County‐level socio‐environmental factors and obesity prevalence in the United States

Aims To investigate high‐risk sociodemographic and environmental determinants of health (SEDH) potentially associated with adult obesity in counties in the United States using machine‐learning techniques. Materials and Methods We performed a cross‐sectional analysis of county‐level adult obesity pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes, obesity & metabolism obesity & metabolism, 2024-05, Vol.26 (5), p.1766-1774
Hauptverfasser: Salerno, Pedro R. V. O., Qian, Alice, Dong, Weichuan, Deo, Salil, Nasir, Khurram, Rajagopalan, Sanjay, Al‐Kindi, Sadeer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1774
container_issue 5
container_start_page 1766
container_title Diabetes, obesity & metabolism
container_volume 26
creator Salerno, Pedro R. V. O.
Qian, Alice
Dong, Weichuan
Deo, Salil
Nasir, Khurram
Rajagopalan, Sanjay
Al‐Kindi, Sadeer
description Aims To investigate high‐risk sociodemographic and environmental determinants of health (SEDH) potentially associated with adult obesity in counties in the United States using machine‐learning techniques. Materials and Methods We performed a cross‐sectional analysis of county‐level adult obesity prevalence (body mass index ≥30 kg/m2) in the United States using data from the Diabetes Surveillance System 2017. We harvested 49 county‐level SEDH factors that were used in a classification and regression trees (CART) model to identify county‐level clusters. The CART model was validated using a ‘hold‐out’ set of counties and variable importance was evaluated using Random Forest. Results Overall, we analysed 2752 counties in the United States, identifying a national median (interquartile range) obesity prevalence of 34.1% (30.2%, 37.7%). The CART method identified 11 clusters with a 60.8% relative increase in prevalence across the spectrum. Additionally, seven key SEDH variables were identified by CART to guide the categorization of clusters, including Physically Inactive (%), Diabetes (%), Severe Housing Problems (%), Food Insecurity (%), Uninsured (%), Population over 65 years (%) and Non‐Hispanic Black (%). Conclusion There is significant county‐level geographical variation in obesity prevalence in the United States, which can in part be explained by complex SEDH factors. The use of machine‐learning techniques to analyse these factors can provide valuable insights into the importance of these upstream determinants of obesity and, therefore, aid in the development of geo‐specific strategic interventions and optimize resource allocation to help battle the obesity pandemic.
doi_str_mv 10.1111/dom.15488
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11447680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2927211841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4048-4c6590429840dce7f5597c9a967a57d1a939218b61a41719b495bc1687ad1fe43</originalsourceid><addsrcrecordid>eNp1kc9qFTEUhwex2Fpd-AIScKOLaXMmmUmyknL900KlCy24C5nMGZsyk1yTzJW78xF8Rp_EtLcWFcwmOZyPj1_4VdUzoEdQzvEQ5iNouZQPqgPgHauBNd3D23dTS0Wb_epxSteUUs6keFTtM8najrbsoPq8CovP25_ff0y4wYmkYF0oE_qNi8HP6LOZyGhsDjER4wcSekwub8k64sZM6C0S50m-QnLpXcaBfMwmY3pS7Y1mSvj07j6sLt-9_bQ6rc8v3p-tTs5ryymXNbddqyhvlOR0sCjGtlXCKqM6YVoxgFFMNSD7DgwHAarnqu0tdFKYAUbk7LB6vfOul37GovA5mkmvo5tN3OpgnP57492V_hI2GoBz0UlaDC_vDDF8XTBlPbtkcZqMx7Ak3ahGNACSQ0Ff_INehyX68j_NKCsAKM4K9WpH2RhSijjepwGqbwrTpTB9W1hhn_8Z_5783VABjnfANzfh9v8m_ebiw075CwAKodM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3034131943</pqid></control><display><type>article</type><title>County‐level socio‐environmental factors and obesity prevalence in the United States</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Salerno, Pedro R. V. O. ; Qian, Alice ; Dong, Weichuan ; Deo, Salil ; Nasir, Khurram ; Rajagopalan, Sanjay ; Al‐Kindi, Sadeer</creator><creatorcontrib>Salerno, Pedro R. V. O. ; Qian, Alice ; Dong, Weichuan ; Deo, Salil ; Nasir, Khurram ; Rajagopalan, Sanjay ; Al‐Kindi, Sadeer</creatorcontrib><description>Aims To investigate high‐risk sociodemographic