QM/MM Study of the Reaction Mechanism of L‑Tyrosine Hydroxylation Catalyzed by the Enzyme CYP76AD1
We have studied the hydroxylation mechanism of l-Tyr by the heme-dependent enzyme CYP76AD1 from the sugar beet (Beta vulgaris). This enzyme has a promising biotechnological application in modified yeast strains to produce medicinal alkaloids, an alternative to the traditional opium poppy harvest. A...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2024-10, Vol.128 (39), p.9447-9454 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9454 |
---|---|
container_issue | 39 |
container_start_page | 9447 |
container_title | The journal of physical chemistry. B |
container_volume | 128 |
creator | Sousa, João P. M. Ramos, Maria J. Fernandes, Pedro A. |
description | We have studied the hydroxylation mechanism of l-Tyr by the heme-dependent enzyme CYP76AD1 from the sugar beet (Beta vulgaris). This enzyme has a promising biotechnological application in modified yeast strains to produce medicinal alkaloids, an alternative to the traditional opium poppy harvest. A generative machine learning software based on AlphaFold was used to build the structure of CYP76AD1 since there are no structural data for this specific enzyme. After model validation, l-Tyr was docked in the active site of CYP76AD1 to assemble the reactive complex, whose catalytic distances remained stable throughout the 100 ns of MD simulation. Subsequent QM/MM calculations elucidated that l-Tyr hydroxylation occurs in two steps: hydrogen abstraction from l-Tyr by CpdI, forming an l-Tyr radical, and subsequent radical rebound, corresponding to a rate-limiting step of 16.0 kcal·mol–1. Our calculations suggest that the hydrogen abstraction step should occur in the doublet state, while the radical rebound should happen in the quartet state. The clarification of the reaction mechanism of CYP76AD1 provides insights into the rational optimization of the biosynthesis of alkaloids to eliminate the use of opium poppy. |
doi_str_mv | 10.1021/acs.jpcb.4c05209 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11457145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153813919</sourcerecordid><originalsourceid>FETCH-LOGICAL-a350t-32c49c51ecc3f0181375afc840261d6d6b7e630a2b67f405e8d7757f6b0630b33</originalsourceid><addsrcrecordid>eNqFkclOwzAQhi0EYincOaEcOdDWE8d2ckKolEVqxX7gZDmOQ4OSuMQJIpx4BV6RJ8FdQHBAHEZjeb75NTM_QruAe4B96Etle49TFfcChamPoxW0CS53XfDV5ZsBZhtoy9pHjH3qh2wdbZAIQsop30TJ1bg_Hns3dZO0nkm9eqK9ay1VnZnSG2s1kWVmi1ll9PH2fttWxmal9s7apDIvbS7n3EDWMm9fdeLF7VxhWL62hfYG95ecHR3DNlpLZW71zjJ30N3J8HZw1h1dnJ4PjkZdSSiuu8RXQaQoaKVIiiEEwqlMVRhgn0HCEhZzzQiWfsx4GmCqw4S7JVIWY_cdE9JBhwvdaRMXOlG6rCuZi2mVFbJqhZGZ-F0ps4l4MM8CIKDchVPYXypU5qnRthZFZpXOc1lq01hBgBI3VwTR_yiOONAgAO5QvECVO5-tdPo9EmAxM1I4I8XMSLE00rXs_Vzlu-HLOQccLIB5q2mq0l32b71Pf26puw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097154417</pqid></control><display><type>article</type><title>QM/MM Study of the Reaction Mechanism of L‑Tyrosine Hydroxylation Catalyzed by the Enzyme CYP76AD1</title><source>ACS Publications</source><source>MEDLINE</source><creator>Sousa, João P. M. ; Ramos, Maria J. ; Fernandes, Pedro A.</creator><creatorcontrib>Sousa, João P. M. ; Ramos, Maria J. ; Fernandes, Pedro A.</creatorcontrib><description>We have studied the hydroxylation mechanism of l-Tyr by the heme-dependent enzyme CYP76AD1 from the sugar beet (Beta vulgaris). This enzyme has a promising biotechnological application in modified yeast strains to produce medicinal alkaloids, an alternative to the traditional opium poppy harvest. A generative machine learning software based on AlphaFold was used to build the structure of CYP76AD1 since there are no structural data for this specific enzyme. After model validation, l-Tyr was docked in the active site of CYP76AD1 to assemble the reactive complex, whose catalytic distances remained stable throughout the 100 ns of MD simulation. Subsequent QM/MM calculations elucidated that l-Tyr hydroxylation occurs in two steps: hydrogen abstraction from l-Tyr by CpdI, forming an l-Tyr radical, and subsequent radical rebound, corresponding to a rate-limiting step of 16.0 kcal·mol–1. Our calculations suggest that the hydrogen abstraction step should occur in the doublet state, while the radical rebound should happen in the quartet state. The clarification of the reaction mechanism of CYP76AD1 provides insights into the rational optimization of the biosynthesis of alkaloids to eliminate the use of opium poppy.