Network statistics of the whole-brain connectome of Drosophila

Brains comprise complex networks of neurons and connections, similar to the nodes and edges of artificial networks. Network analysis applied to the wiring diagrams of brains can offer insights into how they support computations and regulate the flow of information underlying perception and behaviour...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2024-10, Vol.634 (8032), p.153-165
Hauptverfasser: Lin, Albert, Yang, Runzhe, Dorkenwald, Sven, Matsliah, Arie, Sterling, Amy R., Schlegel, Philipp, Yu, Szi-chieh, McKellar, Claire E., Costa, Marta, Eichler, Katharina, Bates, Alexander Shakeel, Eckstein, Nils, Funke, Jan, Jefferis, Gregory S. X. E., Murthy, Mala
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 165
container_issue 8032
container_start_page 153
container_title Nature (London)
container_volume 634
creator Lin, Albert
Yang, Runzhe
Dorkenwald, Sven
Matsliah, Arie
Sterling, Amy R.
Schlegel, Philipp
Yu, Szi-chieh
McKellar, Claire E.
Costa, Marta
Eichler, Katharina
Bates, Alexander Shakeel
Eckstein, Nils
Funke, Jan
Jefferis, Gregory S. X. E.
Murthy, Mala
description Brains comprise complex networks of neurons and connections, similar to the nodes and edges of artificial networks. Network analysis applied to the wiring diagrams of brains can offer insights into how they support computations and regulate the flow of information underlying perception and behaviour. The completion of the first whole-brain connectome of an adult fly, containing over 130,000 neurons and millions of synaptic connections 1 – 3 , offers an opportunity to analyse the statistical properties and topological features of a complete brain. Here we computed the prevalence of two- and three-node motifs, examined their strengths, related this information to both neurotransmitter composition and cell type annotations 4 , 5 , and compared these metrics with wiring diagrams of other animals. We found that the network of the fly brain displays rich-club organization, with a large population (30% of the connectome) of highly connected neurons. We identified subsets of rich-club neurons that may serve as integrators or broadcasters of signals. Finally, we examined subnetworks based on 78 anatomically defined brain regions or neuropils. These data products are shared within the FlyWire Codex ( https://codex.flywire.ai ) and should serve as a foundation for models and experiments exploring the relationship between neural activity and anatomical structure. The network of the fly brain is highly recurrent and displays rich-club organization, with a large population (30%) of preferentially connected neurons.
doi_str_mv 10.1038/s41586-024-07968-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11446825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3114240212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-f993741aeca98db3f9bd2c625b5aeb07b26be8234b2f4be7d579c75f76f2de8d3</originalsourceid><addsrcrecordid>eNp9kTuPEzEUhS0EItnAH6BAI9HQGPy2pwGtlt0FaQUN1JbtuZNMmIyD7bDKv8chITwKqluc7577OAg9o-QVJdy8zoJKozBhAhPdKoP3D9CcCq2wUEY_RHNCmMHEcDVDFzmvCSGSavEYzXjLpZFMz9Gbj1DuY_ra5OLKkMsQchP7pqyguV_FEbBPbpiaEKcJQokbOKjvUsxxuxpG9wQ96t2Y4empLtCXm-vPV-_x3afbD1eXdzhwqQru25ZrQR0E15rO8771HQuKSS8deKI9Ux4M48KzXnjQndRt0LLXqmcdmI4v0Nuj73bnN9AFmEpyo92mYePS3kY32L-VaVjZZfxuKRX1GUxWh5cnhxS_7SAXuxlygHF0E8RdtpxSJpkhVFf0xT_oOu7SVO87UIIJwiirFDtSoX4jJ-jP21BiD_nYYz625mN_5mP3ten5n3ecW34FUgF-BHKVpiWk37P_Y_sDUi2dSA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3114240212</pqid></control><display><type>article</type><title>Network statistics of the whole-brain connectome of Drosophila</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lin, Albert ; Yang, Runzhe ; Dorkenwald, Sven ; Matsliah, Arie ; Sterling, Amy R. ; Schlegel, Philipp ; Yu, Szi-chieh ; McKellar, Claire E. ; Costa, Marta ; Eichler, Katharina ; Bates, Alexander Shakeel ; Eckstein, Nils ; Funke, Jan ; Jefferis, Gregory S. X. E. ; Murthy, Mala</creator><creatorcontrib>Lin, Albert ; Yang, Runzhe ; Dorkenwald, Sven ; Matsliah, Arie ; Sterling, Amy R. ; Schlegel, Philipp ; Yu, Szi-chieh ; McKellar, Claire E. ; Costa, Marta ; Eichler, Katharina ; Bates, Alexander Shakeel ; Eckstein, Nils ; Funke, Jan ; Jefferis, Gregory S. X. E. ; Murthy, Mala</creatorcontrib><description>Brains comprise complex networks of neurons and connections, similar to the nodes and edges of artificial networks. Network analysis applied to the wiring diagrams of brains can offer insights into how they support computations and regulate the flow of information underlying perception and behaviour. The completion of the first whole-brain connectome of an adult fly, containing over 130,000 neurons and millions of synaptic connections 1 – 3 , offers an opportunity to analyse the statistical properties and topological features of a complete brain. Here we computed the prevalence of two- and three-node motifs, examined their strengths, related this information to both neurotransmitter composition and cell type annotations 4 , 5 , and compared these metrics with wiring diagrams of other animals. We found that the network of the fly brain displays rich-club organization, with a large population (30% of the connectome) of highly connected neurons. We identified subsets of rich-club neurons that may serve as integrators or broadcasters of signals. Finally, we examined subnetworks based on 78 anatomically defined brain regions or neuropils. These data products are shared within the FlyWire Codex ( https://codex.flywire.ai ) and should serve as a foundation for models and experiments exploring the relationship between neural activity and anatomical structure. The network of the fly brain is highly recurrent and displays rich-club organization, with a large population (30%) of preferentially connected neurons.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07968-y</identifier><identifier>PMID: 39358527</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 101/47 ; 631/378/116 ; 631/378/3920 ; 64/24 ; Animals ; Brain ; Brain - anatomy &amp; histology ; Brain - cytology ; Brain - physiology ; Brain architecture ; Connectome ; Drosophila melanogaster - anatomy &amp; histology ; Drosophila melanogaster - physiology ; Female ; Humanities and Social Sciences ; Information flow ; Insects ; Internet ; Models, Neurological ; multidisciplinary ; Nerve Net - anatomy &amp; histology ; Nerve Net - cytology ; Nerve Net - physiology ; Network analysis ; Neural Pathways - anatomy &amp; histology ; Neural Pathways - cytology ; Neural Pathways - physiology ; Neurons ; Neurons - cytology ; Neurons - physiology ; Neuropil - cytology ; Neuropil - physiology ; Neurotransmitter Agents - analysis ; Neurotransmitter Agents - metabolism ; Science ; Science (multidisciplinary) ; Sparsity ; Statistical analysis ; Synapses - physiology ; Wiring</subject><ispartof>Nature (London), 2024-10, Vol.634 (8032), p.153-165</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group Oct 3, 2024</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c356t-f993741aeca98db3f9bd2c625b5aeb07b26be8234b2f4be7d579c75f76f2de8d3</cites><orcidid>0000-0002-1195-0445 ; 0000-0001-5948-3092 ; 0000-0001-8891-5149 ; 0000-0003-2226-8174 ; 0000-0003-3063-3389 ; 0000-0002-0587-9355 ; 0000-0002-4541-5889 ; 0000-0002-7833-8621 ; 0000-0002-5633-1314 ; 0000-0002-4961-3954 ; 0000-0003-4388-7783 ; 0009-0001-9684-0156</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-024-07968-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-024-07968-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39358527$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Albert</creatorcontrib><creatorcontrib>Yang, Runzhe</creatorcontrib><creatorcontrib>Dorkenwald, Sven</creatorcontrib><creatorcontrib>Matsliah, Arie</creatorcontrib><creatorcontrib>Sterling, Amy R.</creatorcontrib><creatorcontrib>Schlegel, Philipp</creatorcontrib><creatorcontrib>Yu, Szi-chieh</creatorcontrib><creatorcontrib>McKellar, Claire E.</creatorcontrib><creatorcontrib>Costa, Marta</creatorcontrib><creatorcontrib>Eichler, Katharina</creatorcontrib><creatorcontrib>Bates, Alexander Shakeel</creatorcontrib><creatorcontrib>Eckstein, Nils</creatorcontrib><creatorcontrib>Funke, Jan</creatorcontrib><creatorcontrib>Jefferis, Gregory S. X. E.