Local mRNA Delivery from Nanocomposites Made of Gelatin and Hydroxyapatite Nanoparticles

Local delivery of messenger ribonucleic acid (mRNA) is increasingly being advocated as a promising new strategy to enhance the performance of biomaterials. While extensive research has been dedicated to the complexation of these oligonucleotides into nanoparticles to facilitate systemic delivery, re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-09, Vol.16 (38), p.50497-50506
Hauptverfasser: Andrée, Lea, Egberink, Rik Oude, Heesakkers, Renée, Suurmond, Ceri-Anne E., Joziasse, Lucas S., Khalifeh, Masoomeh, Wang, Rong, Yang, Fang, Brock, Roland, Leeuwenburgh, Sander C. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50506
container_issue 38
container_start_page 50497
container_title ACS applied materials & interfaces
container_volume 16
creator Andrée, Lea
Egberink, Rik Oude
Heesakkers, Renée
Suurmond, Ceri-Anne E.
Joziasse, Lucas S.
Khalifeh, Masoomeh
Wang, Rong
Yang, Fang
Brock, Roland
Leeuwenburgh, Sander C. G.
description Local delivery of messenger ribonucleic acid (mRNA) is increasingly being advocated as a promising new strategy to enhance the performance of biomaterials. While extensive research has been dedicated to the complexation of these oligonucleotides into nanoparticles to facilitate systemic delivery, research on developing suitable biomaterial carriers for the local delivery of mRNA is still scarce. So far, mRNA-nanoparticles (mRNA-NPs) are mainly loaded into traditional polymeric hydrogels. Here, we show that calcium phosphate nanoparticles can be used for both reinforcement of nanoparticle-based hydrogels and the complexation of mRNA. mRNA was incorporated into lipid-coated calcium phosphate nanoparticles (LCPs) formulated with a fusogenic ionizable lipid in the outer layer of the lipid coat. Nanocomposites of gelatin and hydroxyapatite nanoparticles were prepared at various ratios. Higher hydroxyapatite nanoparticle content increased the viscoelastic properties of the nanocomposite but did not affect its self-healing ability. Combination of these nanocomposites with peptide, lipid, and the LCP mRNA formulations achieved local mRNA release as demonstrated by protein expression in cells in contact with the biomaterials. The LCP-based formulation was superior to the other formulations by showing less sensitivity to hydroxyapatite and the highest cytocompatibility.
doi_str_mv 10.1021/acsami.4c12721
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11440464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3106044684</sourcerecordid><originalsourceid>FETCH-LOGICAL-a344t-64d2645755aa5c6bba3d4e3c053844c7e3374fe112390a0da55446ada06091f3</originalsourceid><addsrcrecordid>eNqNkUtrGzEUhUVpyLPbLouWpWBXj6sZe1VCmhc4DoQsuhPXmjutwsxoKo1D_O8jx45JF4WsdJG-czi6h7HPUoylUPI7uoStH4OTqlTyAzuUU4DRRBn1cTcDHLCjlB6EKLQSZp8d6KmagJDlIfs1Cw4b3t7NT_lPavwjxRWvY2j5HLvgQtuH5AdK_AYr4qHml9Tg4DuOXcWvVlUMTyvs881AL4oe4-BdQ-mE7dXYJPq0PY_Z_cX5_dnVaHZ7eX12OhuhBhhGBVSqAFMag2hcsVigroC0E0ZPAFxJWpdQk5RKTwWKCo0BKLBCUYiprPUx-7Gx7ZeLlipH3RCxsX30LcaVDejtvy-d_2N_h0crJYCAArLD161DDH-XlAbb-uSoabCjsExWyxxFaaHfg-ZUOd5kjY43qIshpUj1LpIUdt2c3TRnt81lwZe3H9nhr1Vl4NsGyEL7EJaxy2v9n9szRfejqQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106044684</pqid></control><display><type>article</type><title>Local mRNA Delivery from Nanocomposites Made of Gelatin and Hydroxyapatite Nanoparticles</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Andrée, Lea ; Egberink, Rik Oude ; Heesakkers, Renée ; Suurmond, Ceri-Anne E. ; Joziasse, Lucas S. ; Khalifeh, Masoomeh ; Wang, Rong ; Yang, Fang ; Brock, Roland ; Leeuwenburgh, Sander C. G.</creator><creatorcontrib>Andrée, Lea ; Egberink, Rik Oude ; Heesakkers, Renée ; Suurmond, Ceri-Anne E. ; Joziasse, Lucas S. ; Khalifeh, Masoomeh ; Wang, Rong ; Yang, Fang ; Brock, Roland ; Leeuwenburgh, Sander C. G.</creatorcontrib><description>Local delivery of messenger ribonucleic acid (mRNA) is increasingly being advocated as a promising new strategy to enhance the performance of biomaterials. While extensive research has been dedicated to the complexation of these oligonucleotides into nanoparticles to facilitate systemic delivery, research on developing suitable biomaterial carriers for the local delivery of mRNA is still scarce. So far, mRNA-nanoparticles (mRNA-NPs) are mainly loaded into traditional polymeric hydrogels. Here, we show that calcium phosphate nanoparticles can be used for both reinforcement of nanoparticle-based hydrogels and the complexation of mRNA. mRNA was incorporated into lipid-coated calcium phosphate nanoparticles (LCPs) formulated with a fusogenic ionizable lipid in the outer layer of the lipid coat. Nanocomposites of gelatin and hydroxyapatite nanoparticles were prepared at various ratios. Higher hydroxyapatite nanoparticle content increased the viscoelastic properties of the nanocomposite but did not affect its self-healing ability. Combination of these nanocomposites with peptide, lipid, and the LCP mRNA formulations achieved local mRNA release as demonstrated by protein expression in cells in contact with the biomaterials. The LCP-based formulation was superior to the other formulations by showing less sensitivity to hydroxyapatite and the highest cytocompatibility.