Improved inference for MCP‐Mod approach using time‐to‐event endpoints with small sample sizes
The Multiple Comparison Procedures with Modeling Techniques (MCP‐Mod) framework has been recently approved by the U.S. Food, Administration, and European Medicines Agency as fit‐for‐purpose for phase II studies. Nonetheless, this approach relies on the asymptotic properties of Maximum Likelihood (ML...
Gespeichert in:
Veröffentlicht in: | Pharmaceutical statistics : the journal of the pharmaceutical industry 2023-09, Vol.22 (5), p.760-772 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 772 |
---|---|
container_issue | 5 |
container_start_page | 760 |
container_title | Pharmaceutical statistics : the journal of the pharmaceutical industry |
container_volume | 22 |
creator | Diniz, Márcio A. Gallardo, Diego I. Magalhães, Tiago M. |
description | The Multiple Comparison Procedures with Modeling Techniques (MCP‐Mod) framework has been recently approved by the U.S. Food, Administration, and European Medicines Agency as fit‐for‐purpose for phase II studies. Nonetheless, this approach relies on the asymptotic properties of Maximum Likelihood (ML) estimators, which might not be reasonable for small sample sizes. In this paper, we derived improved ML estimators and correction for their covariance matrices in the censored Weibull regression model based on the corrective and preventive approaches. We performed two simulation studies to evaluate ML and improved ML estimators with their covariance matrices in (i) a regression framework (ii) the Multiple Comparison Procedures with Modeling Techniques framework. We have shown that improved ML estimators are less biased than ML estimators yielding Wald‐type statistics that controls type I error without loss of power in both frameworks. Therefore, we recommend the use of improved ML estimators in the MCP‐Mod approach to control type I error at nominal value for sample sizes ranging from 5 to 25 subjects per dose. |
doi_str_mv | 10.1002/pst.2303 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11457869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2807918880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3663-1b8f9e5eeafbd9bc2743d762c4d137b6112099991d2acfc06e6ce08fa950f7363</originalsourceid><addsrcrecordid>eNp1kc1qFTEYhoMotlbBK5CAGzfT5ktmMjMrkYM_hRYL1nXIZL70pMwkYzJzSl31EnqNXompbY-tYBZJ4Ht4eJOXkNfA9oExfjCleZ8LJp6QXahEW4AE_nR7Z-UOeZHSOWNQN231nOyIGqBljO0SczhOMWywp85bjOgNUhsiPV6d_Lq6Pg491VMGtFnTJTl_Rmc3Yp7MIW-4QT9T9P0UnJ8TvXDzmqZRDwNNepwGpMn9xPSSPLN6SPjq7twj3z99PF19KY6-fj5cfTgqjJBSFNA1tsUKUduubzvD61L0teSm7EHUnQTgrM0Leq6NNUyiNMgaq9uK2VpIsUfe33qnpRuxNzlc1IOaoht1vFRBO_V44t1anYWNAiirupFtNry7M8TwY8E0q9Elg8OgPYYlKd6wuoWmaVhG3_6Dnocl-vy-TOUv5xJE-VdoYkgpot2mAaZuqlO5OnVTXUbfPEy_Be-7ykBxC1y4AS__K1In307_CH8D3Yym8A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2860426134</pqid></control><display><type>article</type><title>Improved inference for MCP‐Mod approach using time‐to‐event endpoints with small sample sizes</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Diniz, Márcio A. ; Gallardo, Diego I. ; Magalhães, Tiago M.</creator><creatorcontrib>Diniz, Márcio A. ; Gallardo, Diego I. ; Magalhães, Tiago M.</creatorcontrib><description>The Multiple Comparison Procedures with Modeling Techniques (MCP‐Mod) framework has been recently approved by the U.S. Food, Administration, and European Medicines Agency as fit‐for‐purpose for phase II studies. Nonetheless, this approach relies on the asymptotic properties of Maximum Likelihood (ML) estimators, which might not be reasonable for small sample sizes. In this paper, we derived improved ML estimators and correction for their covariance matrices in the censored Weibull regression model based on the corrective and preventive approaches. We performed two simulation studies to evaluate ML and improved ML estimators with their covariance matrices in (i) a regression framework (ii) the Multiple Comparison Procedures with Modeling Techniques framework. We have shown that improved ML estimators are less biased than ML estimators yielding Wald‐type statistics that controls type I error without loss of power in both frameworks. Therefore, we recommend the use of improved ML estimators in the MCP‐Mod approach to control type I error at nominal value for sample sizes ranging from 5 to 25 subjects per dose.