Network statistics of the whole-brain connectome of Drosophila
Brains comprise complex networks of neurons and connections, similar to the nodes and edges of artificial networks. Network analysis applied to the wiring diagrams of brains can offer insights into how they support computations and regulate the flow of information underlying perception and behaviour...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2024-10, Vol.634 (8032), p.153-165 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 165 |
---|---|
container_issue | 8032 |
container_start_page | 153 |
container_title | Nature (London) |
container_volume | 634 |
creator | Lin, Albert Yang, Runzhe Dorkenwald, Sven Matsliah, Arie Sterling, Amy R. Schlegel, Philipp Yu, Szi-chieh McKellar, Claire E. Costa, Marta Eichler, Katharina Bates, Alexander Shakeel Eckstein, Nils Funke, Jan Jefferis, Gregory S. X. E. Murthy, Mala |
description | Brains comprise complex networks of neurons and connections, similar to the nodes and edges of artificial networks. Network analysis applied to the wiring diagrams of brains can offer insights into how they support computations and regulate the flow of information underlying perception and behaviour. The completion of the first whole-brain connectome of an adult fly, containing over 130,000 neurons and millions of synaptic connections
1
–
3
, offers an opportunity to analyse the statistical properties and topological features of a complete brain. Here we computed the prevalence of two- and three-node motifs, examined their strengths, related this information to both neurotransmitter composition and cell type annotations
4
,
5
, and compared these metrics with wiring diagrams of other animals. We found that the network of the fly brain displays rich-club organization, with a large population (30% of the connectome) of highly connected neurons. We identified subsets of rich-club neurons that may serve as integrators or broadcasters of signals. Finally, we examined subnetworks based on 78 anatomically defined brain regions or neuropils. These data products are shared within the FlyWire Codex (
https://codex.flywire.ai
) and should serve as a foundation for models and experiments exploring the relationship between neural activity and anatomical structure.
The network of the fly brain is highly recurrent and displays rich-club organization, with a large population (30%) of preferentially connected neurons. |
doi_str_mv | 10.1038/s41586-024-07968-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11446825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3114240212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-f993741aeca98db3f9bd2c625b5aeb07b26be8234b2f4be7d579c75f76f2de8d3</originalsourceid><addsrcrecordid>eNp9kTuPEzEUhS0EItnAH6BAI9HQGPy2pwGtlt0FaQUN1JbtuZNMmIyD7bDKv8chITwKqluc7577OAg9o-QVJdy8zoJKozBhAhPdKoP3D9CcCq2wUEY_RHNCmMHEcDVDFzmvCSGSavEYzXjLpZFMz9Gbj1DuY_ra5OLKkMsQchP7pqyguV_FEbBPbpiaEKcJQokbOKjvUsxxuxpG9wQ96t2Y4empLtCXm-vPV-_x3afbD1eXdzhwqQru25ZrQR0E15rO8771HQuKSS8deKI9Ux4M48KzXnjQndRt0LLXqmcdmI4v0Nuj73bnN9AFmEpyo92mYePS3kY32L-VaVjZZfxuKRX1GUxWh5cnhxS_7SAXuxlygHF0E8RdtpxSJpkhVFf0xT_oOu7SVO87UIIJwiirFDtSoX4jJ-jP21BiD_nYYz625mN_5mP3ten5n3ecW34FUgF-BHKVpiWk37P_Y_sDUi2dSA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3114240212</pqid></control><display><type>article</type><title>Network statistics of the whole-brain connectome of Drosophila</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lin, Albert ; Yang, Runzhe ; Dorkenwald, Sven ; Matsliah, Arie ; Sterling, Amy R. ; Schlegel, Philipp ; Yu, Szi-chieh ; McKellar, Claire E. ; Costa, Marta ; Eichler, Katharina ; Bates, Alexander Shakeel ; Eckstein, Nils ; Funke, Jan ; Jefferis, Gregory S. X. E. ; Murthy, Mala</creator><creatorcontrib>Lin, Albert ; Yang, Runzhe ; Dorkenwald, Sven ; Matsliah, Arie ; Sterling, Amy R. ; Schlegel, Philipp ; Yu, Szi-chieh ; McKellar, Claire E. ; Costa, Marta ; Eichler, Katharina ; Bates, Alexander Shakeel ; Eckstein, Nils ; Funke, Jan ; Jefferis, Gregory S. X. E. ; Murthy, Mala</creatorcontrib><description>Brains comprise complex networks of neurons and connections, similar to the nodes and edges of artificial networks. Network analysis applied to the wiring diagrams of brains can offer insights into how they support computations and regulate the flow of information underlying perception and behaviour. The completion of the first whole-brain connectome of an adult fly, containing over 130,000 neurons and millions of synaptic connections
1
–
3
, offers an opportunity to analyse the statistical properties and topological features of a complete brain. Here we computed the prevalence of two- and three-node motifs, examined their strengths, related this information to both neurotransmitter composition and cell type annotations
