Improved inference for MCP‐Mod approach using time‐to‐event endpoints with small sample sizes

The Multiple Comparison Procedures with Modeling Techniques (MCP‐Mod) framework has been recently approved by the U.S. Food, Administration, and European Medicines Agency as fit‐for‐purpose for phase II studies. Nonetheless, this approach relies on the asymptotic properties of Maximum Likelihood (ML...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceutical statistics : the journal of the pharmaceutical industry 2023-09, Vol.22 (5), p.760-772
Hauptverfasser: Diniz, Márcio A., Gallardo, Diego I., Magalhães, Tiago M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 772
container_issue 5
container_start_page 760
container_title Pharmaceutical statistics : the journal of the pharmaceutical industry
container_volume 22
creator Diniz, Márcio A.
Gallardo, Diego I.
Magalhães, Tiago M.
description The Multiple Comparison Procedures with Modeling Techniques (MCP‐Mod) framework has been recently approved by the U.S. Food, Administration, and European Medicines Agency as fit‐for‐purpose for phase II studies. Nonetheless, this approach relies on the asymptotic properties of Maximum Likelihood (ML) estimators, which might not be reasonable for small sample sizes. In this paper, we derived improved ML estimators and correction for their covariance matrices in the censored Weibull regression model based on the corrective and preventive approaches. We performed two simulation studies to evaluate ML and improved ML estimators with their covariance matrices in (i) a regression framework (ii) the Multiple Comparison Procedures with Modeling Techniques framework. We have shown that improved ML estimators are less biased than ML estimators yielding Wald‐type statistics that controls type I error without loss of power in both frameworks. Therefore, we recommend the use of improved ML estimators in the MCP‐Mod approach to control type I error at nominal value for sample sizes ranging from 5 to 25 subjects per dose.
doi_str_mv 10.1002/pst.2303
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11457869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807918880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3663-1b8f9e5eeafbd9bc2743d762c4d137b6112099991d2acfc06e6ce08fa950f7363</originalsourceid><addsrcrecordid>eNp1kc1qFTEYhoMotlbBK5CAGzfT5ktmMjMrkYM_hRYL1nXIZL70pMwkYzJzSl31EnqNXompbY-tYBZJ4Ht4eJOXkNfA9oExfjCleZ8LJp6QXahEW4AE_nR7Z-UOeZHSOWNQN231nOyIGqBljO0SczhOMWywp85bjOgNUhsiPV6d_Lq6Pg491VMGtFnTJTl_Rmc3Yp7MIW-4QT9T9P0UnJ8TvXDzmqZRDwNNepwGpMn9xPSSPLN6SPjq7twj3z99PF19KY6-fj5cfTgqjJBSFNA1tsUKUduubzvD61L0teSm7EHUnQTgrM0Leq6NNUyiNMgaq9uK2VpIsUfe33qnpRuxNzlc1IOaoht1vFRBO_V44t1anYWNAiirupFtNry7M8TwY8E0q9Elg8OgPYYlKd6wuoWmaVhG3_6Dnocl-vy-TOUv5xJE-VdoYkgpot2mAaZuqlO5OnVTXUbfPEy_Be-7ykBxC1y4AS__K1In307_CH8D3Yym8A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2860426134</pqid></control><display><type>article</type><title>Improved inference for MCP‐Mod approach using time‐to‐event endpoints with small sample sizes</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Diniz, Márcio A. ; Gallardo, Diego I. ; Magalhães, Tiago M.</creator><creatorcontrib>Diniz, Márcio A. ; Gallardo, Diego I. ; Magalhães, Tiago M.</creatorcontrib><description>The Multiple Comparison Procedures with Modeling Techniques (MCP‐Mod) framework has been recently approved by the U.S. Food, Administration, and European Medicines Agency as fit‐for‐purpose for phase II studies. Nonetheless, this approach relies on the asymptotic properties of Maximum Likelihood (ML) estimators, which might not be reasonable for small sample sizes. In this paper, we derived improved ML estimators and correction for their covariance matrices in the censored Weibull regression model based on the corrective and preventive approaches. We performed two simulation studies to evaluate ML and improved ML estimators with their covariance matrices in (i) a regression framework (ii) the Multiple Comparison Procedures with Modeling Techniques framework. We have shown that improved ML estimators are less biased than ML estimators yielding Wald‐type statistics that controls type I error without loss of power in both frameworks. Therefore, we recommend the use of improved ML estimators in the MCP‐Mod approach to control type I error at nominal value for sample sizes ranging from 5 to 25 subjects per dose.