</description><identifier>ISSN: 1539-1604</identifier><identifier>ISSN: 1539-1612</identifier><identifier>EISSN: 1539-1612</identifier><identifier>DOI: 10.1002/pst.2303</identifier><identifier>PMID: 37119000</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Inc</publisher><subject>bias correction ; Clinical trials ; Computer Simulation ; covariance refinement ; Estimating techniques ; Humans ; MCP‐Mod approach ; Sample Size ; small sample size ; Weibull model</subject><ispartof>Pharmaceutical statistics : the journal of the pharmaceutical industry, 2023-09, Vol.22 (5), p.760-772</ispartof><rights>2023 John Wiley & Sons Ltd.</rights><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3663-1b8f9e5eeafbd9bc2743d762c4d137b6112099991d2acfc06e6ce08fa950f7363</cites><orcidid>0000-0003-3814-9532 ; 0000-0001-8184-7403 ; 0000-0002-2427-7843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpst.2303$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpst.2303$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37119000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Diniz, Márcio A.</creatorcontrib><creatorcontrib>Gallardo, Diego I.</creatorcontrib><creatorcontrib>Magalhães, Tiago M.</creatorcontrib><title>Improved inference for MCP‐Mod approach using time‐to‐event endpoints with small sample sizes</title><title>Pharmaceutical statistics : the journal of the pharmaceutical industry</title><addtitle>Pharm Stat</addtitle><description>The Multiple Comparison Procedures with Modeling Techniques (MCP‐Mod) framework has been recently approved by the U.S. Food, Administration, and European Medicines Agency as fit‐for‐purpose for phase II studies. Nonetheless, this approach relies on the asymptotic properties of Maximum Likelihood (ML) estimators, which might not be reasonable for small sample sizes. In this paper, we derived improved ML estimators and correction for their covariance matrices in the censored Weibull regression model based on the corrective and preventive approaches. We performed two simulation studies to evaluate ML and improved ML estimators with their covariance matrices in (i) a regression framework (ii) the Multiple Comparison Procedures with Modeling Techniques framework. We have shown that improved ML estimators are less biased than ML estimators yielding Wald‐type statistics that controls type I error without loss of power in both frameworks. Therefore, we recommend the use of improved ML estimators in the MCP‐Mod approach to control type I error at nominal value for sample sizes ranging from 5 to 25 subjects per dose.</description><subject>bias correction</subject><subject>Clinical trials</subject><subject>Computer Simulation</subject><subject>covariance refinement</subject><subject>Estimating techniques</subject><subject>Humans</subject><subject>MCP‐Mod approach</subject><subject>Sample Size</subject><subject>small sample size</subject><subject>Weibull model</subject><issn>1539-1604</issn><issn>1539-1612</issn><issn>1539-1612</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1qFTEYhoMotlbBK5CAGzfT5ktmMjMrkYM_hRYL1nXIZL70pMwkYzJzSl31EnqNXompbY-tYBZJ4Ht4eJOXkNfA9oExfjCleZ8LJp6QXahEW4AE_nR7Z-UOeZHSOWNQN231nOyIGqBljO0SczhOMWywp85bjOgNUhsiPV6d_Lq6Pg491VMGtFnTJTl_Rmc3Yp7MIW-4QT9T9P0UnJ8TvXDzmqZRDwNNepwGpMn9xPSSPLN6SPjq7twj3z99PF19KY6-fj5cfTgqjJBSFNA1tsUKUduubzvD61L0teSm7EHUnQTgrM0Leq6NNUyiNMgaq9uK2VpIsUfe33qnpRuxNzlc1IOaoht1vFRBO_V44t1anYWNAiirupFtNry7M8TwY8E0q9Elg8OgPYYlKd6wuoWmaVhG3_6Dnocl-vy-TOUv5xJE-VdoYkgpot2mAaZuqlO5OnVTXUbfPEy_Be-7ykBxC1y4AS__K1In307_CH8D3Yym8A</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Diniz, Márcio A.</creator><creator>Gallardo, Diego I.</creator><creator>Magalhães, Tiago M.