QM/MM Study of the Reaction Mechanism of L‑Tyrosine Hydroxylation Catalyzed by the Enzyme CYP76AD1

We have studied the hydroxylation mechanism of l-Tyr by the heme-dependent enzyme CYP76AD1 from the sugar beet (Beta vulgaris). This enzyme has a promising biotechnological application in modified yeast strains to produce medicinal alkaloids, an alternative to the traditional opium poppy harvest. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2024-10, Vol.128 (39), p.9447-9454
Hauptverfasser: Sousa, João P. M., Ramos, Maria J., Fernandes, Pedro A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9454
container_issue 39
container_start_page 9447
container_title The journal of physical chemistry. B
container_volume 128
creator Sousa, João P. M.
Ramos, Maria J.
Fernandes, Pedro A.
description We have studied the hydroxylation mechanism of l-Tyr by the heme-dependent enzyme CYP76AD1 from the sugar beet (Beta vulgaris). This enzyme has a promising biotechnological application in modified yeast strains to produce medicinal alkaloids, an alternative to the traditional opium poppy harvest. A generative machine learning software based on AlphaFold was used to build the structure of CYP76AD1 since there are no structural data for this specific enzyme. After model validation, l-Tyr was docked in the active site of CYP76AD1 to assemble the reactive complex, whose catalytic distances remained stable throughout the 100 ns of MD simulation. Subsequent QM/MM calculations elucidated that l-Tyr hydroxylation occurs in two steps: hydrogen abstraction from l-Tyr by CpdI, forming an l-Tyr radical, and subsequent radical rebound, corresponding to a rate-limiting step of 16.0 kcal·mol–1. Our calculations suggest that the hydrogen abstraction step should occur in the doublet state, while the radical rebound should happen in the quartet state. The clarification of the reaction mechanism of CYP76AD1 provides insights into the rational optimization of the biosynthesis of alkaloids to eliminate the use of opium poppy.
doi_str_mv 10.1021/acs.jpcb.4c05209
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11457145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153813919</sourcerecordid><originalsourceid>FETCH-LOGICAL-a350t-32c49c51ecc3f0181375afc840261d6d6b7e630a2b67f405e8d7757f6b0630b33</originalsourceid><addsrcrecordid>eNqFkclOwzAQhi0EYincOaEcOdDWE8d2ckKolEVqxX7gZDmOQ4OSuMQJIpx4BV6RJ8FdQHBAHEZjeb75NTM_QruAe4B96Etle49TFfcChamPoxW0CS53XfDV5ZsBZhtoy9pHjH3qh2wdbZAIQsop30TJ1bg_Hns3dZO0nkm9eqK9ay1VnZnSG2s1kWVmi1ll9PH2fttWxmal9s7apDIvbS7n3EDWMm9fdeLF7VxhWL62hfYG95ecHR3DNlpLZW71zjJ30N3J8HZw1h1dnJ4PjkZdSSiuu8RXQaQoaKVIiiEEwqlMVRhgn0HCEhZzzQiWfsx4GmCqw4S7JVIWY_cdE9JBhwvdaRMXOlG6rCuZi2mVFbJqhZGZ-F0ps4l4MM8CIKDchVPYXypU5qnRthZFZpXOc1lq01hBgBI3VwTR_yiOONAgAO5QvECVO5-tdPo9EmAxM1I4I8XMSLE00rXs_Vzlu-HLOQccLIB5q2mq0l32b71Pf26puw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097154417</pqid></control><display><type>article</type><title>QM/MM Study of the Reaction Mechanism of L‑Tyrosine Hydroxylation Catalyzed by the Enzyme CYP76AD1</title><source>ACS Publications</source><source>MEDLINE</source><creator>Sousa, João P. M. ; Ramos, Maria J. ; Fernandes, Pedro A.</creator><creatorcontrib>Sousa, João P. M. ; Ramos, Maria J. ; Fernandes, Pedro A.</creatorcontrib><description>We have studied the hydroxylation mechanism of l-Tyr by the heme-dependent enzyme CYP76AD1 from the sugar beet (Beta vulgaris). This enzyme has a promising biotechnological application in modified yeast strains to produce medicinal alkaloids, an alternative to the traditional opium poppy harvest. A generative machine learning software based on AlphaFold was used to build the structure of CYP76AD1 since there are no structural data for this specific enzyme. After model validation, l-Tyr was docked in the active site of CYP76AD1 to assemble the reactive complex, whose catalytic distances remained stable throughout the 100 ns of MD simulation. Subsequent QM/MM calculations elucidated that l-Tyr hydroxylation occurs in two steps: hydrogen abstraction from l-Tyr by CpdI, forming an l-Tyr radical, and subsequent radical rebound, corresponding to a rate-limiting step of 16.0 kcal·mol–1. Our calculations suggest that the hydrogen abstraction step should occur in the doublet state, while the radical rebound should happen in the quartet state. The clarification of the reaction mechanism of CYP76AD1 provides insights into the rational optimization of the biosynthesis of alkaloids to eliminate the use of opium poppy.