and environmental determinants of health (SEDH) potentially associated with adult obesity in counties in the United States using machine‐learning techniques. Materials and Methods We performed a cross‐sectional analysis of county‐level adult obesity prevalence (body mass index ≥30 kg/m2) in the United States using data from the Diabetes Surveillance System 2017. We harvested 49 county‐level SEDH factors that were used in a classification and regression trees (CART) model to identify county‐level clusters. The CART model was validated using a ‘hold‐out’ set of counties and variable importance was evaluated using Random Forest. Results Overall, we analysed 2752 counties in the United States, identifying a national median (interquartile range) obesity prevalence of 34.1% (30.2%, 37.7%). The CART method identified 11 clusters with a 60.8% relative increase in prevalence across the spectrum. Additionally, seven key SEDH variables were identified by CART to guide the categorization of clusters, including Physically Inactive (%), Diabetes (%), Severe Housing Problems (%), Food Insecurity (%), Uninsured (%), Population over 65 years (%) and Non‐Hispanic Black (%). Conclusion There is significant county‐level geographical variation in obesity prevalence in the United States, which can in part be explained by complex SEDH factors. The use of machine‐learning techniques to analyse these factors can provide valuable insights into the importance of these upstream determinants of obesity and, therefore, aid in the development of geo‐specific strategic interventions and optimize resource allocation to help battle the obesity pandemic.</description><identifier>ISSN: 1462-8902</identifier><identifier>ISSN: 1463-1326</identifier><identifier>EISSN: 1463-1326</identifier><identifier>DOI: 10.1111/dom.15488</identifier><identifier>PMID: 38356053</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adult ; Body mass index ; Cross-Sectional Studies ; Diabetes ; Diabetes Mellitus ; Environmental factors ; Epidemiology ; Food security ; Geographical variations ; Geography ; Humans ; Learning algorithms ; Machine learning ; Obesity ; Obesity - epidemiology ; obesity prevalence ; Prevalence ; public health ; Resource allocation ; Socioeconomic factors ; United States - epidemiology</subject><ispartof>Diabetes, obesity &amp; metabolism, 2024-05, Vol.26 (5), p.1766-1774</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4048-4c6590429840dce7f5597c9a967a57d1a939218b61a41719b495bc1687ad1fe43</cites><orcidid>0000-0002-3981-658X ; 0000-0002-4729-1461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fdom.15488$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fdom.15488$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38356053$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Salerno, Pedro R. V. O.</creatorcontrib><creatorcontrib>Qian, Alice</creatorcontrib><creatorcontrib>Dong, Weichuan</creatorcontrib><creatorcontrib>Deo, Salil</creatorcontrib><creatorcontrib>Nasir, Khurram</creatorcontrib><creatorcontrib>Rajagopalan, Sanjay</creatorcontrib><creatorcontrib>Al‐Kindi, Sadeer</creatorcontrib><title>County‐level socio‐environmental factors and obesity prevalence in the United States</title><title>Diabetes, obesity &amp; metabolism</title><addtitle>Diabetes Obes Metab</addtitle><description>Aims To investigate high‐risk sociodemographic and environmental determinants of health (SEDH) potentially associated with adult obesity in counties in the United States using machine‐learning techniques. Materials and Methods We performed a cross‐sectional analysis of county‐level adult obesity prevalence (body mass index ≥30 kg/m2) in the United States using data from the Diabetes Surveillance System 2017. We harvested 49 county‐level SEDH factors that were used in a classification and regression trees (CART) model to identify county‐level clusters. The CART model was validated using a ‘hold‐out’ set of counties and variable importance was evaluated using Random Forest. Results Overall, we analysed 2752 counties