POLCAM: instant molecular orientation microscopy for the life sciences
Current methods for single-molecule orientation localization microscopy (SMOLM) require optical setups and algorithms that can be prohibitively slow and complex, limiting widespread adoption for biological applications. We present POLCAM, a simplified SMOLM method based on polarized detection using...
Gespeichert in:
Veröffentlicht in: | Nature methods 2024-10, Vol.21 (10), p.1873-1883 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1883 |
---|---|
container_issue | 10 |
container_start_page | 1873 |
container_title | Nature methods |
container_volume | 21 |
creator | Bruggeman, Ezra Zhang, Oumeng Needham, Lisa-Maria Körbel, Markus Daly, Sam Cheetham, Matthew Peters, Ruby Wu, Tingting Klymchenko, Andrey S. Davis, Simon J. Paluch, Ewa K. Klenerman, David Lew, Matthew D. O’Holleran, Kevin Lee, Steven F. |
description | Current methods for single-molecule orientation localization microscopy (SMOLM) require optical setups and algorithms that can be prohibitively slow and complex, limiting widespread adoption for biological applications. We present POLCAM, a simplified SMOLM method based on polarized detection using a polarization camera, which can be easily implemented on any wide-field fluorescence microscope. To make polarization cameras compatible with single-molecule detection, we developed theory to minimize field-of-view errors, used simulations to optimize experimental design and developed a fast algorithm based on Stokes parameter estimation that can operate over 1,000-fold faster than the state of the art, enabling near-instant determination of molecular anisotropy. To aid in the adoption of POLCAM, we developed open-source image analysis software and a website detailing hardware installation and software use. To illustrate the potential of POLCAM in the life sciences, we applied our method to study α-synuclein fibrils, the actin cytoskeleton of mammalian cells, fibroblast-like cells and the plasma membrane of live human T cells.
Combining localization and polarization microscopy can yield detailed insights into subcellular structures. POLCAM uses a polarization camera and wide-field microscopy for rapid measurement of super-resolution orientation imaging in live cells. |
doi_str_mv | 10.1038/s41592-024-02382-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11466833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115237181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-d3ce0e02ed26f1888e57633f06b0d1419eaadac35f25406c95f1344592957fdd3</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhi3UqlDaP8ABReqFHtJ6PHbicEGrVSmVtqKH9mwZx2aNknixEyT-fZ0GKOXQg2XL88w7Hy8hR0A_AUX5OXEQDSsp4_mgZKXcIwcguCxroOLV45s2sE_epnRDKSJn4g3ZxwZrIWp-QM5_XG7Wq--nhR_SqIex6ENnzdTpWITo7TDq0Yeh6L2JIZmwuy9ciMW4tUXnnS2SyYyx6R157XSX7PuH-5D8Ov_yc31Rbi6_fluvNqXBho5li8ZSS5ltWeVASmlFXSE6Wl3RFjg0VutWGxSOCU4r0wgHyHmeshG1a1s8JGeL7m666m1rcoNRd2oXfa_jvQraq38jg9-q63CnAHhVScSs8HFR2L7Iu1ht1PxHuaQV4_wOMnvyUC2G28mmUfU-Gdt1erBhSgqzKggKtczohxfoTZjikHcxU4JhDXIWZAs1bzNF6546AKpmT9Xiqcqeqj-eqln6-PnMTymPJmYAFyDl0HBt49_a_5H9DbOlq08</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115237181</pqid></control><display><type>article</type><title>POLCAM: instant molecular orientation microscopy for the life sciences</title><source>Nature</source><source>Springer Nature - Complete Springer Journals</source><creator>Bruggeman, Ezra ; Zhang, Oumeng ; Needham, Lisa-Maria ; Körbel, Markus ; Daly, Sam ; Cheetham, Matthew ; Peters, Ruby ; Wu, Tingting ; Klymchenko, Andrey S. ; Davis, Simon J. ; Paluch, Ewa K. ; Klenerman, David ; Lew, Matthew D. ; O’Holleran, Kevin ; Lee, Steven F.</creator><creatorcontrib>Bruggeman, Ezra ; Zhang, Oumeng ; Needham, Lisa-Maria ; Körbel, Markus ; Daly, Sam ; Cheetham, Matthew ; Peters, Ruby ; Wu, Tingting ; Klymchenko, Andrey S. ; Davis, Simon J. ; Paluch, Ewa K. ; Klenerman, David ; Lew, Matthew D. ; O’Holleran, Kevin ; Lee, Steven F.</creatorcontrib><description>Current methods for single-molecule orientation localization microscopy (SMOLM) require optical setups and algorithms that can be prohibitively slow and complex, limiting widespread adoption for biological applications. We present POLCAM, a simplified SMOLM method based on polarized detection using a polarization camera, which can be easily implemented on any wide-field fluorescence microscope. To make polarization cameras compatible with single-molecule detection, we developed theory to minimize field-of-view errors, used simulations to optimize experimental design and developed a fast algorithm based on Stokes parameter estimation that can operate over 1,000-fold faster than the state of the art, enabling near-instant determination of molecular anisotropy. To aid in the adoption of POLCAM, we developed open-source image analysis software and a website detailing hardware installation and software use. To illustrate the potential of POLCAM in the life sciences, we applied our method to study α-synuclein fibrils, the actin cytoskeleton of mammalian cells, fibroblast-like cells and the plasma membrane of live human T cells.
