POLCAM: instant molecular orientation microscopy for the life sciences

Current methods for single-molecule orientation localization microscopy (SMOLM) require optical setups and algorithms that can be prohibitively slow and complex, limiting widespread adoption for biological applications. We present POLCAM, a simplified SMOLM method based on polarized detection using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2024-10, Vol.21 (10), p.1873-1883
Hauptverfasser: Bruggeman, Ezra, Zhang, Oumeng, Needham, Lisa-Maria, Körbel, Markus, Daly, Sam, Cheetham, Matthew, Peters, Ruby, Wu, Tingting, Klymchenko, Andrey S., Davis, Simon J., Paluch, Ewa K., Klenerman, David, Lew, Matthew D., O’Holleran, Kevin, Lee, Steven F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1883
container_issue 10
container_start_page 1873
container_title Nature methods
container_volume 21
creator Bruggeman, Ezra
Zhang, Oumeng
Needham, Lisa-Maria
Körbel, Markus
Daly, Sam
Cheetham, Matthew
Peters, Ruby
Wu, Tingting
Klymchenko, Andrey S.
Davis, Simon J.
Paluch, Ewa K.
Klenerman, David
Lew, Matthew D.
O’Holleran, Kevin
Lee, Steven F.
description Current methods for single-molecule orientation localization microscopy (SMOLM) require optical setups and algorithms that can be prohibitively slow and complex, limiting widespread adoption for biological applications. We present POLCAM, a simplified SMOLM method based on polarized detection using a polarization camera, which can be easily implemented on any wide-field fluorescence microscope. To make polarization cameras compatible with single-molecule detection, we developed theory to minimize field-of-view errors, used simulations to optimize experimental design and developed a fast algorithm based on Stokes parameter estimation that can operate over 1,000-fold faster than the state of the art, enabling near-instant determination of molecular anisotropy. To aid in the adoption of POLCAM, we developed open-source image analysis software and a website detailing hardware installation and software use. To illustrate the potential of POLCAM in the life sciences, we applied our method to study α-synuclein fibrils, the actin cytoskeleton of mammalian cells, fibroblast-like cells and the plasma membrane of live human T cells. Combining localization and polarization microscopy can yield detailed insights into subcellular structures. POLCAM uses a polarization camera and wide-field microscopy for rapid measurement of super-resolution orientation imaging in live cells.
doi_str_mv 10.1038/s41592-024-02382-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11466833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115237181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-d3ce0e02ed26f1888e57633f06b0d1419eaadac35f25406c95f1344592957fdd3</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhi3UqlDaP8ABReqFHtJ6PHbicEGrVSmVtqKH9mwZx2aNknixEyT-fZ0GKOXQg2XL88w7Hy8hR0A_AUX5OXEQDSsp4_mgZKXcIwcguCxroOLV45s2sE_epnRDKSJn4g3ZxwZrIWp-QM5_XG7Wq--nhR_SqIex6ENnzdTpWITo7TDq0Yeh6L2JIZmwuy9ciMW4tUXnnS2SyYyx6R157XSX7PuH-5D8Ov_yc31Rbi6_fluvNqXBho5li8ZSS5ltWeVASmlFXSE6Wl3RFjg0VutWGxSOCU4r0wgHyHmeshG1a1s8JGeL7m666m1rcoNRd2oXfa_jvQraq38jg9-q63CnAHhVScSs8HFR2L7Iu1ht1PxHuaQV4_wOMnvyUC2G28mmUfU-Gdt1erBhSgqzKggKtczohxfoTZjikHcxU4JhDXIWZAs1bzNF6546AKpmT9Xiqcqeqj-eqln6-PnMTymPJmYAFyDl0HBt49_a_5H9DbOlq08</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115237181</pqid></control><display><type>article</type><title>POLCAM: instant molecular orientation microscopy for the life sciences</title><source>Nature</source><source>Springer Nature - Complete Springer Journals</source><creator>Bruggeman, Ezra ; Zhang, Oumeng ; Needham, Lisa-Maria ; Körbel, Markus ; Daly, Sam ; Cheetham, Matthew ; Peters, Ruby ; Wu, Tingting ; Klymchenko, Andrey S. ; Davis, Simon J. ; Paluch, Ewa K. ; Klenerman, David ; Lew, Matthew D. ; O’Holleran, Kevin ; Lee, Steven F.</creator><creatorcontrib>Bruggeman, Ezra ; Zhang, Oumeng ; Needham, Lisa-Maria ; Körbel, Markus ; Daly, Sam ; Cheetham, Matthew ; Peters, Ruby ; Wu, Tingting ; Klymchenko, Andrey S. ; Davis, Simon J. ; Paluch, Ewa K. ; Klenerman, David ; Lew, Matthew D. ; O’Holleran, Kevin ; Lee, Steven F.