</creatorcontrib><creatorcontrib>Murthy, Mala</creatorcontrib><title>Network statistics of the whole-brain connectome of Drosophila</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Brains comprise complex networks of neurons and connections, similar to the nodes and edges of artificial networks. Network analysis applied to the wiring diagrams of brains can offer insights into how they support computations and regulate the flow of information underlying perception and behaviour. The completion of the first whole-brain connectome of an adult fly, containing over 130,000 neurons and millions of synaptic connections 1 – 3 , offers an opportunity to analyse the statistical properties and topological features of a complete brain. Here we computed the prevalence of two- and three-node motifs, examined their strengths, related this information to both neurotransmitter composition and cell type annotations 4 , 5 , and compared these metrics with wiring diagrams of other animals. We found that the network of the fly brain displays rich-club organization, with a large population (30% of the connectome) of highly connected neurons. We identified subsets of rich-club neurons that may serve as integrators or broadcasters of signals. Finally, we examined subnetworks based on 78 anatomically defined brain regions or neuropils. These data products are shared within the FlyWire Codex ( https://codex.flywire.ai ) and should serve as a foundation for models and experiments exploring the relationship between neural activity and anatomical structure. The network of the fly brain is highly recurrent and displays rich-club organization, with a large population (30%) of preferentially connected neurons.</description><subject>101/28</subject><subject>101/47</subject><subject>631/378/116</subject><subject>631/378/3920</subject><subject>64/24</subject><subject>Animals</subject><subject>Brain</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain - cytology</subject><subject>Brain - physiology</subject><subject>Brain architecture</subject><subject>Connectome</subject><subject>Drosophila melanogaster - anatomy &amp; histology</subject><subject>Drosophila melanogaster - physiology</subject><subject>Female</subject><subject>Humanities and Social Sciences</subject><subject>Information flow</subject><subject>Insects</subject><subject>Internet</subject><subject>Models, Neurological</subject><subject>multidisciplinary</subject><subject>Nerve Net - anatomy &amp; histology</subject><subject>Nerve Net - cytology</subject><subject>Nerve Net - physiology</subject><subject>Network analysis</subject><subject>Neural Pathways - anatomy &amp; histology</subject><subject>Neural Pathways - cytology</subject><subject>Neural Pathways - physiology</subject><subject>Neurons</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Neuropil - cytology</subject><subject>Neuropil - physiology</subject><subject>Neurotransmitter Agents - analysis</subject><subject>Neurotransmitter Agents - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sparsity</subject><subject>Statistical analysis</subject><subject>Synapses - physiology</subject><subject>Wiring</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kTuPEzEUhS0EItnAH6BAI9HQGPy2pwGtlt0FaQUN1JbtuZNMmIyD7bDKv8chITwKqluc7577OAg9o-QVJdy8zoJKozBhAhPdKoP3D9CcCq2wUEY_RHNCmMHEcDVDFzmvCSGSavEYzXjLpZFMz9Gbj1DuY_ra5OLKkMsQchP7pqyguV_FEbBPbpiaEKcJQokbOKjvUsxxuxpG9wQ96t2Y4empLtCXm-vPV-_x3afbD1eXdzhwqQru25ZrQR0E15rO8771HQuKSS8deKI9Ux4M48KzXnjQndRt0LLXqmcdmI4v0Nuj73bnN9AFmEpyo92mYePS3kY32L-VaVjZZfxuKRX1GUxWh5cnhxS_7SAXuxlygHF0E8RdtpxSJpkhVFf0xT_oOu7SVO87UIIJwiirFDtSoX4jJ-jP21BiD_nYYz625mN_5mP3ten5n3ecW34FUgF-BHKVpiWk37P_Y_sDUi2dSA</recordid><startdate>20241003</startdate><enddate>20241003</enddate><creator>Lin, Albert</creator><creator>Yang, Runzhe</creator><creator>Dorkenwald, Sven</creator><creator>Matsliah, Arie</creator><creator>Sterling, Amy R.</creator><creator>Schlegel, Philipp</creator><creator>Yu, Szi-chieh</creator><creator>McKellar, Claire E.