Combining localization and polarization microscopy can yield detailed insights into subcellular structures. POLCAM uses a polarization camera and wide-field microscopy for rapid measurement of super-resolution orientation imaging in live cells.</description><identifier>ISSN: 1548-7091</identifier><identifier>ISSN: 1548-7105</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-024-02382-8</identifier><identifier>PMID: 39375574</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/1647/245/2225 ; 631/1647/328 ; 631/57/2265 ; Actin ; Algorithms ; Anisotropy ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Cameras ; Cytoskeleton ; Design of experiments ; Design optimization ; Experimental design ; Fibrils ; Image analysis ; Image processing ; Image resolution ; Life Sciences ; Localization ; Lymphocytes ; Lymphocytes T ; Mammalian cells ; Microscopy ; Orientation ; Parameter estimation ; Polarization ; Proteomics ; Software ; Stokes parameters ; Synuclein</subject><ispartof>Nature methods, 2024-10, Vol.21 (10), p.1873-1883</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c390t-d3ce0e02ed26f1888e57633f06b0d1419eaadac35f25406c95f1344592957fdd3</cites><orcidid>0000-0001-6100-1443 ; 0000-0001-7318-2130 ; 0000-0002-8344-8016 ; 0000-0002-2423-830X ; 0000-0001-7116-6954 ; 0000-0002-5614-3292 ; 0000-0003-4492-5139 ; 0000-0003-1039-2127 ; 0000-0002-8559-3161 ; 0000-0003-4691-2323 ; 0000-0001-5736-4962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41592-024-02382-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41592-024-02382-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39375574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04806244$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bruggeman, Ezra</creatorcontrib><creatorcontrib>Zhang, Oumeng</creatorcontrib><creatorcontrib>Needham, Lisa-Maria</creatorcontrib><creatorcontrib>Körbel, Markus</creatorcontrib><creatorcontrib>Daly, Sam</creatorcontrib><creatorcontrib>Cheetham, Matthew</creatorcontrib><creatorcontrib>Peters, Ruby</creatorcontrib><creatorcontrib>Wu, Tingting</creatorcontrib><creatorcontrib>Klymchenko, Andrey S.</creatorcontrib><creatorcontrib>Davis, Simon J.</creatorcontrib><creatorcontrib>Paluch, Ewa K.</creatorcontrib><creatorcontrib>Klenerman, David</creatorcontrib><creatorcontrib>Lew, Matthew D.</creatorcontrib><creatorcontrib>O’Holleran, Kevin</creatorcontrib><creatorcontrib>Lee, Steven F.</creatorcontrib><title>POLCAM: instant molecular orientation microscopy for the life sciences</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>Current methods for single-molecule orientation localization microscopy (SMOLM) require optical setups and algorithms that can be prohibitively slow and complex, limiting widespread adoption for biological applications. We present POLCAM, a simplified SMOLM method based on polarized detection using a polarization camera, which can be easily implemented on any wide-field fluorescence microscope. To make polarization cameras compatible with single-molecule detection, we developed theory to minimize field-of-view errors, used simulations to optimize experimental design and developed a fast algorithm based on Stokes parameter estimation that can operate over 1,000-fold faster than the state of the art, enabling near-instant determination of molecular anisotropy. To aid in the adoption of POLCAM, we developed open-source image analysis software and a website detailing hardware installation and software use. To illustrate the potential of POLCAM in the life sciences, we applied our method to study α-synuclein fibrils, the actin cytoskeleton of mammalian cells, fibroblast-like cells and the plasma membrane of live human T cells.