</creatorcontrib><description>Current methods for single-molecule orientation localization microscopy (SMOLM) require optical setups and algorithms that can be prohibitively slow and complex, limiting widespread adoption for biological applications. We present POLCAM, a simplified SMOLM method based on polarized detection using a polarization camera, which can be easily implemented on any wide-field fluorescence microscope. To make polarization cameras compatible with single-molecule detection, we developed theory to minimize field-of-view errors, used simulations to optimize experimental design and developed a fast algorithm based on Stokes parameter estimation that can operate over 1,000-fold faster than the state of the art, enabling near-instant determination of molecular anisotropy. To aid in the adoption of POLCAM, we developed open-source image analysis software and a website detailing hardware installation and software use. To illustrate the potential of POLCAM in the life sciences, we applied our method to study α-synuclein fibrils, the actin cytoskeleton of mammalian cells, fibroblast-like cells and the plasma membrane of live human T cells. Combining localization and polarization microscopy can yield detailed insights into subcellular structures. POLCAM uses a polarization camera and wide-field microscopy for rapid measurement of super-resolution orientation imaging in live cells.</description><identifier>ISSN: 1548-7091</identifier><identifier>ISSN: 1548-7105</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-024-02382-8</identifier><identifier>PMID: 39375574</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/1647/245/2225 ; 631/1647/328 ; 631/57/2265 ; Actin ; Algorithms ; Anisotropy ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Cameras ; Cytoskeleton ; Design of experiments ; Design optimization ; Experimental design ; Fibrils ; Image analysis ; Image processing ; Image resolution ; Life Sciences ; Localization ; Lymphocytes ; Lymphocytes T ; Mammalian cells ; Microscopy ; Orientation ; Parameter estimation ; Polarization ; Proteomics ; Software ; Stokes parameters ; Synuclein</subject><ispartof>Nature methods, 2024-10, Vol.21 (10), p.1873-1883</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c390t-d3ce0e02ed26f1888e57633f06b0d1419eaadac35f25406c95f1344592957fdd3</cites><orcidid>0000-0001-6100-1443 ; 0000-0001-7318-2130 ; 0000-0002-8344-8016 ; 0000-0002-2423-830X ; 0000-0001-7116-6954 ; 0000-0002-5614-3292 ; 0000-0003-4492-5139 ; 0000-0003-1039-2127 ; 0000-0002-8559-3161 ; 0000-0003-4691-2323 ; 0000-0001-5736-4962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41592-024-02382-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41592-024-02382-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39375574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04806244$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bruggeman, Ezra</creatorcontrib><creatorcontrib>Zhang, Oumeng</creatorcontrib><creatorcontrib>Needham, Lisa-Maria</creatorcontrib><creatorcontrib>Körbel, Markus</creatorcontrib><creatorcontrib>Daly, Sam</creatorcontrib><creatorcontrib>Cheetham, Matthew</creatorcontrib><creatorcontrib>Peters, Ruby</creatorcontrib><creatorcontrib>Wu, Tingting</creatorcontrib><creatorcontrib>Klymchenko, Andrey S.</creatorcontrib><creatorcontrib>Davis, Simon J.</creatorcontrib><creatorcontrib>Paluch, Ewa K.</creatorcontrib><creatorcontrib>Klenerman, David</creatorcontrib><creatorcontrib>Lew, Matthew D.</creatorcontrib><creatorcontrib>O’Holleran, Kevin</creatorcontrib><creatorcontrib>Lee, Steven F.</creatorcontrib><title>POLCAM: instant molecular orientation microscopy for the life sciences</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>Current methods for single-molecule orientation localization microscopy (SMOLM) require optical setups and algorithms that can be prohibitively slow and complex, limiting widespread adoption for biological applications. We present POLCAM, a simplified SMOLM method based on polarized detection using a polarization camera, which can be easily implemented on any wide-field fluorescence microscope. To make polarization cameras compatible with single-molecule detection, we developed theory to minimize field-of-view errors, used simulations to optimize experimental design and developed a fast algorithm based on Stokes parameter estimation that can operate over 1,000-fold faster than the state of the art, enabling near-instant determination of molecular anisotropy. To aid in the adoption of POLCAM, we developed open-source image analysis software and a website detailing hardware installation and software use. To illustrate the potential of POLCAM in the life sciences, we applied our method to study α-synuclein fibrils, the actin cytoskeleton of mammalian cells, fibroblast-like cells and the plasma membrane of live human T cells. Combining localization and polarization microscopy can yield detailed insights into subcellular structures. POLCAM uses a polarization camera and wide-field microscopy for rapid measurement of super-resolution orientation imaging in live cells.