</description><identifier>ISSN: 1520-6106</identifier><identifier>ISSN: 1520-5207</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.4c05209</identifier><identifier>PMID: 39185757</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>active sites ; B: Biophysical and Biochemical Systems and Processes ; Beta vulgaris ; Beta vulgaris - chemistry ; Beta vulgaris - metabolism ; Biocatalysis ; biosynthesis ; Catalytic Domain ; computer software ; Cytochrome P-450 Enzyme System - chemistry ; Cytochrome P-450 Enzyme System - metabolism ; enzymes ; hydrogen ; Hydroxylation ; model validation ; Molecular Dynamics Simulation ; Papaver somniferum ; Quantum Theory ; reaction kinetics ; reaction mechanisms ; sugar beet ; tyrosine ; Tyrosine - chemistry ; Tyrosine - metabolism ; yeasts</subject><ispartof>The journal of physical chemistry. B, 2024-10, Vol.128 (39), p.9447-9454</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a350t-32c49c51ecc3f0181375afc840261d6d6b7e630a2b67f405e8d7757f6b0630b33</cites><orcidid>0000-0002-7554-8324 ; 0000-0003-2748-4722 ; 0000-0002-4915-4946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.4c05209$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.4c05209$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39185757$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sousa, João P. M.</creatorcontrib><creatorcontrib>Ramos, Maria J.</creatorcontrib><creatorcontrib>Fernandes, Pedro A.</creatorcontrib><title>QM/MM Study of the Reaction Mechanism of L‑Tyrosine Hydroxylation Catalyzed by the Enzyme CYP76AD1</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>We have studied the hydroxylation mechanism of l-Tyr by the heme-dependent enzyme CYP76AD1 from the sugar beet (Beta vulgaris). This enzyme has a promising biotechnological application in modified yeast strains to produce medicinal alkaloids, an alternative to the traditional opium poppy harvest. A generative machine learning software based on AlphaFold was used to build the structure of CYP76AD1 since there are no structural data for this specific enzyme. After model validation, l-Tyr was docked in the active site of CYP76AD1 to assemble the reactive complex, whose catalytic distances remained stable throughout the 100 ns of MD simulation. Subsequent QM/MM calculations elucidated that l-Tyr hydroxylation occurs in two steps: hydrogen abstraction from l-Tyr by CpdI, forming an l-Tyr radical, and subsequent radical rebound, corresponding to a rate-limiting step of 16.0 kcal·mol–1. Our calculations suggest that the hydrogen abstraction step should occur in the doublet state, while the radical rebound should happen in the quartet state. The clarification of the reaction mechanism of CYP76AD1 provides insights into the rational optimization of the biosynthesis of alkaloids to eliminate the use of opium poppy.</description><subject>active sites</subject><subject>B: Biophysical and Biochemical Systems and Processes</subject><subject>Beta vulgaris</subject><subject>Beta vulgaris - chemistry</subject><subject>Beta vulgaris - metabolism</subject><subject>Biocatalysis</subject><subject>biosynthesis</subject><subject>Catalytic Domain</subject><subject>computer software</subject><subject>Cytochrome P-450 Enzyme System - chemistry</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>enzymes</subject><subject>hydrogen</subject><subject>Hydroxylation</subject><subject>model validation</subject><subject>Molecular Dynamics Simulation</subject><subject>Papaver somniferum</subject><subject>Quantum Theory</subject><subject>reaction kinetics</subject><subject>reaction mechanisms</subject><subject>sugar beet</subject><subject>tyrosine</subject><subject>Tyrosine - chemistry</subject><subject>Tyrosine - metabolism</subject><subject>yeasts</subject><issn>1520-6106</issn><issn>1520-5207</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkclOwzAQhi0EYincOaEcOdDWE8d2ckKolEVqxX7gZDmOQ4OSuMQJIpx4BV6RJ8FdQHBAHEZjeb75NTM_QruAe4B96Etle49TFfcChamPoxW0CS53XfDV5ZsBZhtoy9pHjH3qh2wdbZAIQsop30TJ1bg_Hns3dZO0nkm9eqK9ay1VnZnSG2s1kWVmi1ll9PH2fttWxmal9s7apDIvbS7n3EDWMm9fdeLF7VxhWL62hfYG95ecHR3DNlpLZW71zjJ30N3J8HZw1h1dnJ4PjkZdSSiuu8RXQaQoaKVIiiEEwqlMVRhgn0HCEhZzzQiWfsx4GmCqw4S7JVIWY_cdE9JBhwvdaRMXOlG6rCuZi2mVFbJqhZGZ-F0ps4l4MM8CIKDchVPYXypU5qnRthZFZpXOc1lq01hBgBI3VwTR_yiOONAgAO5QvECVO5-tdPo9EmAxM1I4I8XMSLE00rXs_Vzlu-HLOQccLIB5q2mq0l32b71Pf26puw</recordid><startdate>20241003</startdate><enddate>20241003</enddate><creator>Sousa, João P. M.</creator><creator>Ramos, Maria J.</creator><creator>Fernandes, Pedro A.