in the United States, identifying a national median (interquartile range) obesity prevalence of 34.1% (30.2%, 37.7%). The CART method identified 11 clusters with a 60.8% relative increase in prevalence across the spectrum. Additionally, seven key SEDH variables were identified by CART to guide the categorization of clusters, including Physically Inactive (%), Diabetes (%), Severe Housing Problems (%), Food Insecurity (%), Uninsured (%), Population over 65 years (%) and Non‐Hispanic Black (%). Conclusion There is significant county‐level geographical variation in obesity prevalence in the United States, which can in part be explained by complex SEDH factors. The use of machine‐learning techniques to analyse these factors can provide valuable insights into the importance of these upstream determinants of obesity and, therefore, aid in the development of geo‐specific strategic interventions and optimize resource allocation to help battle the obesity pandemic.</description><subject>Adult</subject><subject>Body mass index</subject><subject>Cross-Sectional Studies</subject><subject>Diabetes</subject><subject>Diabetes Mellitus</subject><subject>Environmental factors</subject><subject>Epidemiology</subject><subject>Food security</subject><subject>Geographical variations</subject><subject>Geography</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Obesity</subject><subject>Obesity - epidemiology</subject><subject>obesity prevalence</subject><subject>Prevalence</subject><subject>public health</subject><subject>Resource allocation</subject><subject>Socioeconomic factors</subject><subject>United States - epidemiology</subject><issn>1462-8902</issn><issn>1463-1326</issn><issn>1463-1326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9qFTEUhwex2Fpd-AIScKOLaXMmmUmyknL900KlCy24C5nMGZsyk1yTzJW78xF8Rp_EtLcWFcwmOZyPj1_4VdUzoEdQzvEQ5iNouZQPqgPgHauBNd3D23dTS0Wb_epxSteUUs6keFTtM8najrbsoPq8CovP25_ff0y4wYmkYF0oE_qNi8HP6LOZyGhsDjER4wcSekwub8k64sZM6C0S50m-QnLpXcaBfMwmY3pS7Y1mSvj07j6sLt-9_bQ6rc8v3p-tTs5ryymXNbddqyhvlOR0sCjGtlXCKqM6YVoxgFFMNSD7DgwHAarnqu0tdFKYAUbk7LB6vfOul37GovA5mkmvo5tN3OpgnP57492V_hI2GoBz0UlaDC_vDDF8XTBlPbtkcZqMx7Ak3ahGNACSQ0Ff_INehyX68j_NKCsAKM4K9WpH2RhSijjepwGqbwrTpTB9W1hhn_8Z_5783VABjnfANzfh9v8m_ebiw075CwAKodM</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Salerno, Pedro R. V. O.</creator><creator>Qian, Alice</creator><creator>Dong, Weichuan</creator><creator>Deo, Salil</creator><creator>Nasir, Khurram</creator><creator>Rajagopalan, Sanjay</creator><creator>Al‐Kindi, Sadeer</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TK</scope><scope>H94</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3981-658X</orcidid><orcidid>https://orcid.org/0000-0002-4729-1461</orcidid></search><sort><creationdate>202405</creationdate><title>County‐level socio‐environmental factors and obesity prevalence in the United States</title><author>Salerno, Pedro R. V. O. ; Qian, Alice ; Dong, Weichuan ; Deo, Salil ; Nasir, Khurram ; Rajagopalan, Sanjay ; Al‐Kindi, Sadeer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4048-4c6590429840dce7f5597c9a967a57d1a939218b61a41719b495bc1687ad1fe43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Body mass index</topic><topic>Cross-Sectional Studies</topic><topic>Diabetes</topic><topic>Diabetes Mellitus</topic><topic>Environmental factors</topic><topic>Epidemiology</topic><topic>Food security</topic><topic>Geographical variations</topic><topic>Geography</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Obesity</topic><topic>Obesity - epidemiology</topic><topic>obesity prevalence</topic><topic>Prevalence</topic><topic>public health</topic><topic>Resource allocation</topic><topic>Socioeconomic factors</topic><topic>United States - epidemiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salerno, Pedro R. V. O.</creatorcontrib><creatorcontrib>Qian, Alice</creatorcontrib><creatorcontrib>Dong, Weichuan</creatorcontrib><creatorcontrib>Deo, Salil</creatorcontrib><creatorcontrib>Nasir, Khurram</creatorcontrib><creatorcontrib>Rajagopalan, Sanjay</creatorcontrib><creatorcontrib>Al‐Kindi, Sadeer</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Diabetes, obesity &amp; metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salerno, Pedro R. V. O.