Functional diversification process of opsin genes for teleost visual and pineal photoreceptions

Most vertebrates have a rhodopsin gene with a five-exon structure for visual photoreception. By contrast, teleost fishes have an intron-less rhodopsin gene for visual photoreception and an intron-containing rhodopsin ( exo-rhodopsin ) gene for pineal photoreception. Here, our analysis of non-teleost...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular and molecular life sciences : CMLS 2024-12, Vol.81 (1), p.428-428, Article 428
Hauptverfasser: Fujiyabu, Chihiro, Gyoja, Fuki, Sato, Keita, Kawano-Yamashita, Emi, Ohuchi, Hideyo, Kusakabe, Takehiro G., Yamashita, Takahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 428
container_issue 1
container_start_page 428
container_title Cellular and molecular life sciences : CMLS
container_volume 81
creator Fujiyabu, Chihiro
Gyoja, Fuki
Sato, Keita
Kawano-Yamashita, Emi
Ohuchi, Hideyo
Kusakabe, Takehiro G.
Yamashita, Takahiro
description Most vertebrates have a rhodopsin gene with a five-exon structure for visual photoreception. By contrast, teleost fishes have an intron-less rhodopsin gene for visual photoreception and an intron-containing rhodopsin ( exo-rhodopsin ) gene for pineal photoreception. Here, our analysis of non-teleost and teleost fishes in various lineages of the Actinopterygii reveals that retroduplication after branching of the Polypteriformes produced the intron-less rhodopsin gene for visual photoreception, which converted the parental intron-containing rhodopsin gene into a pineal opsin in the common ancestor of the Teleostei. Additional analysis of a pineal opsin, pinopsin, shows that the pinopsin gene functions as a green-sensitive opsin together with the intron-containing rhodopsin gene for pineal photoreception in tarpon as an evolutionary intermediate state but is missing in other teleost fishes, probably because of the redundancy with the intron-containing rhodopsin gene. We propose an evolutionary scenario where unique retroduplication caused a “domino effect” on the functional diversification of teleost visual and pineal opsin genes.
doi_str_mv 10.1007/s00018-024-05461-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11461388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3114501605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-44eb17ec93f472fde574d6b75db7daa646ee470f2d0e388e2878df8bba3bccd63</originalsourceid><addsrcrecordid>eNqNkUuLFTEQhYMozjj6B1xIwI2b1rw6Sa9EBkeFATcK7kI6qdzJ0Ddpk-4L_ntz7ev4WIirFKnvnErqIPSUkpeUEPWqEkKo7ggTHemFpB2_h86pYKQbiKL3T7XU7MsZelTrbaN7zeRDdMYHrgYl-DkyV2tyS8zJTtjHA5QaQ3T2eIPnkh3UinPAea4x4R0kqDjkgheYINcFH2Jdm9Imj-eYoJXzTV5yAQfz0aM-Rg-CnSo8OZ0X6PPV20-X77vrj-8-XL657pzgfOmEgJEqcAMPQrHgoVfCy1H1flTeWikkgFAkME-Aaw1MK-2DHkfLR-e85Bfo9eY7r-MevIO0FDuZucS9Ld9MttH82UnxxuzywVDaNtcsm8OLk0PJX1eoi9nH6mCabIK8VsNpzzVjAyX_gVLREypJ39Dnf6G3eS1t2xvFpBC9ahTbKFdyrQXC3cMpMceszZa1aVmbH1kb3kTPfv_yneRnuA3gG1BbK-2g_Jr9D9vvHFy3VQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3114264457</pqid></control><display><type>article</type><title>Functional diversification process of opsin genes for teleost visual and pineal photoreceptions</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA Free Journals</source><creator>Fujiyabu, Chihiro ; Gyoja, Fuki ; Sato, Keita ; Kawano-Yamashita, Emi ; Ohuchi, Hideyo ; Kusakabe, Takehiro G. ; Yamashita, Takahiro</creator><creatorcontrib>Fujiyabu, Chihiro ; Gyoja, Fuki ; Sato, Keita ; Kawano-Yamashita, Emi ; Ohuchi, Hideyo ; Kusakabe, Takehiro G. ; Yamashita, Takahiro</creatorcontrib><description>Most vertebrates have a rhodopsin gene with a five-exon structure for visual photoreception. By contrast, teleost fishes have an intron-less rhodopsin gene for visual photoreception and an intron-containing rhodopsin ( exo-rhodopsin ) gene for pineal photoreception. Here, our