</description><subject>631/1647/245/2225</subject><subject>631/1647/328</subject><subject>631/57/2265</subject><subject>Actin</subject><subject>Algorithms</subject><subject>Anisotropy</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Cameras</subject><subject>Cytoskeleton</subject><subject>Design of experiments</subject><subject>Design optimization</subject><subject>Experimental design</subject><subject>Fibrils</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Life Sciences</subject><subject>Localization</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Mammalian cells</subject><subject>Microscopy</subject><subject>Orientation</subject><subject>Parameter estimation</subject><subject>Polarization</subject><subject>Proteomics</subject><subject>Software</subject><subject>Stokes parameters</subject><subject>Synuclein</subject><issn>1548-7091</issn><issn>1548-7105</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kU1P3DAQhi3UqlDaP8ABReqFHtJ6PHbicEGrVSmVtqKH9mwZx2aNknixEyT-fZ0GKOXQg2XL88w7Hy8hR0A_AUX5OXEQDSsp4_mgZKXcIwcguCxroOLV45s2sE_epnRDKSJn4g3ZxwZrIWp-QM5_XG7Wq--nhR_SqIex6ENnzdTpWITo7TDq0Yeh6L2JIZmwuy9ciMW4tUXnnS2SyYyx6R157XSX7PuH-5D8Ov_yc31Rbi6_fluvNqXBho5li8ZSS5ltWeVASmlFXSE6Wl3RFjg0VutWGxSOCU4r0wgHyHmeshG1a1s8JGeL7m666m1rcoNRd2oXfa_jvQraq38jg9-q63CnAHhVScSs8HFR2L7Iu1ht1PxHuaQV4_wOMnvyUC2G28mmUfU-Gdt1erBhSgqzKggKtczohxfoTZjikHcxU4JhDXIWZAs1bzNF6546AKpmT9Xiqcqeqj-eqln6-PnMTymPJmYAFyDl0HBt49_a_5H9DbOlq08</recordid><startdate>20241007</startdate><enddate>20241007</enddate><creator>Bruggeman, Ezra</creator><creator>Zhang, Oumeng</creator><creator>Needham, Lisa-Maria</creator><creator>Körbel, Markus</creator><creator>Daly, Sam</creator><creator>Cheetham, Matthew</creator><creator>Peters, Ruby</creator><creator>Wu, Tingting</creator><creator>Klymchenko, Andrey S.</creator><creator>Davis, Simon J.</creator><creator>Paluch, Ewa K.</creator><creator>Klenerman, David</creator><creator>Lew, Matthew D.</creator><creator>O’Holleran, Kevin</creator><creator>Lee, Steven F.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6100-1443</orcidid><orcidid>https://orcid.org/0000-0001-7318-2130</orcidid><orcidid>https://orcid.org/0000-0002-8344-8016</orcidid><orcidid>https://orcid.org/0000-0002-2423-830X</orcidid><orcidid>https://orcid.org/0000-0001-7116-6954</orcidid><orcidid>https://orcid.org/0000-0002-5614-3292</orcidid><orcidid>https://orcid.org/0000-0003-4492-5139</orcidid><orcidid>https://orcid.org/0000-0003-1039-2127</orcidid><orcidid>https://orcid.org/0000-0002-8559-3161</orcidid><orcidid>https://orcid.org/0000-0003-4691-2323</orcidid><orcidid>https://orcid.org/0000-0001-5736-4962</orcidid></search><sort><creationdate>20241007</creationdate><title>POLCAM: instant molecular orientation microscopy for the life sciences</title><author>Bruggeman, Ezra ; Zhang, Oumeng ; Needham, Lisa-Maria ; Körbel, Markus ; Daly, Sam ; Cheetham, Matthew ; Peters, Ruby ; Wu, Tingting ; Klymchenko, Andrey S. ; Davis, Simon J. ; Paluch, Ewa K. ; Klenerman, David ; Lew, Matthew D. ; O’Holleran, Kevin ; Lee, Steven F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-d3ce0e02ed26f1888e57633f06b0d1419eaadac35f25406c95f1344592957fdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/1647/245/2225</topic><topic>631/1647/328</topic><topic>631/57/2265</topic><topic>Actin</topic><topic>Algorithms</topic><topic>Anisotropy</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Cameras</topic><topic>Cytoskeleton</topic><topic>Design of experiments</topic><topic>Design optimization</topic><topic>Experimental design</topic><topic>Fibrils</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Life Sciences</topic><topic>Localization</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Mammalian cells</topic><topic>Microscopy</topic><topic>Orientation</topic><topic>Parameter estimation</topic><topic>Polarization</topic><topic>Proteomics</topic><topic>Software</topic><topic>Stokes parameters</topic><topic>Synuclein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruggeman, Ezra</creatorcontrib><creatorcontrib>Zhang, Oumeng</creatorcontrib><creatorcontrib>Needham, Lisa-Maria</creatorcontrib><creatorcontrib>Körbel, Markus</creatorcontrib><creatorcontrib>Daly, Sam</creatorcontrib><creatorcontrib>Cheetham, Matthew</creatorcontrib><creatorcontrib>Peters, Ruby</creatorcontrib><creatorcontrib>Wu, Tingting</creatorcontrib><creatorcontrib>Klymchenko, Andrey S.</creatorcontrib><creatorcontrib>Davis, Simon J.