4
,
5
, and compared these metrics with wiring diagrams of other animals. We found that the network of the fly brain displays rich-club organization, with a large population (30% of the connectome) of highly connected neurons. We identified subsets of rich-club neurons that may serve as integrators or broadcasters of signals. Finally, we examined subnetworks based on 78 anatomically defined brain regions or neuropils. These data products are shared within the FlyWire Codex (
https://codex.flywire.ai
) and should serve as a foundation for models and experiments exploring the relationship between neural activity and anatomical structure.
The network of the fly brain is highly recurrent and displays rich-club organization, with a large population (30%) of preferentially connected neurons.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07968-y</identifier><identifier>PMID: 39358527</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 101/47 ; 631/378/116 ; 631/378/3920 ; 64/24 ; Animals ; Brain ; Brain - anatomy & histology ; Brain - cytology ; Brain - physiology ; Brain architecture ; Connectome ; Drosophila melanogaster - anatomy & histology ; Drosophila melanogaster - physiology ; Female ; Humanities and Social Sciences ; Information flow ; Insects ; Internet ; Models, Neurological ; multidisciplinary ; Nerve Net - anatomy & histology ; Nerve Net - cytology ; Nerve Net - physiology ; Network analysis ; Neural Pathways - anatomy & histology ; Neural Pathways - cytology ; Neural Pathways - physiology ; Neurons ; Neurons - cytology ; Neurons - physiology ; Neuropil - cytology ; Neuropil - physiology ; Neurotransmitter Agents - analysis ; Neurotransmitter Agents - metabolism ; Science ; Science (multidisciplinary) ; Sparsity ; Statistical analysis ; Synapses - physiology ; Wiring</subject><ispartof>Nature (London), 2024-10, Vol.634 (8032), p.153-165</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group Oct 3, 2024</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c356t-f993741aeca98db3f9bd2c625b5aeb07b26be8234b2f4be7d579c75f76f2de8d3</cites><orcidid>0000-0002-1195-0445 ; 0000-0001-5948-3092 ; 0000-0001-8891-5149 ; 0000-0003-2226-8174 ; 0000-0003-3063-3389 ; 0000-0002-0587-9355 ; 0000-0002-4541-5889 ; 0000-0002-7833-8621 ; 0000-0002-5633-1314 ; 0000-0002-4961-3954 ; 0000-0003-4388-7783 ; 0009-0001-9684-0156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-024-07968-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-024-07968-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39358527$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Albert</creatorcontrib><creatorcontrib>Yang, Runzhe</creatorcontrib><creatorcontrib>Dorkenwald, Sven</creatorcontrib><creatorcontrib>Matsliah, Arie</creatorcontrib><creatorcontrib>Sterling, Amy R.</creatorcontrib><creatorcontrib>Schlegel, Philipp</creatorcontrib><creatorcontrib>Yu, Szi-chieh</creatorcontrib><creatorcontrib>McKellar, Claire E.</creatorcontrib><creatorcontrib>Costa, Marta</creatorcontrib><creatorcontrib>Eichler, Katharina</creatorcontrib><creatorcontrib>Bates, Alexander Shakeel</creatorcontrib><creatorcontrib>Eckstein, Nils</creatorcontrib><creatorcontrib>Funke, Jan</creatorcontrib><creatorcontrib>Jefferis, Gregory S. X. E.</creatorcontrib><creatorcontrib>Murthy, Mala</creatorcontrib><title>Network statistics of the whole-brain connectome of Drosophila</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Brains comprise complex networks of neurons and connections, similar to the nodes and edges of artificial networks. Network analysis applied to the wiring diagrams of brains can offer insights into how they support computations and regulate the flow of information underlying perception and behaviour. The completion of the first whole-brain connectome of an adult fly, containing over 130,000 neurons and millions of synaptic connections
1
–
3
, offers an opportunity to analyse the statistical properties and topological features of a complete brain. Here we computed the prevalence of two- and three-node motifs, examined their strengths, related this information to both neurotransmitter composition and cell type annotations
4
,
5
, and compared these metrics with wiring diagrams of other animals. We found that the network of the fly brain displays rich-club organization, with a large population (30% of the connectome) of highly connected neurons. We identified subsets of rich-club neurons that may serve as integrators or broadcasters of signals. Finally, we examined subnetworks based on 78 anatomically defined brain regions or neuropils. These data products are shared within the FlyWire Codex (
https://codex.flywire.ai
) and should serve as a foundation for models and experiments exploring the relationship between neural activity and anatomical structure.