analysis of non-teleost and teleost fishes in various lineages of the Actinopterygii reveals that retroduplication after branching of the Polypteriformes produced the intron-less rhodopsin gene for visual photoreception, which converted the parental intron-containing rhodopsin gene into a pineal opsin in the common ancestor of the Teleostei. Additional analysis of a pineal opsin, pinopsin, shows that the pinopsin gene functions as a green-sensitive opsin together with the intron-containing rhodopsin gene for pineal photoreception in tarpon as an evolutionary intermediate state but is missing in other teleost fishes, probably because of the redundancy with the intron-containing rhodopsin gene. We propose an evolutionary scenario where unique retroduplication caused a “domino effect” on the functional diversification of teleost visual and pineal opsin genes.</description><identifier>ISSN: 1420-682X</identifier><identifier>ISSN: 1420-9071</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-024-05461-3</identifier><identifier>PMID: 39379743</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Amino Acid Sequence ; ancestry ; Animals ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Evolution, Molecular ; Fishes - genetics ; Functionals ; Gene Duplication ; Genes ; Introns - genetics ; Life Sciences ; Megalopidae ; Opsins - genetics ; Opsins - metabolism ; Original ; Original Article ; Photoreception ; Phylogeny ; Pineal gland ; Pineal Gland - metabolism ; Pinopsin ; Polypteriformes ; Redundancy ; Rhodopsin ; Rhodopsin - genetics ; Rhodopsin - metabolism ; Vertebrates ; Visual effects</subject><ispartof>Cellular and molecular life sciences : CMLS, 2024-12, Vol.81 (1), p.428-428, Article 428</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c433t-44eb17ec93f472fde574d6b75db7daa646ee470f2d0e388e2878df8bba3bccd63</cites><orcidid>0000-0001-9289-7406 ; 0000-0002-7187-7163 ; 0000-0002-8325-3665 ; 0000-0002-7089-2951 ; 0000-0002-9360-2144 ; 0000-0002-7956-9288 ; 0000-0003-1961-606X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461388/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11461388/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41096,41464,42165,42533,51294,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39379743$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fujiyabu, Chihiro</creatorcontrib><creatorcontrib>Gyoja, Fuki</creatorcontrib><creatorcontrib>Sato, Keita</creatorcontrib><creatorcontrib>Kawano-Yamashita, Emi</creatorcontrib><creatorcontrib>Ohuchi, Hideyo</creatorcontrib><creatorcontrib>Kusakabe, Takehiro G.</creatorcontrib><creatorcontrib>Yamashita, Takahiro</creatorcontrib><title>Functional diversification process of opsin genes for teleost visual and pineal photoreceptions</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>Most vertebrates have a rhodopsin gene with a five-exon structure for visual photoreception. By contrast, teleost fishes have an intron-less rhodopsin gene for visual photoreception and an intron-containing rhodopsin ( exo-rhodopsin ) gene for pineal photoreception. Here, our analysis of non-teleost and teleost fishes in various lineages of the Actinopterygii reveals that retroduplication after branching of the Polypteriformes produced the intron-less rhodopsin gene for visual photoreception, which converted the parental intron-containing rhodopsin gene into a pineal opsin in the common ancestor of the Teleostei. Additional analysis of a pineal opsin, pinopsin, shows that the pinopsin gene functions as a green-sensitive opsin together with the intron-containing rhodopsin gene for pineal photoreception in tarpon as an evolutionary intermediate state but is missing in other teleost fishes, probably because of the redundancy with the intron-containing rhodopsin gene. We propose an evolutionary scenario where unique retroduplication caused a “domino effect” on the functional diversification of teleost visual and pineal opsin genes.