Combining localization and polarization microscopy can yield detailed insights into subcellular structures. POLCAM uses a polarization camera and wide-field microscopy for rapid measurement of super-resolution orientation imaging in live cells.</description><subject>631/1647/245/2225</subject><subject>631/1647/328</subject><subject>631/57/2265</subject><subject>Actin</subject><subject>Algorithms</subject><subject>Anisotropy</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Cameras</subject><subject>Cytoskeleton</subject><subject>Design of experiments</subject><subject>Design optimization</subject><subject>Experimental design</subject><subject>Fibrils</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Life Sciences</subject><subject>Localization</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Mammalian cells</subject><subject>Microscopy</subject><subject>Orientation</subject><subject>Parameter estimation</subject><subject>Polarization</subject><subject>Proteomics</subject><subject>Software</subject><subject>Stokes parameters</subject><subject>Synuclein</subject><issn>1548-7091</issn><issn>1548-7105</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kU1P3DAQhi3UqlDaP8ABReqFHtJ6PHbicEGrVSmVtqKH9mwZx2aNknixEyT-fZ0GKOXQg2XL88w7Hy8hR0A_AUX5OXEQDSsp4_mgZKXcIwcguCxroOLV45s2sE_epnRDKSJn4g3ZxwZrIWp-QM5_XG7Wq--nhR_SqIex6ENnzdTpWITo7TDq0Yeh6L2JIZmwuy9ciMW4tUXnnS2SyYyx6R157XSX7PuH-5D8Ov_yc31Rbi6_fluvNqXBho5li8ZSS5ltWeVASmlFXSE6Wl3RFjg0VutWGxSOCU4r0wgHyHmeshG1a1s8JGeL7m666m1rcoNRd2oXfa_jvQraq38jg9-q63CnAHhVScSs8HFR2L7Iu1ht1PxHuaQV4_wOMnvyUC2G28mmUfU-Gdt1erBhSgqzKggKtczohxfoTZjikHcxU4JhDXIWZAs1bzNF6546AKpmT9Xiqcqeqj-eqln6-PnMTymPJmYAFyDl0HBt49_a_5H9DbOlq08</recordid><startdate>20241007</startdate><enddate>20241007</enddate><creator>Bruggeman, Ezra</creator><creator>Zhang, Oumeng</creator><creator>Needham, Lisa-Maria</creator><creator>Körbel, Markus</creator><creator>Daly, Sam</creator><creator>Cheetham, Matthew</creator><creator>Peters, Ruby</creator><creator>Wu, Tingting</creator><creator>Klymchenko, Andrey S.</creator><creator>Davis, Simon J.</creator><creator>Paluch, Ewa K.</creator><creator>Klenerman, David</creator><creator>Lew, Matthew D.</creator><creator>O’Holleran, Kevin</creator><creator>Lee, Steven F.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6100-1443</orcidid><orcidid>https://orcid.org/0000-0001-7318-2130</orcidid><orcidid>https://orcid.org/0000-0002-8344-8016</orcidid><orcidid>https://orcid.org/0000-0002-2423-830X</orcidid><orcidid>https://orcid.org/0000-0001-7116-6954</orcidid><orcidid>https://orcid.org/0000-0002-5614-3292</orcidid><orcidid>https://orcid.org/0000-0003-4492-5139</orcidid><orcidid>https://orcid.org/0000-0003-1039-2127</orcidid><orcidid>https://orcid.org/0000-0002-8559-3161</orcidid><orcidid>https://orcid.org/0000-0003-4691-2323</orcidid><orcidid>https://orcid.org/0000-0001-5736-4962</orcidid></search><sort><creationdate>20241007</creationdate><title>POLCAM: instant molecular orientation microscopy for the life sciences</title><author>Bruggeman, Ezra ; Zhang, Oumeng ; Needham, Lisa-Maria ; Körbel, Markus ; Daly, Sam ; Cheetham, Matthew ; Peters, Ruby ; Wu, Tingting ; Klymchenko, Andrey S. ; Davis, Simon J. ; Paluch, Ewa K. ; Klenerman, David ; Lew, Matthew D. ; O’Holleran, Kevin ; Lee, Steven F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-d3ce0e02ed26f1888e57633f06b0d1419eaadac35f25406c95f1344592957fdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/1647/245/2225</topic><topic>631/1647/328</topic><topic>631/57/2265</topic><topic>Actin</topic><topic>Algorithms</topic><topic>Anisotropy</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Cameras</topic><topic>Cytoskeleton</topic><topic>Design of experiments</topic><topic>Design optimization</topic><topic>Experimental design</topic><topic>Fibrils</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Life Sciences</topic><topic>Localization</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Mammalian cells</topic><topic>Microscopy</topic><topic>Orientation</topic><topic>Parameter estimation</topic><topic>Polarization</topic><topic>Proteomics</topic><topic>Software</topic><topic>Stokes parameters</topic><topic>Synuclein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruggeman, Ezra</creatorcontrib><creatorcontrib>Zhang, Oumeng</creatorcontrib><creatorcontrib>Needham, Lisa-Maria</creatorcontrib><creatorcontrib>Körbel, Markus</creatorcontrib><creatorcontrib>Daly, Sam</creatorcontrib><creatorcontrib>Cheetham, Matthew</creatorcontrib><creatorcontrib>Peters, Ruby</creatorcontrib><creatorcontrib>Wu, Tingting</creatorcontrib><creatorcontrib>Klymchenko, Andrey S.