</description><identifier>ISSN: 1539-1604</identifier><identifier>ISSN: 1539-1612</identifier><identifier>EISSN: 1539-1612</identifier><identifier>DOI: 10.1002/pst.2303</identifier><identifier>PMID: 37119000</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Inc</publisher><subject>bias correction ; Clinical trials ; Computer Simulation ; covariance refinement ; Estimating techniques ; Humans ; MCP‐Mod approach ; Sample Size ; small sample size ; Weibull model</subject><ispartof>Pharmaceutical statistics : the journal of the pharmaceutical industry, 2023-09, Vol.22 (5), p.760-772</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3663-1b8f9e5eeafbd9bc2743d762c4d137b6112099991d2acfc06e6ce08fa950f7363</cites><orcidid>0000-0003-3814-9532 ; 0000-0001-8184-7403 ; 0000-0002-2427-7843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpst.2303$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpst.2303$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37119000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Diniz, Márcio A.</creatorcontrib><creatorcontrib>Gallardo, Diego I.</creatorcontrib><creatorcontrib>Magalhães, Tiago M.</creatorcontrib><title>Improved inference for MCP‐Mod approach using time‐to‐event endpoints with small sample sizes</title><title>Pharmaceutical statistics : the journal of the pharmaceutical industry</title><addtitle>Pharm Stat</addtitle><description>The Multiple Comparison Procedures with Modeling Techniques (MCP‐Mod) framework has been recently approved by the U.S. Food, Administration, and European Medicines Agency as fit‐for‐purpose for phase II studies. Nonetheless, this approach relies on the asymptotic properties of Maximum Likelihood (ML) estimators, which might not be reasonable for small sample sizes. In this paper, we derived improved ML estimators and correction for their covariance matrices in the censored Weibull regression model based on the corrective and preventive approaches. We performed two simulation studies to evaluate ML and improved ML estimators with their covariance matrices in (i) a regression framework (ii) the Multiple Comparison Procedures with Modeling Techniques framework. We have shown that improved ML estimators are less biased than ML estimators yielding Wald‐type statistics that controls type I error without loss of power in both frameworks. Therefore, we recommend the use of improved ML estimators in the MCP‐Mod approach to control type I error at nominal value for sample sizes ranging from 5 to 25 subjects per dose.</description><subject>bias correction</subject><subject>Clinical trials</subject><subject>Computer Simulation</subject><subject>covariance refinement</subject><subject>Estimating techniques</subject><subject>Humans</subject><subject>MCP‐Mod approach</subject><subject>Sample Size</subject><subject>small sample size</subject><subject>Weibull model</subject><issn>1539-1604</issn><issn>1539-1612</issn><issn>1539-1612</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1qFTEYhoMotlbBK5CAGzfT5ktmMjMrkYM_hRYL1nXIZL70pMwkYzJzSl31EnqNXompbY-tYBZJ4Ht4eJOXkNfA9oExfjCleZ8LJp6QXahEW4AE_nR7Z-UOeZHSOWNQN231nOyIGqBljO0SczhOMWywp85bjOgNUhsiPV6d_Lq6Pg491VMGtFnTJTl_Rmc3Yp7MIW-4QT9T9P0UnJ8TvXDzmqZRDwNNepwGpMn9xPSSPLN6SPjq7twj3z99PF19KY6-fj5cfTgqjJBSFNA1tsUKUduubzvD61L0teSm7EHUnQTgrM0Leq6NNUyiNMgaq9uK2VpIsUfe33qnpRuxNzlc1IOaoht1vFRBO_V44t1anYWNAiirupFtNry7M8TwY8E0q9Elg8OgPYYlKd6wuoWmaVhG3_6Dnocl-vy-TOUv5xJE-VdoYkgpot2mAaZuqlO5OnVTXUbfPEy_Be-7ykBxC1y4AS__K1In307_CH8D3Yym8A</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Diniz, Márcio A.</creator><creator>Gallardo, Diego I.</creator><creator>Magalhães, Tiago M.