</description><subject>Amino Acid Sequence</subject><subject>ancestry</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Evolution, Molecular</subject><subject>Fishes - genetics</subject><subject>Functionals</subject><subject>Gene Duplication</subject><subject>Genes</subject><subject>Introns - genetics</subject><subject>Life Sciences</subject><subject>Megalopidae</subject><subject>Opsins - genetics</subject><subject>Opsins - metabolism</subject><subject>Original</subject><subject>Original Article</subject><subject>Photoreception</subject><subject>Phylogeny</subject><subject>Pineal gland</subject><subject>Pineal Gland - metabolism</subject><subject>Pinopsin</subject><subject>Polypteriformes</subject><subject>Redundancy</subject><subject>Rhodopsin</subject><subject>Rhodopsin - genetics</subject><subject>Rhodopsin - metabolism</subject><subject>Vertebrates</subject><subject>Visual effects</subject><issn>1420-682X</issn><issn>1420-9071</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNqNkUuLFTEQhYMozjj6B1xIwI2b1rw6Sa9EBkeFATcK7kI6qdzJ0Ddpk-4L_ntz7ev4WIirFKnvnErqIPSUkpeUEPWqEkKo7ggTHemFpB2_h86pYKQbiKL3T7XU7MsZelTrbaN7zeRDdMYHrgYl-DkyV2tyS8zJTtjHA5QaQ3T2eIPnkh3UinPAea4x4R0kqDjkgheYINcFH2Jdm9Imj-eYoJXzTV5yAQfz0aM-Rg-CnSo8OZ0X6PPV20-X77vrj-8-XL657pzgfOmEgJEqcAMPQrHgoVfCy1H1flTeWikkgFAkME-Aaw1MK-2DHkfLR-e85Bfo9eY7r-MevIO0FDuZucS9Ld9MttH82UnxxuzywVDaNtcsm8OLk0PJX1eoi9nH6mCabIK8VsNpzzVjAyX_gVLREypJ39Dnf6G3eS1t2xvFpBC9ahTbKFdyrQXC3cMpMceszZa1aVmbH1kb3kTPfv_yneRnuA3gG1BbK-2g_Jr9D9vvHFy3VQ</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Fujiyabu, Chihiro</creator><creator>Gyoja, Fuki</creator><creator>Sato, Keita</creator><creator>Kawano-Yamashita, Emi</creator><creator>Ohuchi, Hideyo</creator><creator>Kusakabe, Takehiro G.</creator><creator>Yamashita, Takahiro</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9289-7406</orcidid><orcidid>https://orcid.org/0000-0002-7187-7163</orcidid><orcidid>https://orcid.org/0000-0002-8325-3665</orcidid><orcidid>https://orcid.org/0000-0002-7089-2951</orcidid><orcidid>https://orcid.org/0000-0002-9360-2144</orcidid><orcidid>https://orcid.org/0000-0002-7956-9288</orcidid><orcidid>https://orcid.org/0000-0003-1961-606X</orcidid></search><sort><creationdate>20241201</creationdate><title>Functional diversification process of opsin genes for teleost visual and pineal photoreceptions</title><author>Fujiyabu, Chihiro ; Gyoja, Fuki ; Sato, Keita ; Kawano-Yamashita, Emi ; Ohuchi, Hideyo ; Kusakabe, Takehiro G. ; Yamashita, Takahiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-44eb17ec93f472fde574d6b75db7daa646ee470f2d0e388e2878df8bba3bccd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amino Acid Sequence</topic><topic>ancestry</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Evolution, Molecular</topic><topic>Fishes - genetics</topic><topic>Functionals</topic><topic>Gene Duplication</topic><topic>Genes</topic><topic>Introns - genetics</topic><topic>Life Sciences</topic><topic>Megalopidae</topic><topic>Opsins - genetics</topic><topic>Opsins - metabolism</topic><topic>Original</topic><topic>Original Article</topic><topic>Photoreception</topic><topic>Phylogeny</topic><topic>Pineal gland</topic><topic>Pineal Gland - metabolism</topic><topic>Pinopsin</topic><topic>Polypteriformes</topic><topic>Redundancy</topic><topic>Rhodopsin</topic><topic>Rhodopsin - genetics</topic><topic>Rhodopsin - metabolism</topic><topic>Vertebrates</topic><topic>Visual effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujiyabu, Chihiro</creatorcontrib><creatorcontrib>Gyoja, Fuki</creatorcontrib><creatorcontrib>Sato, Keita</creatorcontrib><creatorcontrib>Kawano-Yamashita, Emi</creatorcontrib><creatorcontrib>Ohuchi, Hideyo</creatorcontrib><creatorcontrib>Kusakabe, Takehiro G.