</description><identifier>ISSN: 1520-6106</identifier><identifier>ISSN: 1520-5207</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.4c05209</identifier><identifier>PMID: 39185757</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>active sites ; B: Biophysical and Biochemical Systems and Processes ; Beta vulgaris ; Beta vulgaris - chemistry ; Beta vulgaris - metabolism ; Biocatalysis ; biosynthesis ; Catalytic Domain ; computer software ; Cytochrome P-450 Enzyme System - chemistry ; Cytochrome P-450 Enzyme System - metabolism ; enzymes ; hydrogen ; Hydroxylation ; model validation ; Molecular Dynamics Simulation ; Papaver somniferum ; Quantum Theory ; reaction kinetics ; reaction mechanisms ; sugar beet ; tyrosine ; Tyrosine - chemistry ; Tyrosine - metabolism ; yeasts</subject><ispartof>The journal of physical chemistry. B, 2024-10, Vol.128 (39), p.9447-9454</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a350t-32c49c51ecc3f0181375afc840261d6d6b7e630a2b67f405e8d7757f6b0630b33</cites><orcidid>0000-0002-7554-8324 ; 0000-0003-2748-4722 ; 0000-0002-4915-4946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.4c05209$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.4c05209$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39185757$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sousa, João P. M.</creatorcontrib><creatorcontrib>Ramos, Maria J.</creatorcontrib><creatorcontrib>Fernandes, Pedro A.</creatorcontrib><title>QM/MM Study of the Reaction Mechanism of L‑Tyrosine Hydroxylation Catalyzed by the Enzyme CYP76AD1</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>We have studied the hydroxylation mechanism of l-Tyr by the heme-dependent enzyme CYP76AD1 from the sugar beet (Beta vulgaris). This enzyme has a promising biotechnological application in modified yeast strains to produce medicinal alkaloids, an alternative to the traditional opium poppy harvest. A generative machine learning software based on AlphaFold was used to build the structure of CYP76AD1 since there are no structural data for this specific enzyme. After model validation, l-Tyr was docked in the active site of CYP76AD1 to assemble the reactive complex, whose catalytic distances remained stable throughout the 100 ns of MD simulation. Subsequent QM/MM calculations elucidated that l-Tyr hydroxylation occurs in two steps: hydrogen abstraction from l-Tyr by CpdI, forming an l-Tyr radical, and subsequent radical rebound, corresponding to a rate-limiting step of 16.0 kcal·mol–1. Our calculations suggest that the hydrogen abstraction step should occur in the doublet state, while the radical rebound should happen in the quartet state. The clarification of the reaction mechanism of CYP76AD1 provides insights into the rational optimization of the biosynthesis of alkaloids to eliminate the use of opium poppy.</description><subject>active sites</subject><subject>B: Biophysical and Biochemical Systems and Processes</subject><subject>Beta vulgaris</subject><subject>Beta vulgaris - chemistry</subject><subject>Beta vulgaris - metabolism</subject><subject>Biocatalysis</subject><subject>biosynthesis</subject><subject>Catalytic Domain</subject><subject>computer software</subject><subject>Cytochrome P-450 Enzyme System - chemistry</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>enzymes</subject><subject>hydrogen</subject><subject>Hydroxylation</subject><subject>model validation</subject><subject>Molecular Dynamics Simulation</subject><subject>Papaver somniferum</subject><subject>Quantum Theory</subject><subject>reaction kinetics</subject><subject>reaction mechanisms</subject><subject>sugar beet</subject><subject>tyrosine</subject><subject>Tyrosine - chemistry</subject><subject>Tyrosine - metabolism</subject><subject>yeasts</subject><issn>1520-6106</issn><issn>1520-5207</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkclOwzAQhi0EYincOaEcOdDWE8d2ckKolEVqxX7gZDmOQ4OSuMQJIpx4BV6RJ8FdQHBAHEZjeb75NTM_QruAe4B96Etle49TFfcChamPoxW0CS53XfDV5ZsBZhtoy9pHjH3qh2wdbZAIQsop30TJ1bg_Hns3dZO0nkm9eqK9ay1VnZnSG2s1kWVmi1ll9PH2fttWxmal9s7apDIvbS7n3EDWMm9fdeLF7VxhWL62hfYG95ecHR3DNlpLZW71zjJ30N3J8HZw1h1dnJ4PjkZdSSiuu8RXQaQoaKVIiiEEwqlMVRhgn0HCEhZzzQiWfsx4GmCqw4S7JVIWY_cdE9JBhwvdaRMXOlG6rCuZi2mVFbJqhZGZ-F0ps4l4MM8CIKDchVPYXypU5qnRthZFZpXOc1lq01hBgBI3VwTR_yiOONAgAO5QvECVO5-tdPo9EmAxM1I4I8XMSLE00rXs_Vzlu-HLOQccLIB5q2mq0l32b71Pf26puw</recordid><startdate>20241003</startdate><enddate>20241003</enddate><creator>Sousa, João P. M.</creator><creator>Ramos, Maria J.</creator><creator>Fernandes, Pedro A.