</au><au>Qian, Alice</au><au>Dong, Weichuan</au><au>Deo, Salil</au><au>Nasir, Khurram</au><au>Rajagopalan, Sanjay</au><au>Al‐Kindi, Sadeer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>County‐level socio‐environmental factors and obesity prevalence in the United States</atitle><jtitle>Diabetes, obesity &amp; metabolism</jtitle><addtitle>Diabetes Obes Metab</addtitle><date>2024-05</date><risdate>2024</risdate><volume>26</volume><issue>5</issue><spage>1766</spage><epage>1774</epage><pages>1766-1774</pages><issn>1462-8902</issn><issn>1463-1326</issn><eissn>1463-1326</eissn><abstract>Aims To investigate high‐risk sociodemographic and environmental determinants of health (SEDH) potentially associated with adult obesity in counties in the United States using machine‐learning techniques. Materials and Methods We performed a cross‐sectional analysis of county‐level adult obesity prevalence (body mass index ≥30 kg/m2) in the United States using data from the Diabetes Surveillance System 2017. We harvested 49 county‐level SEDH factors that were used in a classification and regression trees (CART) model to identify county‐level clusters. The CART model was validated using a ‘hold‐out’ set of counties and variable importance was evaluated using Random Forest. Results Overall, we analysed 2752 counties in the United States, identifying a national median (interquartile range) obesity prevalence of 34.1% (30.2%, 37.7%). The CART method identified 11 clusters with a 60.8% relative increase in prevalence across the spectrum. Additionally, seven key SEDH variables were identified by CART to guide the categorization of clusters, including Physically Inactive (%), Diabetes (%), Severe Housing Problems (%), Food Insecurity (%), Uninsured (%), Population over 65 years (%) and Non‐Hispanic Black (%). Conclusion There is significant county‐level geographical variation in obesity prevalence in the United States, which can in part be explained by complex SEDH factors. The use of machine‐learning techniques to analyse these factors can provide valuable insights into the importance of these upstream determinants of obesity and, therefore, aid in the development of geo‐specific strategic interventions and optimize resource allocation to help battle the obesity pandemic.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>38356053</pmid><doi>10.1111/dom.15488</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3981-658X</orcidid><orcidid>https://orcid.org/0000-0002-4729-1461</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1462-8902
ispartof Diabetes, obesity & metabolism, 2024-05, Vol.26 (5), p.1766-1774
issn 1462-8902
1463-1326
1463-1326
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11447680
source MEDLINE; Wiley Online Library All Journals
subjects Adult
Body mass index
Cross-Sectional Studies
Diabetes
Diabetes Mellitus
Environmental factors
Epidemiology
Food security
Geographical variations
Geography
Humans
Learning algorithms
Machine learning
Obesity
Obesity - epidemiology
obesity prevalence
Prevalence
public health
Resource allocation
Socioeconomic factors
United States - epidemiology
title County‐level socio‐environmental factors and obesity prevalence in the United States
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A31%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=County%E2%80%90level%20socio%E2%80%90environmental%20factors%20and%20obesity%20prevalence%20in%20the%20United%20States&rft.jtitle=Diabetes,%20obesity%20&%20metabolism&rft.au=Salerno,%20Pedro%20R.%20V.%20O.&rft.date=2024-05&rft.volume=26&rft.issue=5&rft.spage=1766&rft.epage=1774&rft.pages=1766-1774&rft.issn=1462-8902&rft.eissn=1463-1326&rft_id=info:doi/10.1111/dom.15488&rft_dat=%3Cproquest_pubme%3E2927211841%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3034131943&rft_id=info:pmid/38356053&rfr_iscdi=true