Visualizing Scholarly Trends in Stochastic Models for Disease Prediction

Stochastic models play a pivotal role in disease prediction by accounting for randomness and uncertainty in biological systems. This study offers a visualization of trends in the application of stochastic models for disease prediction from 1990 to 2024, based on a bibliometric analysis of Scopus dat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Curēus (Palo Alto, CA) CA), 2024-09, Vol.16 (9), p.e69033
Hauptverfasser: V, Sunila, Kurian, Jais, Mariam Mathew, Liny, Mathew, Pratheesh, John, Dary, Joseph, Jeena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page e69033
container_title Curēus (Palo Alto, CA)
container_volume 16
creator V, Sunila
Kurian, Jais
Mariam Mathew, Liny
Mathew, Pratheesh
John, Dary
Joseph, Jeena
description Stochastic models play a pivotal role in disease prediction by accounting for randomness and uncertainty in biological systems. This study offers a visualization of trends in the application of stochastic models for disease prediction from 1990 to 2024, based on a bibliometric analysis of Scopus data. Key findings reveal a significant growth in research post-2014, largely driven by global health challenges like COVID-19. Despite these advancements, gaps remain in applying these models to non-communicable diseases and low-resource settings. By integrating computational techniques like machine learning, stochastic models hold promise for improving predictive accuracy. This study highlights the need for further international collaboration and interdisciplinary research, offering practical insights for researchers and public health professionals aiming to enhance disease prediction and intervention strategies.
doi_str_mv 10.7759/cureus.69033
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11464480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3115502042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c234t-12d0df6576cec636b8fd5fd09d743388a53d3ef34bd26798b171572ca9fb74ec3</originalsourceid><addsrcrecordid>eNpVkU1LAzEQhoMottTePEuOHmzN1ybZk0j9qKAotHoN2STbRrabmuwK9ddbbS31NAPz8M4wDwCnGA2FyPJL00bXpiHPEaUHoEswlwOJJTvc6zugn9I7QggjQZBAx6BDc5pjRngXjN98anXlv3w9gxMzD5WO1QpOo6ttgr6GkyaYuU6NN_ApWFclWIYIb3xyOjn4Ep31pvGhPgFHpa6S629rD7ze3U5H48Hj8_3D6PpxYAhlzQATi2zJM8GNM5zyQpY2Ky3KrWCUSqkzaqkrKSss4SKXBRY4E8TovCwEc4b2wNUmd9kWC2eNq5uoK7WMfqHjSgXt1f9J7edqFj4VxowzJtE64XybEMNH61KjFj4ZV1W6dqFNimKcZYggRtboxQY1MaQUXbnbg5H6EaA2AtSvgDV-tn_bDv57N_0GG8CDwQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115502042</pqid></control><display><type>article</type><title>Visualizing Scholarly Trends in Stochastic Models for Disease Prediction</title><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>V, Sunila ; Kurian, Jais ; Mariam Mathew, Liny ; Mathew, Pratheesh ; John, Dary ; Joseph, Jeena</creator><creatorcontrib>V, Sunila ; Kurian, Jais ; Mariam Mathew, Liny ; Mathew, Pratheesh ; John, Dary ; Joseph, Jeena</creatorcontrib><description>Stochastic models play a pivotal role in disease prediction by accounting for randomness and uncertainty in biological systems. This study offers a visualization of trends in the application of stochastic models for disease prediction from 1990 to 2024, based on a bibliometric analysis of Scopus data. Key findings reveal a significant growth in research post-2014, largely driven by global health challenges like COVID-19. Despite these advancements, gaps remain in applying these models to non-communicable diseases and low-resource settings. By integrating computational techniques like machine learning, stochastic models hold promise for improving predictive accuracy. This study highlights the need for further international collaboration and interdisciplinary research, offering practical insights for researchers and public health professionals aiming to enhance disease prediction and intervention strategies.</description><identifier>ISSN: 2168-8184</identifier><identifier>EISSN: 2168-8184</identifier><identifier>DOI: 10.7759/cureus.69033</identifier><identifier>PMID: 39391426</identifier><language>eng</language><publisher>United States: Cureus</publisher><subject>Health Policy ; Healthcare Technology ; Other</subject><ispartof>Curēus (Palo Alto, CA), 2024-09, Vol.16 (9), p.e69033</ispartof><rights>Copyright © 2024, V et al.</rights><rights>Copyright © 2024, V et al. 2024 V et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c234t-12d0df6576cec636b8fd5fd09d743388a53d3ef34bd26798b171572ca9fb74ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464480/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464480/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39391426$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>V, Sunila</creatorcontrib><creatorcontrib>Kurian, Jais</creatorcontrib><creatorcontrib>Mariam Mathew, Liny</creatorcontrib><creatorcontrib>Mathew, Pratheesh</creatorcontrib><creatorcontrib>John, Dary</creatorcontrib><creatorcontrib>Joseph, Jeena</creatorcontrib><title>Visualizing Scholarly Trends in Stochastic Models for Disease Prediction</title><title>Curēus (Palo Alto, CA)</title><addtitle>Cureus</addtitle><description>Stochastic