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7554-8324</orcidid><orcidid>https://orcid.org/0000-0003-2748-4722</orcidid><orcidid>https://orcid.org/0000-0002-4915-4946</orcidid></search><sort><creationdate>20241003</creationdate><title>QM/MM Study of the Reaction Mechanism of L‑Tyrosine Hydroxylation Catalyzed by the Enzyme CYP76AD1</title><author>Sousa, João P. M. ; Ramos, Maria J. ; Fernandes, Pedro A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a350t-32c49c51ecc3f0181375afc840261d6d6b7e630a2b67f405e8d7757f6b0630b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>active sites</topic><topic>B: Biophysical and Biochemical Systems and Processes</topic><topic>Beta vulgaris</topic><topic>Beta vulgaris - chemistry</topic><topic>Beta vulgaris - metabolism</topic><topic>Biocatalysis</topic><topic>biosynthesis</topic><topic>Catalytic Domain</topic><topic>computer software</topic><topic>Cytochrome P-450 Enzyme System - chemistry</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>enzymes</topic><topic>hydrogen</topic><topic>Hydroxylation</topic><topic>model validation</topic><topic>Molecular Dynamics Simulation</topic><topic>Papaver somniferum</topic><topic>Quantum Theory</topic><topic>reaction kinetics</topic><topic>reaction mechanisms</topic><topic>sugar beet</topic><topic>tyrosine</topic><topic>Tyrosine - chemistry</topic><topic>Tyrosine - metabolism</topic><topic>yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sousa, João P. M.</creatorcontrib><creatorcontrib>Ramos, Maria J.</creatorcontrib><creatorcontrib>Fernandes, Pedro A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sousa, João P. M.</au><au>Ramos, Maria J.</au><au>Fernandes, Pedro A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QM/MM Study of the Reaction Mechanism of L‑Tyrosine Hydroxylation Catalyzed by the Enzyme CYP76AD1</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2024-10-03</date><risdate>2024</risdate><volume>128</volume><issue>39</issue><spage>9447</spage><epage>9454</epage><pages>9447-9454</pages><issn>1520-6106</issn><issn>1520-5207</issn><eissn>1520-5207</eissn><abstract>We have studied the hydroxylation mechanism of l-Tyr by the heme-dependent enzyme CYP76AD1 from the sugar beet (Beta vulgaris). This enzyme has a promising biotechnological application in modified yeast strains to produce medicinal alkaloids, an alternative to the traditional opium poppy harvest. A generative machine learning software based on AlphaFold was used to build the structure of CYP76AD1 since there are no structural data for this specific enzyme. After model validation, l-Tyr was docked in the active site of CYP76AD1 to assemble the reactive complex, whose catalytic distances remained stable throughout the 100 ns of MD simulation. Subsequent QM/MM calculations elucidated that l-Tyr hydroxylation occurs in two steps: hydrogen abstraction from l-Tyr by CpdI, forming an l-Tyr radical, and subsequent radical rebound, corresponding to a rate-limiting step of 16.0 kcal·mol–1. Our calculations suggest that the hydrogen abstraction step should occur in the doublet state, while the radical rebound should happen in the quartet state. The clarification of the reaction mechanism of CYP76AD1 provides insights into the rational optimization of the biosynthesis of alkaloids to eliminate the use of opium poppy.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39185757</pmid><doi>10.1021/acs.jpcb.4c05209</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7554-8324</orcidid><orcidid>https://orcid.org/0000-0003-2748-4722</orcidid><orcidid>https://orcid.org/0000-0002-4915-4946</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2024-10, Vol.128 (39), p.9447-9454 |
issn | 1520-6106 1520-5207 1520-5207 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11457145 |
source | ACS Publications; MEDLINE |
subjects | active sites B: Biophysical and Biochemical Systems and Processes Beta vulgaris Beta vulgaris - chemistry Beta vulgaris - metabolism Biocatalysis biosynthesis Catalytic Domain computer software Cytochrome P-450 Enzyme System - chemistry Cytochrome P-450 Enzyme System - metabolism enzymes hydrogen Hydroxylation model validation Molecular Dynamics Simulation Papaver somniferum Quantum Theory reaction kinetics reaction mechanisms sugar beet tyrosine Tyrosine - chemistry Tyrosine - metabolism yeasts |
title | QM/MM Study of the Reaction Mechanism of L‑Tyrosine Hydroxylation Catalyzed by the Enzyme CYP76AD1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A54%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QM/MM%20Study%20of%20the%20Reaction%20Mechanism%20of%20L%E2%80%91Tyrosine%20Hydroxylation%20Catalyzed%20by%20the%20Enzyme%20CYP76AD1&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Sousa,%20Joa%CC%83o%20P.%20M.&rft.date=2024-10-03&rft.volume=128&rft.issue=39&rft.spage=9447&rft.epage=9454&rft.pages=9447-9454&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.4c05209&rft_dat=%3Cproquest_pubme%3E3153813919%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097154417&rft_id=info:pmid/39185757&rfr_iscdi=true |