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3814-9532</orcidid><orcidid>https://orcid.org/0000-0001-8184-7403</orcidid><orcidid>https://orcid.org/0000-0002-2427-7843</orcidid></search><sort><creationdate>202309</creationdate><title>Improved inference for MCP‐Mod approach using time‐to‐event endpoints with small sample sizes</title><author>Diniz, Márcio A. ; Gallardo, Diego I. ; Magalhães, Tiago M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3663-1b8f9e5eeafbd9bc2743d762c4d137b6112099991d2acfc06e6ce08fa950f7363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>bias correction</topic><topic>Clinical trials</topic><topic>Computer Simulation</topic><topic>covariance refinement</topic><topic>Estimating techniques</topic><topic>Humans</topic><topic>MCP‐Mod approach</topic><topic>Sample Size</topic><topic>small sample size</topic><topic>Weibull model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diniz, Márcio A.</creatorcontrib><creatorcontrib>Gallardo, Diego I.</creatorcontrib><creatorcontrib>Magalhães, Tiago M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Pharmaceutical statistics : the journal of the pharmaceutical industry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diniz, Márcio A.</au><au>Gallardo, Diego I.</au><au>Magalhães, Tiago M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved inference for MCP‐Mod approach using time‐to‐event endpoints with small sample sizes</atitle><jtitle>Pharmaceutical statistics : the journal of the pharmaceutical industry</jtitle><addtitle>Pharm Stat</addtitle><date>2023-09</date><risdate>2023</risdate><volume>22</volume><issue>5</issue><spage>760</spage><epage>772</epage><pages>760-772</pages><issn>1539-1604</issn><issn>1539-1612</issn><eissn>1539-1612</eissn><abstract>The Multiple Comparison Procedures with Modeling Techniques (MCP‐Mod) framework has been recently approved by the U.S. Food, Administration, and European Medicines Agency as fit‐for‐purpose for phase II studies. Nonetheless, this approach relies on the asymptotic properties of Maximum Likelihood (ML) estimators, which might not be reasonable for small sample sizes. In this paper, we derived improved ML estimators and correction for their covariance matrices in the censored Weibull regression model based on the corrective and preventive approaches. We performed two simulation studies to evaluate ML and improved ML estimators with their covariance matrices in (i) a regression framework (ii) the Multiple Comparison Procedures with Modeling Techniques framework. We have shown that improved ML estimators are less biased than ML estimators yielding Wald‐type statistics that controls type I error without loss of power in both frameworks. Therefore, we recommend the use of improved ML estimators in the MCP‐Mod approach to control type I error at nominal value for sample sizes ranging from 5 to 25 subjects per dose.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Inc</pub><pmid>37119000</pmid><doi>10.1002/pst.2303</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3814-9532</orcidid><orcidid>https://orcid.org/0000-0001-8184-7403</orcidid><orcidid>https://orcid.org/0000-0002-2427-7843</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-1604 |
ispartof | Pharmaceutical statistics : the journal of the pharmaceutical industry, 2023-09, Vol.22 (5), p.760-772 |
issn | 1539-1604 1539-1612 1539-1612 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11457869 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE |
subjects | bias correction Clinical trials Computer Simulation covariance refinement Estimating techniques Humans MCP‐Mod approach Sample Size small sample size Weibull model |
title | Improved inference for MCP‐Mod approach using time‐to‐event endpoints with small sample sizes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A29%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20inference%20for%20MCP%E2%80%90Mod%20approach%20using%20time%E2%80%90to%E2%80%90event%20endpoints%20with%20small%20sample%20sizes&rft.jtitle=Pharmaceutical%20statistics%20:%20the%20journal%20of%20the%20pharmaceutical%20industry&rft.au=Diniz,%20M%C3%A1rcio%20A.&rft.date=2023-09&rft.volume=22&rft.issue=5&rft.spage=760&rft.epage=772&rft.pages=760-772&rft.issn=1539-1604&rft.eissn=1539-1612&rft_id=info:doi/10.1002/pst.2303&rft_dat=%3Cproquest_pubme%3E2807918880%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2860426134&rft_id=info:pmid/37119000&rfr_iscdi=true |