</description><identifier>ISSN: 1944-8244</identifier><identifier>ISSN: 1944-8252</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c12721</identifier><identifier>PMID: 39284017</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; biocompatible materials ; Biocompatible Materials - chemistry ; Biological and Medical Applications of Materials and Interfaces ; Durapatite - chemistry ; gelatin ; Gelatin - chemistry ; Humans ; hydrogels ; Hydrogels - chemistry ; hydroxyapatite ; lipids ; Mice ; nanocomposites ; Nanocomposites - chemistry ; nanoparticles ; Nanoparticles - chemistry ; oligonucleotides ; peptides ; polymers ; protein synthesis ; RNA ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; viscoelasticity</subject><ispartof>ACS applied materials &amp; interfaces, 2024-09, Vol.16 (38), p.50497-50506</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a344t-64d2645755aa5c6bba3d4e3c053844c7e3374fe112390a0da55446ada06091f3</cites><orcidid>0000-0003-1395-6127 ; 0000-0002-4022-7643 ; 0000-0002-8097-1127 ; 0000-0003-1471-6133 ; 0000-0002-6623-8439 ; 0009-0005-7715-888X ; 0000-0001-9950-9517</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c12721$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c12721$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39284017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andrée, Lea</creatorcontrib><creatorcontrib>Egberink, Rik Oude</creatorcontrib><creatorcontrib>Heesakkers, Renée</creatorcontrib><creatorcontrib>Suurmond, Ceri-Anne E.</creatorcontrib><creatorcontrib>Joziasse, Lucas S.</creatorcontrib><creatorcontrib>Khalifeh, Masoomeh</creatorcontrib><creatorcontrib>Wang, Rong</creatorcontrib><creatorcontrib>Yang, Fang</creatorcontrib><creatorcontrib>Brock, Roland</creatorcontrib><creatorcontrib>Leeuwenburgh, Sander C. G.</creatorcontrib><title>Local mRNA Delivery from Nanocomposites Made of Gelatin and Hydroxyapatite Nanoparticles</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Local delivery of messenger ribonucleic acid (mRNA) is increasingly being advocated as a promising new strategy to enhance the performance of biomaterials. While extensive research has been dedicated to the complexation of these oligonucleotides into nanoparticles to facilitate systemic delivery, research on developing suitable biomaterial carriers for the local delivery of mRNA is still scarce. So far, mRNA-nanoparticles (mRNA-NPs) are mainly loaded into traditional polymeric hydrogels. Here, we show that calcium phosphate nanoparticles can be used for both reinforcement of nanoparticle-based hydrogels and the complexation of mRNA. mRNA was incorporated into lipid-coated calcium phosphate nanoparticles (LCPs) formulated with a fusogenic ionizable lipid in the outer layer of the lipid coat. Nanocomposites of gelatin and hydroxyapatite nanoparticles were prepared at various ratios. Higher hydroxyapatite nanoparticle content increased the viscoelastic properties of the nanocomposite but did not affect its self-healing ability. Combination of these nanocomposites with peptide, lipid, and the LCP mRNA formulations achieved local mRNA release as demonstrated by protein expression in cells in contact with the biomaterials. The LCP-based formulation was superior to the other formulations by showing less sensitivity to hydroxyapatite and the highest cytocompatibility.