</creatorcontrib><creatorcontrib>Davis, Simon J.</creatorcontrib><creatorcontrib>Paluch, Ewa K.</creatorcontrib><creatorcontrib>Klenerman, David</creatorcontrib><creatorcontrib>Lew, Matthew D.</creatorcontrib><creatorcontrib>O’Holleran, Kevin</creatorcontrib><creatorcontrib>Lee, Steven F.</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruggeman, Ezra</au><au>Zhang, Oumeng</au><au>Needham, Lisa-Maria</au><au>Körbel, Markus</au><au>Daly, Sam</au><au>Cheetham, Matthew</au><au>Peters, Ruby</au><au>Wu, Tingting</au><au>Klymchenko, Andrey S.</au><au>Davis, Simon J.</au><au>Paluch, Ewa K.</au><au>Klenerman, David</au><au>Lew, Matthew D.</au><au>O’Holleran, Kevin</au><au>Lee, Steven F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>POLCAM: instant molecular orientation microscopy for the life sciences</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2024-10-07</date><risdate>2024</risdate><volume>21</volume><issue>10</issue><spage>1873</spage><epage>1883</epage><pages>1873-1883</pages><issn>1548-7091</issn><issn>1548-7105</issn><eissn>1548-7105</eissn><abstract>Current methods for single-molecule orientation localization microscopy (SMOLM) require optical setups and algorithms that can be prohibitively slow and complex, limiting widespread adoption for biological applications. We present POLCAM, a simplified SMOLM method based on polarized detection using a polarization camera, which can be easily implemented on any wide-field fluorescence microscope. To make polarization cameras compatible with single-molecule detection, we developed theory to minimize field-of-view errors, used simulations to optimize experimental design and developed a fast algorithm based on Stokes parameter estimation that can operate over 1,000-fold faster than the state of the art, enabling near-instant determination of molecular anisotropy. To aid in the adoption of POLCAM, we developed open-source image analysis software and a website detailing hardware installation and software use. To illustrate the potential of POLCAM in the life sciences, we applied our method to study α-synuclein fibrils, the actin cytoskeleton of mammalian cells, fibroblast-like cells and the plasma membrane of live human T cells.
Combining localization and polarization microscopy can yield detailed insights into subcellular structures. POLCAM uses a polarization camera and wide-field microscopy for rapid measurement of super-resolution orientation imaging in live cells.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>39375574</pmid><doi>10.1038/s41592-024-02382-8</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6100-1443</orcidid><orcidid>https://orcid.org/0000-0001-7318-2130</orcidid><orcidid>https://orcid.org/0000-0002-8344-8016</orcidid><orcidid>https://orcid.org/0000-0002-2423-830X</orcidid><orcidid>https://orcid.org/0000-0001-7116-6954</orcidid><orcidid>https://orcid.org/0000-0002-5614-3292</orcidid><orcidid>https://orcid.org/0000-0003-4492-5139</orcidid><orcidid>https://orcid.org/0000-0003-1039-2127</orcidid><orcidid>https://orcid.org/0000-0002-8559-3161</orcidid><orcidid>https://orcid.org/0000-0003-4691-2323</orcidid><orcidid>https://orcid.org/0000-0001-5736-4962</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1548-7091 |
ispartof | Nature methods, 2024-10, Vol.21 (10), p.1873-1883 |
issn | 1548-7091 1548-7105 1548-7105 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11466833 |
source | Nature; Springer Nature - Complete Springer Journals |
subjects | 631/1647/245/2225 631/1647/328 631/57/2265 Actin Algorithms Anisotropy Bioinformatics Biological Microscopy Biological Techniques Biomedical and Life Sciences Biomedical Engineering/Biotechnology Cameras Cytoskeleton Design of experiments Design optimization Experimental design Fibrils Image analysis Image processing Image resolution Life Sciences Localization Lymphocytes Lymphocytes T Mammalian cells Microscopy Orientation Parameter estimation Polarization Proteomics Software Stokes parameters Synuclein |
title | POLCAM: instant molecular orientation microscopy for the life sciences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A42%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=POLCAM:%20instant%20molecular%20orientation%20microscopy%20for%20the%20life%20sciences&rft.jtitle=Nature%20methods&rft.au=Bruggeman,%20Ezra&rft.date=2024-10-07&rft.volume=21&rft.issue=10&rft.spage=1873&rft.epage=1883&rft.pages=1873-1883&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-024-02382-8&rft_dat=%3Cproquest_pubme%3E3115237181%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115237181&rft_id=info:pmid/39375574&rfr_iscdi=true |