</creatorcontrib><creatorcontrib>Yamashita, Takahiro</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujiyabu, Chihiro</au><au>Gyoja, Fuki</au><au>Sato, Keita</au><au>Kawano-Yamashita, Emi</au><au>Ohuchi, Hideyo</au><au>Kusakabe, Takehiro G.</au><au>Yamashita, Takahiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional diversification process of opsin genes for teleost visual and pineal photoreceptions</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>81</volume><issue>1</issue><spage>428</spage><epage>428</epage><pages>428-428</pages><artnum>428</artnum><issn>1420-682X</issn><issn>1420-9071</issn><eissn>1420-9071</eissn><abstract>Most vertebrates have a rhodopsin gene with a five-exon structure for visual photoreception. By contrast, teleost fishes have an intron-less rhodopsin gene for visual photoreception and an intron-containing rhodopsin ( exo-rhodopsin ) gene for pineal photoreception. Here, our analysis of non-teleost and teleost fishes in various lineages of the Actinopterygii reveals that retroduplication after branching of the Polypteriformes produced the intron-less rhodopsin gene for visual photoreception, which converted the parental intron-containing rhodopsin gene into a pineal opsin in the common ancestor of the Teleostei. Additional analysis of a pineal opsin, pinopsin, shows that the pinopsin gene functions as a green-sensitive opsin together with the intron-containing rhodopsin gene for pineal photoreception in tarpon as an evolutionary intermediate state but is missing in other teleost fishes, probably because of the redundancy with the intron-containing rhodopsin gene. We propose an evolutionary scenario where unique retroduplication caused a “domino effect” on the functional diversification of teleost visual and pineal opsin genes.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>39379743</pmid><doi>10.1007/s00018-024-05461-3</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9289-7406</orcidid><orcidid>https://orcid.org/0000-0002-7187-7163</orcidid><orcidid>https://orcid.org/0000-0002-8325-3665</orcidid><orcidid>https://orcid.org/0000-0002-7089-2951</orcidid><orcidid>https://orcid.org/0000-0002-9360-2144</orcidid><orcidid>https://orcid.org/0000-0002-7956-9288</orcidid><orcidid>https://orcid.org/0000-0003-1961-606X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1420-682X
ispartof Cellular and molecular life sciences : CMLS, 2024-12, Vol.81 (1), p.428-428, Article 428
issn 1420-682X
1420-9071
1420-9071
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11461388
source MEDLINE; Springer Nature - Complete Springer Journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA Free Journals
subjects Amino Acid Sequence
ancestry
Animals
Biochemistry
Biomedical and Life Sciences
Biomedicine
Cell Biology
Evolution, Molecular
Fishes - genetics
Functionals
Gene Duplication
Genes
Introns - genetics
Life Sciences
Megalopidae
Opsins - genetics
Opsins - metabolism
Original
Original Article
Photoreception
Phylogeny
Pineal gland
Pineal Gland - metabolism
Pinopsin
Polypteriformes
Redundancy
Rhodopsin
Rhodopsin - genetics
Rhodopsin - metabolism
Vertebrates
Visual effects
title Functional diversification process of opsin genes for teleost visual and pineal photoreceptions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A57%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20diversification%20process%20of%20opsin%20genes%20for%20teleost%20visual%20and%20pineal%20photoreceptions&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Fujiyabu,%20Chihiro&rft.date=2024-12-01&rft.volume=81&rft.issue=1&rft.spage=428&rft.epage=428&rft.pages=428-428&rft.artnum=428&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-024-05461-3&rft_dat=%3Cproquest_pubme%3E3114501605%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3114264457&rft_id=info:pmid/39379743&rfr_iscdi=true