The network of the fly brain is highly recurrent and displays rich-club organization, with a large population (30%) of preferentially connected neurons.</description><subject>101/28</subject><subject>101/47</subject><subject>631/378/116</subject><subject>631/378/3920</subject><subject>64/24</subject><subject>Animals</subject><subject>Brain</subject><subject>Brain - anatomy & histology</subject><subject>Brain - cytology</subject><subject>Brain - physiology</subject><subject>Brain architecture</subject><subject>Connectome</subject><subject>Drosophila melanogaster - anatomy & histology</subject><subject>Drosophila melanogaster - physiology</subject><subject>Female</subject><subject>Humanities and Social Sciences</subject><subject>Information flow</subject><subject>Insects</subject><subject>Internet</subject><subject>Models, Neurological</subject><subject>multidisciplinary</subject><subject>Nerve Net - anatomy & histology</subject><subject>Nerve Net - cytology</subject><subject>Nerve Net - physiology</subject><subject>Network analysis</subject><subject>Neural Pathways - anatomy & histology</subject><subject>Neural Pathways - cytology</subject><subject>Neural Pathways - physiology</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Neuropil - cytology</subject><subject>Neuropil - physiology</subject><subject>Neurotransmitter Agents - analysis</subject><subject>Neurotransmitter Agents - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sparsity</subject><subject>Statistical analysis</subject><subject>Synapses - physiology</subject><subject>Wiring</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kTuPEzEUhS0EItnAH6BAI9HQGPy2pwGtlt0FaQUN1JbtuZNMmIyD7bDKv8chITwKqluc7577OAg9o-QVJdy8zoJKozBhAhPdKoP3D9CcCq2wUEY_RHNCmMHEcDVDFzmvCSGSavEYzXjLpZFMz9Gbj1DuY_ra5OLKkMsQchP7pqyguV_FEbBPbpiaEKcJQokbOKjvUsxxuxpG9wQ96t2Y4empLtCXm-vPV-_x3afbD1eXdzhwqQru25ZrQR0E15rO8771HQuKSS8deKI9Ux4M48KzXnjQndRt0LLXqmcdmI4v0Nuj73bnN9AFmEpyo92mYePS3kY32L-VaVjZZfxuKRX1GUxWh5cnhxS_7SAXuxlygHF0E8RdtpxSJpkhVFf0xT_oOu7SVO87UIIJwiirFDtSoX4jJ-jP21BiD_nYYz625mN_5mP3ten5n3ecW34FUgF-BHKVpiWk37P_Y_sDUi2dSA</recordid><startdate>20241003</startdate><enddate>20241003</enddate><creator>Lin, Albert</creator><creator>Yang, Runzhe</creator><creator>Dorkenwald, Sven</creator><creator>Matsliah, Arie</creator><creator>Sterling, Amy R.</creator><creator>Schlegel, Philipp</creator><creator>Yu, Szi-chieh</creator><creator>McKellar, Claire E.</creator><creator>Costa, Marta</creator><creator>Eichler, Katharina</creator><creator>Bates, Alexander Shakeel</creator><creator>Eckstein, Nils</creator><creator>Funke, Jan</creator><creator>Jefferis, Gregory S. X. E.</creator><creator>Murthy, Mala</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1195-0445</orcidid><orcidid>https://orcid.org/0000-0001-5948-3092</orcidid><orcidid>https://orcid.org/0000-0001-8891-5149</orcidid><orcidid>https://orcid.org/0000-0003-2226-8174</orcidid><orcidid>https://orcid.org/0000-0003-3063-3389</orcidid><orcidid>https://orcid.org/0000-0002-0587-9355</orcidid><orcidid>https://orcid.org/0000-0002-4541-5889</orcidid><orcidid>https://orcid.org/0000-0002-7833-8621</orcidid><orcidid>https://orcid.org/0000-0002-5633-1314</orcidid><orcidid>https://orcid.org/0000-0002-4961-3954</orcidid><orcidid>https://orcid.org/0000-0003-4388-7783</orcidid><orcidid>https://orcid.org/0009-0001-9684-0156</orcidid></search><sort><creationdate>20241003</creationdate><title>Network statistics of the whole-brain connectome of Drosophila</title><author>Lin, Albert ; Yang, Runzhe ; Dorkenwald, Sven ; Matsliah, Arie ; Sterling, Amy R. ; Schlegel, Philipp ; Yu, Szi-chieh ; McKellar, Claire E. ; Costa, Marta ; Eichler, Katharina ; Bates, Alexander Shakeel ; Eckstein, Nils ; Funke, Jan ; Jefferis, Gregory S. X. E. ; Murthy, Mala</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-f993741aeca98db3f9bd2c625b5aeb07b26be8234b2f4be7d579c75f76f2de8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>101/28</topic><topic>101/47</topic><topic>631/378/116</topic><topic>631/378/3920</topic><topic>64/24</topic><topic>Animals</topic><topic>Brain</topic><topic>Brain - anatomy & histology</topic><topic>Brain - cytology</topic><topic>Brain - physiology</topic><topic>Brain architecture</topic><topic>Connectome</topic><topic>Drosophila melanogaster - anatomy & histology</topic><topic>Drosophila melanogaster - physiology</topic><topic>Female</topic><topic>Humanities and Social Sciences</topic><topic>Information flow</topic><topic>Insects</topic><topic>Internet</topic><topic>Models, Neurological</topic><topic>multidisciplinary</topic><topic>Nerve Net - anatomy & histology</topic><topic>Nerve Net - cytology</topic><topic>Nerve Net - physiology</topic><topic>Network analysis</topic><topic>Neural Pathways - anatomy & histology</topic><topic>Neural Pathways - cytology</topic><topic>Neural Pathways - physiology</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Neuropil - cytology</topic><topic>Neuropil - physiology</topic><topic>Neurotransmitter Agents - analysis</topic><topic>Neurotransmitter Agents - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sparsity</topic><topic>Statistical analysis</topic><topic>Synapses - physiology</topic><topic>Wiring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Albert</creatorcontrib><creatorcontrib>Yang, Runzhe</creatorcontrib><creatorcontrib>Dorkenwald, Sven</creatorcontrib><creatorcontrib>Matsliah, Arie</creatorcontrib><creatorcontrib>Sterling, Amy R.</creatorcontrib><creatorcontrib>Schlegel, Philipp</creatorcontrib><creatorcontrib>Yu, Szi-chieh</creatorcontrib><creatorcontrib>McKellar, Claire E.</creatorcontrib><creatorcontrib>Costa, Marta</creatorcontrib><creatorcontrib>Eichler, Katharina</creatorcontrib><creatorcontrib>Bates, Alexander Shakeel</creatorcontrib><creatorcontrib>Eckstein, Nils</creatorcontrib><creatorcontrib>Funke, Jan</creatorcontrib><creatorcontrib>Jefferis, Gregory S. X. E.</creatorcontrib><creatorcontrib>Murthy, Mala</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Albert</au><au>Yang, Runzhe</au><au>Dorkenwald, Sven</au><au>Matsliah, Arie</au><au>Sterling, Amy R.</au><au>Schlegel, Philipp</au><au>Yu, Szi-chieh</au><au>McKellar, Claire E.</au><au>Costa, Marta</au><au>Eichler, Katharina</au><au>Bates, Alexander Shakeel</au><au>Eckstein, Nils</au><au>Funke, Jan</au><au>Jefferis, Gregory S. X. E.</au><au>Murthy, Mala</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network statistics of the whole-brain connectome of Drosophila</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-10-03</date><risdate>2024</risdate><volume>634</volume><issue>8032</issue><spage>153</spage><epage>165</epage><pages>153-165</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Brains comprise complex networks of neurons and connections, similar to the nodes and edges of artificial networks. Network analysis applied to the wiring diagrams of brains can offer insights into how they support computations and regulate the flow of information underlying perception and behaviour. The completion of the first whole-brain connectome of an adult fly, containing over 130,000 neurons and millions of synaptic connections