models play a pivotal role in disease prediction by accounting for randomness and uncertainty in biological systems. This study offers a visualization of trends in the application of stochastic models for disease prediction from 1990 to 2024, based on a bibliometric analysis of Scopus data. Key findings reveal a significant growth in research post-2014, largely driven by global health challenges like COVID-19. Despite these advancements, gaps remain in applying these models to non-communicable diseases and low-resource settings. By integrating computational techniques like machine learning, stochastic models hold promise for improving predictive accuracy. This study highlights the need for further international collaboration and interdisciplinary research, offering practical insights for researchers and public health professionals aiming to enhance disease prediction and intervention strategies.</description><subject>Health Policy</subject><subject>Healthcare Technology</subject><subject>Other</subject><issn>2168-8184</issn><issn>2168-8184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkU1LAzEQhoMottTePEuOHmzN1ybZk0j9qKAotHoN2STbRrabmuwK9ddbbS31NAPz8M4wDwCnGA2FyPJL00bXpiHPEaUHoEswlwOJJTvc6zugn9I7QggjQZBAx6BDc5pjRngXjN98anXlv3w9gxMzD5WO1QpOo6ttgr6GkyaYuU6NN_ApWFclWIYIb3xyOjn4Ep31pvGhPgFHpa6S629rD7ze3U5H48Hj8_3D6PpxYAhlzQATi2zJM8GNM5zyQpY2Ky3KrWCUSqkzaqkrKSss4SKXBRY4E8TovCwEc4b2wNUmd9kWC2eNq5uoK7WMfqHjSgXt1f9J7edqFj4VxowzJtE64XybEMNH61KjFj4ZV1W6dqFNimKcZYggRtboxQY1MaQUXbnbg5H6EaA2AtSvgDV-tn_bDv57N_0GG8CDwQ</recordid><startdate>20240909</startdate><enddate>20240909</enddate><creator>V, Sunila</creator><creator>Kurian, Jais</creator><creator>Mariam Mathew, Liny</creator><creator>Mathew, Pratheesh</creator><creator>John, Dary</creator><creator>Joseph, Jeena</creator><general>Cureus</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240909</creationdate><title>Visualizing Scholarly Trends in Stochastic Models for Disease Prediction</title><author>V, Sunila ; Kurian, Jais ; Mariam Mathew, Liny ; Mathew, Pratheesh ; John, Dary ; Joseph, Jeena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c234t-12d0df6576cec636b8fd5fd09d743388a53d3ef34bd26798b171572ca9fb74ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Health Policy</topic><topic>Healthcare Technology</topic><topic>Other</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>V, Sunila</creatorcontrib><creatorcontrib>Kurian, Jais</creatorcontrib><creatorcontrib>Mariam Mathew, Liny</creatorcontrib><creatorcontrib>Mathew, Pratheesh</creatorcontrib><creatorcontrib>John, Dary</creatorcontrib><creatorcontrib>Joseph, Jeena</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Curēus (Palo Alto, CA)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>V, Sunila</au><au>Kurian, Jais</au><au>Mariam Mathew, Liny</au><au>Mathew, Pratheesh</au><au>John, Dary</au><au>Joseph, Jeena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visualizing Scholarly Trends in Stochastic Models for Disease Prediction</atitle><jtitle>Curēus (Palo Alto, CA)</jtitle><addtitle>Cureus</addtitle><date>2024-09-09</date><risdate>2024</risdate><volume>16</volume><issue>9</issue><spage>e69033</spage><pages>e69033-</pages><issn>2168-8184</issn><eissn>2168-8184</eissn><abstract>Stochastic models play a pivotal role in disease prediction by accounting for randomness and uncertainty in biological systems. This study offers a visualization of trends in the application of stochastic models for disease prediction from 1990 to 2024, based on a bibliometric analysis of Scopus data. Key findings reveal a significant growth in research post-2014, largely driven by global health challenges like COVID-19. Despite these advancements, gaps remain in applying these models to non-communicable diseases and low-resource settings. By integrating computational techniques like machine learning, stochastic models hold promise for improving predictive accuracy. This study highlights the need for further international collaboration and interdisciplinary research, offering practical insights for researchers and public health professionals aiming to enhance disease prediction and intervention strategies.</abstract><cop>United States</cop><pub>Cureus</pub><pmid>39391426</pmid><doi>10.7759/cureus.69033</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-8184
ispartof Curēus (Palo Alto, CA), 2024-09, Vol.16 (9), p.e69033
issn 2168-8184
2168-8184
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11464480
source PubMed Central; PubMed Central Open Access
subjects Health Policy
Healthcare Technology
Other
title Visualizing Scholarly Trends in Stochastic Models for Disease Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visualizing%20Scholarly%20Trends%20in%20Stochastic%20Models%20for%20Disease%20Prediction&rft.jtitle=Cur%C4%93us%20(Palo%20Alto,%20CA)&rft.au=V,%20Sunila&rft.date=2024-09-09&rft.volume=16&rft.issue=9&rft.spage=e69033&rft.pages=e69033-&rft.issn=2168-8184&rft.eissn=2168-8184&rft_id=info:doi/10.7759/cureus.69033&rft_dat=%3Cproquest_pubme%3E3115502042%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115502042&rft_id=info:pmid/39391426&rfr_iscdi=true