</creator><creator>Costa, Marta</creator><creator>Eichler, Katharina</creator><creator>Bates, Alexander Shakeel</creator><creator>Eckstein, Nils</creator><creator>Funke, Jan</creator><creator>Jefferis, Gregory S. X. E.</creator><creator>Murthy, Mala</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1195-0445</orcidid><orcidid>https://orcid.org/0000-0001-5948-3092</orcidid><orcidid>https://orcid.org/0000-0001-8891-5149</orcidid><orcidid>https://orcid.org/0000-0003-2226-8174</orcidid><orcidid>https://orcid.org/0000-0003-3063-3389</orcidid><orcidid>https://orcid.org/0000-0002-0587-9355</orcidid><orcidid>https://orcid.org/0000-0002-4541-5889</orcidid><orcidid>https://orcid.org/0000-0002-7833-8621</orcidid><orcidid>https://orcid.org/0000-0002-5633-1314</orcidid><orcidid>https://orcid.org/0000-0002-4961-3954</orcidid><orcidid>https://orcid.org/0000-0003-4388-7783</orcidid><orcidid>https://orcid.org/0009-0001-9684-0156</orcidid></search><sort><creationdate>20241003</creationdate><title>Network statistics of the whole-brain connectome of Drosophila</title><author>Lin, Albert ; Yang, Runzhe ; Dorkenwald, Sven ; Matsliah, Arie ; Sterling, Amy R. ; Schlegel, Philipp ; Yu, Szi-chieh ; McKellar, Claire E. ; Costa, Marta ; Eichler, Katharina ; Bates, Alexander Shakeel ; Eckstein, Nils ; Funke, Jan ; Jefferis, Gregory S. X. E. ; Murthy, Mala</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-f993741aeca98db3f9bd2c625b5aeb07b26be8234b2f4be7d579c75f76f2de8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>101/28</topic><topic>101/47</topic><topic>631/378/116</topic><topic>631/378/3920</topic><topic>64/24</topic><topic>Animals</topic><topic>Brain</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain - cytology</topic><topic>Brain - physiology</topic><topic>Brain architecture</topic><topic>Connectome</topic><topic>Drosophila melanogaster - anatomy &amp; histology</topic><topic>Drosophila melanogaster - physiology</topic><topic>Female</topic><topic>Humanities and Social Sciences</topic><topic>Information flow</topic><topic>Insects</topic><topic>Internet</topic><topic>Models, Neurological</topic><topic>multidisciplinary</topic><topic>Nerve Net - anatomy &amp; histology</topic><topic>Nerve Net - cytology</topic><topic>Nerve Net - physiology</topic><topic>Network analysis</topic><topic>Neural Pathways - anatomy &amp; histology</topic><topic>Neural Pathways - cytology</topic><topic>Neural Pathways - physiology</topic><topic>Neurons</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Neuropil - cytology</topic><topic>Neuropil - physiology</topic><topic>Neurotransmitter Agents - analysis</topic><topic>Neurotransmitter Agents - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sparsity</topic><topic>Statistical analysis</topic><topic>Synapses - physiology</topic><topic>Wiring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Albert</creatorcontrib><creatorcontrib>Yang, Runzhe</creatorcontrib><creatorcontrib>Dorkenwald, Sven</creatorcontrib><creatorcontrib>Matsliah, Arie</creatorcontrib><creatorcontrib>Sterling, Amy R.</creatorcontrib><creatorcontrib>Schlegel, Philipp</creatorcontrib><creatorcontrib>Yu, Szi-chieh</creatorcontrib><creatorcontrib>McKellar, Claire E.</creatorcontrib><creatorcontrib>Costa, Marta</creatorcontrib><creatorcontrib>Eichler, Katharina</creatorcontrib><creatorcontrib>Bates, Alexander Shakeel</creatorcontrib><creatorcontrib>Eckstein, Nils</creatorcontrib><creatorcontrib>Funke, Jan</creatorcontrib><creatorcontrib>Jefferis, Gregory S. X. E.</creatorcontrib><creatorcontrib>Murthy, Mala</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Albert</au><au>Yang, Runzhe</au><au>Dorkenwald, Sven</au><au>Matsliah, Arie</au><au>Sterling, Amy R.</au><au>Schlegel, Philipp</au><au>Yu, Szi-chieh</au><au>McKellar, Claire E.</au><au>Costa, Marta</au><au>Eichler, Katharina</au><au>Bates, Alexander Shakeel</au><au>Eckstein, Nils</au><au>Funke, Jan</au><au>Jefferis, Gregory S. X. E.