrib><creatorcontrib>Bali, Aghiad</creatorcontrib><creatorcontrib>Boese, Annette</creatorcontrib><creatorcontrib>Besecke, Karen F. W.</creatorcontrib><creatorcontrib>Hozsa, Constantin</creatorcontrib><creatorcontrib>Gieseler, Robert K.</creatorcontrib><creatorcontrib>Furch, Marcus</creatorcontrib><creatorcontrib>Carvalho‐Wodarz, Cristiane</creatorcontrib><creatorcontrib>Waldow, Franziska</creatorcontrib><creatorcontrib>Schwudke, Dominik</creatorcontrib><creatorcontrib>Metelkina, Olga</creatorcontrib><creatorcontrib>Titz, Alexander</creatorcontrib><creatorcontrib>Huwer, Hanno</creatorcontrib><creatorcontrib>Schwarzkopf, Konrad</creatorcontrib><creatorcontrib>Hoppstädter, Jessica</creatorcontrib><creatorcontrib>Kiemer, Alexandra K.</creatorcontrib><creatorcontrib>Koch, Marcus</creatorcontrib><creatorcontrib>Loretz, Brigitta</creatorcontrib><creatorcontrib>Lehr, Claus‐Michael</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huck, Benedikt C.</au><au>Thiyagarajan, Durairaj</au><au>Bali, Aghiad</au><au>Boese, Annette</au><au>Besecke, Karen F. W.</au><au>Hozsa, Constantin</au><au>Gieseler, Robert K.</au><au>Furch, Marcus</au><au>Carvalho‐Wodarz, Cristiane</au><au>Waldow, Franziska</au><au>Schwudke, Dominik</au><au>Metelkina, Olga</au><au>Titz, Alexander</au><au>Huwer, Hanno</au><au>Schwarzkopf, Konrad</au><au>Hoppstädter, Jessica</au><au>Kiemer, Alexandra K.</au><au>Koch, Marcus</au><au>Loretz, Brigitta</au><au>Lehr, Claus‐Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nano‐in‐Microparticles for Aerosol Delivery of Antibiotic‐Loaded, Fucose‐Derivatized, and Macrophage‐Targeted Liposomes to Combat Mycobacterial Infections: In Vitro Deposition, Pulmonary Barrier Interactions, and Targeted Delivery</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>11</volume><issue>11</issue><spage>e2102117</spage><epage>n/a</epage><pages>e2102117-n/a</pages><issn>2192-2640</issn><issn>2192-2659</issn><eissn>2192-2659</eissn><abstract>Nontuberculous mycobacterial infections rapidly emerge and demand potent medications to cope with resistance. In this context, targeted loco‐regional delivery of aerosol medicines to the lungs is an advantage. However, sufficient antibiotic delivery requires engineered aerosols for optimized deposition. Here, the effect of bedaquiline‐encapsulating fucosylated versus nonfucosylated liposomes on cellular uptake and delivery is investigated. Notably, this comparison includes critical parameters for pulmonary delivery, i.e., aerosol deposition and the noncellular barriers of pulmonary surfactant (PS) and mucus. Targeting increases liposomal uptake into THP‐1 cells as well as peripheral blood monocyte‐ and lung‐tissue derived macrophages. Aerosol deposition in the presence of PS, however, masks the effect of active targeting. PS alters antibiotic release that depends on the drug's hydrophobicity, while mucus reduces the mobility of nontargeted more than fucosylated liposomes. Dry‐powder microparticles of spray‐dried bedaquiline‐loaded liposomes display a high fine particle fraction of &gt;70%, as well as preserved liposomal integrity and targeting function. The antibiotic effect is maintained when deposited as powder aerosol on cultured Mycobacterium abscessus. When treating M. abscessus infected THP‐1 cells, the fucosylated variant enabled enhanced bacterial killing, thus opening up a clear perspective for the improved treatment of nontuberculous mycobacterial infections. Nano‐in‐microparticles for aerosol delivery of antibiotic‐loaded and fucose‐derivatized liposomes are developed to combat mycobacterial infections. In vitro studies with various phagocytic cell types reveal the benefits of macrophage‐targeted pulmonary delivery, which oftentimes is complicated by the interaction of antibiotics with pulmonary barriers, if delivered in nonencapsulated form. The inclusion of pulmonary mucus and surfactant into such models helps to estimate key factors that may influence therapeutic outcomes.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35112802</pmid><doi>10.1002/adhm.202102117</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5864-8462</orcidid><orcidid>https://orcid.org/0000-0003-0057-5181</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2022-06, Vol.11 (11), p.e2102117-n/a
issn 2192-2640
2192-2659
2192-2659
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11468583
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Administration, Inhalation
Aerosols
air–liquid interfaces
Anti-Bacterial Agents - pharmacology
Antibiotics
bedaquiline
Deposition
Dry Powder Inhalers
Fucose
Hydrophobicity
Infections
liposomal dry powders
Liposomes
Lung
Lungs
Macrophages
Microparticles
Monocytes
Mucus
Particle Size
particle tracking
Peripheral blood
Powders
pulmonary surfactants
title Nano‐in‐Microparticles for Aerosol Delivery of Antibiotic‐Loaded, Fucose‐Derivatized, and Macrophage‐Targeted Liposomes to Combat Mycobacterial Infections: In Vitro Deposition, Pulmonary Barrier Interactions, and Targeted Delivery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A43%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nano%E2%80%90in%E2%80%90Microparticles%20for%20Aerosol%20Delivery%20of%20Antibiotic%E2%80%90Loaded,%20Fucose%E2%80%90Derivatized,%20and%20Macrophage%E2%80%90Targeted%20Liposomes%20to%20Combat%20Mycobacterial%20Infections:%20In%20Vitro%20Deposition,%20Pulmonary%20Barrier%20Interactions,%20and%20Targeted%20Delivery&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Huck,%20Benedikt%20C.&rft.date=2022-06-01&rft.volume=11&rft.issue=11&rft.spage=e2102117&rft.epage=n/a&rft.pages=e2102117-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202102117&rft_dat=%3Cproquest_pubme%3E2625272357%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2673813236&rft_id=info:pmid/35112802&rfr_iscdi=true