1
–
3
, offers an opportunity to analyse the statistical properties and topological features of a complete brain. Here we computed the prevalence of two- and three-node motifs, examined their strengths, related this information to both neurotransmitter composition and cell type annotations
4
,
5
, and compared these metrics with wiring diagrams of other animals. We found that the network of the fly brain displays rich-club organization, with a large population (30% of the connectome) of highly connected neurons. We identified subsets of rich-club neurons that may serve as integrators or broadcasters of signals. Finally, we examined subnetworks based on 78 anatomically defined brain regions or neuropils. These data products are shared within the FlyWire Codex (
https://codex.flywire.ai
) and should serve as a foundation for models and experiments exploring the relationship between neural activity and anatomical structure.
The network of the fly brain is highly recurrent and displays rich-club organization, with a large population (30%) of preferentially connected neurons.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39358527</pmid><doi>10.1038/s41586-024-07968-y</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1195-0445</orcidid><orcidid>https://orcid.org/0000-0001-5948-3092</orcidid><orcidid>https://orcid.org/0000-0001-8891-5149</orcidid><orcidid>https://orcid.org/0000-0003-2226-8174</orcidid><orcidid>https://orcid.org/0000-0003-3063-3389</orcidid><orcidid>https://orcid.org/0000-0002-0587-9355</orcidid><orcidid>https://orcid.org/0000-0002-4541-5889</orcidid><orcidid>https://orcid.org/0000-0002-7833-8621</orcidid><orcidid>https://orcid.org/0000-0002-5633-1314</orcidid><orcidid>https://orcid.org/0000-0002-4961-3954</orcidid><orcidid>https://orcid.org/0000-0003-4388-7783</orcidid><orcidid>https://orcid.org/0009-0001-9684-0156</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2024-10, Vol.634 (8032), p.153-165 |
issn | 0028-0836 1476-4687 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11446825 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 101/28 101/47 631/378/116 631/378/3920 64/24 Animals Brain Brain - anatomy & histology Brain - cytology Brain - physiology Brain architecture Connectome Drosophila melanogaster - anatomy & histology Drosophila melanogaster - physiology Female Humanities and Social Sciences Information flow Insects Internet Models, Neurological multidisciplinary Nerve Net - anatomy & histology Nerve Net - cytology Nerve Net - physiology Network analysis Neural Pathways - anatomy & histology Neural Pathways - cytology Neural Pathways - physiology Neurons Neurons - cytology Neurons - physiology Neuropil - cytology Neuropil - physiology Neurotransmitter Agents - analysis Neurotransmitter Agents - metabolism Science Science (multidisciplinary) Sparsity Statistical analysis Synapses - physiology Wiring |
title | Network statistics of the whole-brain connectome of Drosophila |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A18%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20statistics%20of%20the%20whole-brain%20connectome%20of%20Drosophila&rft.jtitle=Nature%20(London)&rft.au=Lin,%20Albert&rft.date=2024-10-03&rft.volume=634&rft.issue=8032&rft.spage=153&rft.epage=165&rft.pages=153-165&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07968-y&rft_dat=%3Cproquest_pubme%3E3114240212%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3114240212&rft_id=info:pmid/39358527&rfr_iscdi=true |