</au><au>Murthy, Mala</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network statistics of the whole-brain connectome of Drosophila</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-10-03</date><risdate>2024</risdate><volume>634</volume><issue>8032</issue><spage>153</spage><epage>165</epage><pages>153-165</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Brains comprise complex networks of neurons and connections, similar to the nodes and edges of artificial networks. Network analysis applied to the wiring diagrams of brains can offer insights into how they support computations and regulate the flow of information underlying perception and behaviour. The completion of the first whole-brain connectome of an adult fly, containing over 130,000 neurons and millions of synaptic connections 1 – 3 , offers an opportunity to analyse the statistical properties and topological features of a complete brain. Here we computed the prevalence of two- and three-node motifs, examined their strengths, related this information to both neurotransmitter composition and cell type annotations 4 , 5 , and compared these metrics with wiring diagrams of other animals. We found that the network of the fly brain displays rich-club organization, with a large population (30% of the connectome) of highly connected neurons. We identified subsets of rich-club neurons that may serve as integrators or broadcasters of signals. Finally, we examined subnetworks based on 78 anatomically defined brain regions or neuropils. These data products are shared within the FlyWire Codex ( https://codex.flywire.ai ) and should serve as a foundation for models and experiments exploring the relationship between neural activity and anatomical structure. The network of the fly brain is highly recurrent and displays rich-club organization, with a large population (30%) of preferentially connected neurons.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39358527</pmid><doi>10.1038/s41586-024-07968-y</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1195-0445</orcidid><orcidid>https://orcid.org/0000-0001-5948-3092</orcidid><orcidid>https://orcid.org/0000-0001-8891-5149</orcidid><orcidid>https://orcid.org/0000-0003-2226-8174</orcidid><orcidid>https://orcid.org/0000-0003-3063-3389</orcidid><orcidid>https://orcid.org/0000-0002-0587-9355</orcidid><orcidid>https://orcid.org/0000-0002-4541-5889</orcidid><orcidid>https://orcid.org/0000-0002-7833-8621</orcidid><orcidid>https://orcid.org/0000-0002-5633-1314</orcidid><orcidid>https://orcid.org/0000-0002-4961-3954</orcidid><orcidid>https://orcid.org/0000-0003-4388-7783</orcidid><orcidid>https://orcid.org/0009-0001-9684-0156</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2024-10, Vol.634 (8032), p.153-165
issn 0028-0836
1476-4687
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11446825
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 101/28
101/47
631/378/116
631/378/3920
64/24
Animals
Brain
Brain - anatomy & histology
Brain - cytology
Brain - physiology
Brain architecture
Connectome
Drosophila melanogaster - anatomy & histology
Drosophila melanogaster - physiology
Female
Humanities and Social Sciences
Information flow
Insects
Internet
Models, Neurological
multidisciplinary
Nerve Net - anatomy & histology
Nerve Net - cytology
Nerve Net - physiology
Network analysis
Neural Pathways - anatomy & histology
Neural Pathways - cytology
Neural Pathways - physiology
Neurons
Neurons - cytology
Neurons - physiology
Neuropil - cytology
Neuropil - physiology
Neurotransmitter Agents - analysis
Neurotransmitter Agents - metabolism
Science
Science (multidisciplinary)
Sparsity
Statistical analysis
Synapses - physiology
Wiring
title Network statistics of the whole-brain connectome of Drosophila
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A18%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20statistics%20of%20the%20whole-brain%20connectome%20of%20Drosophila&rft.jtitle=Nature%20(London)&rft.au=Lin,%20Albert&rft.date=2024-10-03&rft.volume=634&rft.issue=8032&rft.spage=153&rft.epage=165&rft.pages=153-165&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07968-y&rft_dat=%3Cproquest_pubme%3E3114240212%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3114240212&rft_id=info:pmid/39358527&rfr_iscdi=true