</creatorcontrib><creatorcontrib>Paluch, Ewa K.</creatorcontrib><creatorcontrib>Klenerman, David</creatorcontrib><creatorcontrib>Lew, Matthew D.</creatorcontrib><creatorcontrib>O’Holleran, Kevin</creatorcontrib><creatorcontrib>Lee, Steven F.</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruggeman, Ezra</au><au>Zhang, Oumeng</au><au>Needham, Lisa-Maria</au><au>Körbel, Markus</au><au>Daly, Sam</au><au>Cheetham, Matthew</au><au>Peters, Ruby</au><au>Wu, Tingting</au><au>Klymchenko, Andrey S.</au><au>Davis, Simon J.</au><au>Paluch, Ewa K.</au><au>Klenerman, David</au><au>Lew, Matthew D.</au><au>O’Holleran, Kevin</au><au>Lee, Steven F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>POLCAM: instant molecular orientation microscopy for the life sciences</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2024-10-07</date><risdate>2024</risdate><volume>21</volume><issue>10</issue><spage>1873</spage><epage>1883</epage><pages>1873-1883</pages><issn>1548-7091</issn><issn>1548-7105</issn><eissn>1548-7105</eissn><abstract>Current methods for single-molecule orientation localization microscopy (SMOLM) require optical setups and algorithms that can be prohibitively slow and complex, limiting widespread adoption for biological applications. We present POLCAM, a simplified SMOLM method based on polarized detection using a polarization camera, which can be easily implemented on any wide-field fluorescence microscope. To make polarization cameras compatible with single-molecule detection, we developed theory to minimize field-of-view errors, used simulations to optimize experimental design and developed a fast algorithm based on Stokes parameter estimation that can operate over 1,000-fold faster than the state of the art, enabling near-instant determination of molecular anisotropy. To aid in the adoption of POLCAM, we developed open-source image analysis software and a website detailing hardware installation and software use. To illustrate the potential of POLCAM in the life sciences, we applied our method to study α-synuclein fibrils, the actin cytoskeleton of mammalian cells, fibroblast-like cells and the plasma membrane of live human T cells. Combining localization and polarization microscopy can yield detailed insights into subcellular structures. POLCAM uses a polarization camera and wide-field microscopy for rapid measurement of super-resolution orientation imaging in live cells.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>39375574</pmid><doi>10.1038/s41592-024-02382-8</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6100-1443</orcidid><orcidid>https://orcid.org/0000-0001-7318-2130</orcidid><orcidid>https://orcid.org/0000-0002-8344-8016</orcidid><orcidid>https://orcid.org/0000-0002-2423-830X</orcidid><orcidid>https://orcid.org/0000-0001-7116-6954</orcidid><orcidid>https://orcid.org/0000-0002-5614-3292</orcidid><orcidid>https://orcid.org/0000-0003-4492-5139</orcidid><orcidid>https://orcid.org/0000-0003-1039-2127</orcidid><orcidid>https://orcid.org/0000-0002-8559-3161</orcidid><orcidid>https://orcid.org/0000-0003-4691-2323</orcidid><orcidid>https://orcid.org/0000-0001-5736-4962</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1548-7091
ispartof Nature methods, 2024-10, Vol.21 (10), p.1873-1883
issn 1548-7091
1548-7105
1548-7105
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11466833
source Nature; Springer Nature - Complete Springer Journals
subjects 631/1647/245/2225
631/1647/328
631/57/2265
Actin
Algorithms
Anisotropy
Bioinformatics
Biological Microscopy
Biological Techniques
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Cameras
Cytoskeleton
Design of experiments
Design optimization
Experimental design
Fibrils
Image analysis
Image processing
Image resolution
Life Sciences
Localization
Lymphocytes
Lymphocytes T
Mammalian cells
Microscopy
Orientation
Parameter estimation
Polarization
Proteomics
Software
Stokes parameters
Synuclein
title POLCAM: instant molecular orientation microscopy for the life sciences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A42%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=POLCAM:%20instant%20molecular%20orientation%20microscopy%20for%20the%20life%20sciences&rft.jtitle=Nature%20methods&rft.au=Bruggeman,%20Ezra&rft.date=2024-10-07&rft.volume=21&rft.issue=10&rft.spage=1873&rft.epage=1883&rft.pages=1873-1883&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-024-02382-8&rft_dat=%3Cproquest_pubme%3E3115237181%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115237181&rft_id=info:pmid/39375574&rfr_iscdi=true