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7554-8324</orcidid><orcidid>https://orcid.org/0000-0003-2748-4722</orcidid><orcidid>https://orcid.org/0000-0002-4915-4946</orcidid></search><sort><creationdate>20241003</creationdate><title>QM/MM Study of the Reaction Mechanism of L‑Tyrosine Hydroxylation Catalyzed by the Enzyme CYP76AD1</title><author>Sousa, João P. M. ; Ramos, Maria J. ; Fernandes, Pedro A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a350t-32c49c51ecc3f0181375afc840261d6d6b7e630a2b67f405e8d7757f6b0630b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>active sites</topic><topic>B: Biophysical and Biochemical Systems and Processes</topic><topic>Beta vulgaris</topic><topic>Beta vulgaris - chemistry</topic><topic>Beta vulgaris - metabolism</topic><topic>Biocatalysis</topic><topic>biosynthesis</topic><topic>Catalytic Domain</topic><topic>computer software</topic><topic>Cytochrome P-450 Enzyme System - chemistry</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>enzymes</topic><topic>hydrogen</topic><topic>Hydroxylation</topic><topic>model validation</topic><topic>Molecular Dynamics Simulation</topic><topic>Papaver somniferum</topic><topic>Quantum Theory</topic><topic>reaction kinetics</topic><topic>reaction mechanisms</topic><topic>sugar beet</topic><topic>tyrosine</topic><topic>Tyrosine - chemistry</topic><topic>Tyrosine - metabolism</topic><topic>yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sousa, João P. M.</creatorcontrib><creatorcontrib>Ramos, Maria J.</creatorcontrib><creatorcontrib>Fernandes, Pedro A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sousa, João P. M.</au><au>Ramos, Maria J.</au><au>Fernandes, Pedro A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QM/MM Study of the Reaction Mechanism of L‑Tyrosine Hydroxylation Catalyzed by the Enzyme CYP76AD1</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2024-10-03</date><risdate>2024</risdate><volume>128</volume><issue>39</issue><spage>9447</spage><epage>9454</epage><pages>9447-9454</pages><issn>1520-6106</issn><issn>1520-5207</issn><eissn>1520-5207</eissn><abstract>We have studied the hydroxylation mechanism of l-Tyr by the heme-dependent enzyme CYP76AD1 from the sugar beet (Beta vulgaris). This enzyme has a promising biotechnological application in modified yeast strains to produce medicinal alkaloids, an alternative to the traditional opium poppy harvest. A generative machine learning software based on AlphaFold was used to build the structure of CYP76AD1 since there are no structural data for this specific enzyme. After model validation, l-Tyr was docked in the active site of CYP76AD1 to assemble the reactive complex, whose catalytic distances remained stable throughout the 100 ns of MD simulation. Subsequent QM/MM calculations elucidated that l-Tyr hydroxylation occurs in two steps: hydrogen abstraction from l-Tyr by CpdI, forming an l-Tyr radical, and subsequent radical rebound, corresponding to a rate-limiting step of 16.0 kcal·mol–1. Our calculations suggest that the hydrogen abstraction step should occur in the doublet state, while the radical rebound should happen in the quartet state. The clarification of the reaction mechanism of CYP76AD1 provides insights into the rational optimization of the biosynthesis of alkaloids to eliminate the use of opium poppy.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39185757</pmid><doi>10.1021/acs.jpcb.4c05209</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7554-8324</orcidid><orcidid>https://orcid.org/0000-0003-2748-4722</orcidid><orcidid>https://orcid.org/0000-0002-4915-4946</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2024-10, Vol.128 (39), p.9447-9454
issn 1520-6106
1520-5207
1520-5207
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11457145
source ACS Publications; MEDLINE
subjects active sites
B: Biophysical and Biochemical Systems and Processes
Beta vulgaris
Beta vulgaris - chemistry
Beta vulgaris - metabolism
Biocatalysis
biosynthesis
Catalytic Domain
computer software
Cytochrome P-450 Enzyme System - chemistry
Cytochrome P-450 Enzyme System - metabolism
enzymes
hydrogen
Hydroxylation
model validation
Molecular Dynamics Simulation
Papaver somniferum
Quantum Theory
reaction kinetics
reaction mechanisms
sugar beet
tyrosine
Tyrosine - chemistry
Tyrosine - metabolism
yeasts
title QM/MM Study of the Reaction Mechanism of L‑Tyrosine Hydroxylation Catalyzed by the Enzyme CYP76AD1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A54%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QM/MM%20Study%20of%20the%20Reaction%20Mechanism%20of%20L%E2%80%91Tyrosine%20Hydroxylation%20Catalyzed%20by%20the%20Enzyme%20CYP76AD1&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Sousa,%20Joa%CC%83o%20P.%20M.&rft.date=2024-10-03&rft.volume=128&rft.issue=39&rft.spage=9447&rft.epage=9454&rft.pages=9447-9454&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.4c05209&rft_dat=%3Cproquest_pubme%3E3153813919%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097154417&rft_id=info:pmid/39185757&rfr_iscdi=true