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3814-9532</orcidid><orcidid>https://orcid.org/0000-0001-8184-7403</orcidid><orcidid>https://orcid.org/0000-0002-2427-7843</orcidid></search><sort><creationdate>202309</creationdate><title>Improved inference for MCP‐Mod approach using time‐to‐event endpoints with small sample sizes</title><author>Diniz, Márcio A. ; Gallardo, Diego I. ; Magalhães, Tiago M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3663-1b8f9e5eeafbd9bc2743d762c4d137b6112099991d2acfc06e6ce08fa950f7363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>bias correction</topic><topic>Clinical trials</topic><topic>Computer Simulation</topic><topic>covariance refinement</topic><topic>Estimating techniques</topic><topic>Humans</topic><topic>MCP‐Mod approach</topic><topic>Sample Size</topic><topic>small sample size</topic><topic>Weibull model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diniz, Márcio A.</creatorcontrib><creatorcontrib>Gallardo, Diego I.</creatorcontrib><creatorcontrib>Magalhães, Tiago M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Pharmaceutical statistics : the journal of the pharmaceutical industry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diniz, Márcio A.</au><au>Gallardo, Diego I.</au><au>Magalhães, Tiago M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved inference for MCP‐Mod approach using time‐to‐event endpoints with small sample sizes</atitle><jtitle>Pharmaceutical statistics : the journal of the pharmaceutical industry</jtitle><addtitle>Pharm Stat</addtitle><date>2023-09</date><risdate>2023</risdate><volume>22</volume><issue>5</issue><spage>760</spage><epage>772</epage><pages>760-772</pages><issn>1539-1604</issn><issn>1539-1612</issn><eissn>1539-1612</eissn><abstract>The Multiple Comparison Procedures with Modeling Techniques (MCP‐Mod) framework has been recently approved by the U.S. Food, Administration, and European Medicines Agency as fit‐for‐purpose for phase II studies. Nonetheless, this approach relies on the asymptotic properties of Maximum Likelihood (ML) estimators, which might not be reasonable for small sample sizes. In this paper, we derived improved ML estimators and correction for their covariance matrices in the censored Weibull regression model based on the corrective and preventive approaches. We performed two simulation studies to evaluate ML and improved ML estimators with their covariance matrices in (i) a regression framework (ii) the Multiple Comparison Procedures with Modeling Techniques framework. We have shown that improved ML estimators are less biased than ML estimators yielding Wald‐type statistics that controls type I error without loss of power in both frameworks. Therefore, we recommend the use of improved ML estimators in the MCP‐Mod approach to control type I error at nominal value for sample sizes ranging from 5 to 25 subjects per dose.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>37119000</pmid><doi>10.1002/pst.2303</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3814-9532</orcidid><orcidid>https://orcid.org/0000-0001-8184-7403</orcidid><orcidid>https://orcid.org/0000-0002-2427-7843</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1539-1604
ispartof Pharmaceutical statistics : the journal of the pharmaceutical industry, 2023-09, Vol.22 (5), p.760-772
issn 1539-1604
1539-1612
1539-1612
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11457869
source Wiley Online Library - AutoHoldings Journals; MEDLINE
subjects bias correction
Clinical trials
Computer Simulation
covariance refinement
Estimating techniques
Humans
MCP‐Mod approach
Sample Size
small sample size
Weibull model
title Improved inference for MCP‐Mod approach using time‐to‐event endpoints with small sample sizes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A29%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20inference%20for%20MCP%E2%80%90Mod%20approach%20using%20time%E2%80%90to%E2%80%90event%20endpoints%20with%20small%20sample%20sizes&rft.jtitle=Pharmaceutical%20statistics%20:%20the%20journal%20of%20the%20pharmaceutical%20industry&rft.au=Diniz,%20M%C3%A1rcio%20A.&rft.date=2023-09&rft.volume=22&rft.issue=5&rft.spage=760&rft.epage=772&rft.pages=760-772&rft.issn=1539-1604&rft.eissn=1539-1612&rft_id=info:doi/10.1002/pst.2303&rft_dat=%3Cproquest_pubme%3E2807918880%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2860426134&rft_id=info:pmid/37119000&rfr_iscdi=true