</description><subject>Animals</subject><subject>biocompatible materials</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biological and Medical Applications of Materials and Interfaces</subject><subject>Durapatite - chemistry</subject><subject>gelatin</subject><subject>Gelatin - chemistry</subject><subject>Humans</subject><subject>hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>hydroxyapatite</subject><subject>lipids</subject><subject>Mice</subject><subject>nanocomposites</subject><subject>Nanocomposites - chemistry</subject><subject>nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>oligonucleotides</subject><subject>peptides</subject><subject>polymers</subject><subject>protein synthesis</subject><subject>RNA</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>viscoelasticity</subject><issn>1944-8244</issn><issn>1944-8252</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtrGzEUhUVpyLPbLouWpWBXj6sZe1VCmhc4DoQsuhPXmjutwsxoKo1D_O8jx45JF4WsdJG-czi6h7HPUoylUPI7uoStH4OTqlTyAzuUU4DRRBn1cTcDHLCjlB6EKLQSZp8d6KmagJDlIfs1Cw4b3t7NT_lPavwjxRWvY2j5HLvgQtuH5AdK_AYr4qHml9Tg4DuOXcWvVlUMTyvs881AL4oe4-BdQ-mE7dXYJPq0PY_Z_cX5_dnVaHZ7eX12OhuhBhhGBVSqAFMag2hcsVigroC0E0ZPAFxJWpdQk5RKTwWKCo0BKLBCUYiprPUx-7Gx7ZeLlipH3RCxsX30LcaVDejtvy-d_2N_h0crJYCAArLD161DDH-XlAbb-uSoabCjsExWyxxFaaHfg-ZUOd5kjY43qIshpUj1LpIUdt2c3TRnt81lwZe3H9nhr1Vl4NsGyEL7EJaxy2v9n9szRfejqQ</recordid><startdate>20240925</startdate><enddate>20240925</enddate><creator>Andrée, Lea</creator><creator>Egberink, Rik Oude</creator><creator>Heesakkers, Renée</creator><creator>Suurmond, Ceri-Anne E.</creator><creator>Joziasse, Lucas S.</creator><creator>Khalifeh, Masoomeh</creator><creator>Wang, Rong</creator><creator>Yang, Fang</creator><creator>Brock, Roland</creator><creator>Leeuwenburgh, Sander C. G.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1395-6127</orcidid><orcidid>https://orcid.org/0000-0002-4022-7643</orcidid><orcidid>https://orcid.org/0000-0002-8097-1127</orcidid><orcidid>https://orcid.org/0000-0003-1471-6133</orcidid><orcidid>https://orcid.org/0000-0002-6623-8439</orcidid><orcidid>https://orcid.org/0009-0005-7715-888X</orcidid><orcidid>https://orcid.org/0000-0001-9950-9517</orcidid></search><sort><creationdate>20240925</creationdate><title>Local mRNA Delivery from Nanocomposites Made of Gelatin and Hydroxyapatite Nanoparticles</title><author>Andrée, Lea ; Egberink, Rik Oude ; Heesakkers, Renée ; Suurmond, Ceri-Anne E. ; Joziasse, Lucas S. ; Khalifeh, Masoomeh ; Wang, Rong ; Yang, Fang ; Brock, Roland ; Leeuwenburgh, Sander C. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a344t-64d2645755aa5c6bba3d4e3c053844c7e3374fe112390a0da55446ada06091f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>biocompatible materials</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biological and Medical Applications of Materials and Interfaces</topic><topic>Durapatite - chemistry</topic><topic>gelatin</topic><topic>Gelatin - chemistry</topic><topic>Humans</topic><topic>hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>hydroxyapatite</topic><topic>lipids</topic><topic>Mice</topic><topic>nanocomposites</topic><topic>Nanocomposites - chemistry</topic><topic>nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>oligonucleotides</topic><topic>peptides</topic><topic>polymers</topic><topic>protein synthesis</topic><topic>RNA</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andrée, Lea</creatorcontrib><creatorcontrib>Egberink, Rik Oude</creatorcontrib><creatorcontrib>Heesakkers, Renée</creatorcontrib><creatorcontrib>Suurmond, Ceri-Anne E.</creatorcontrib><creatorcontrib>Joziasse, Lucas S.</creatorcontrib><creatorcontrib>Khalifeh, Masoomeh</creatorcontrib><creatorcontrib>Wang, Rong</creatorcontrib><creatorcontrib>Yang, Fang</creatorcontrib><creatorcontrib>Brock, Roland</creatorcontrib><creatorcontrib>Leeuwenburgh, Sander C. G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andrée, Lea</au><au>Egberink, Rik Oude</au><au>Heesakkers, Renée</au><au>Suurmond, Ceri-Anne E.</au><au>Joziasse, Lucas S.</au><au>Khalifeh, Masoomeh</au><au>Wang, Rong</au><au>Yang, Fang</au><au>Brock, Roland</au><au>Leeuwenburgh, Sander C. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local mRNA Delivery from Nanocomposites Made of Gelatin and Hydroxyapatite Nanoparticles</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-09-25</date><risdate>2024</risdate><volume>16</volume><issue>38</issue><spage>50497</spage><epage>50506</epage><pages>50497-50506</pages><issn>1944-8244</issn><issn>1944-8252</issn><eissn>1944-8252</eissn><abstract>Local delivery of messenger ribonucleic acid (mRNA) is increasingly being advocated as a promising new strategy to enhance the performance of biomaterials. While extensive research has been dedicated to the complexation of these oligonucleotides into nanoparticles to facilitate systemic delivery, research on developing suitable biomaterial carriers for the local delivery of mRNA is still scarce. So far, mRNA-nanoparticles (mRNA-NPs) are mainly loaded into traditional polymeric hydrogels. Here, we show that calcium phosphate nanoparticles can be used for both reinforcement of nanoparticle-based hydrogels and the complexation of mRNA. mRNA was incorporated into lipid-coated calcium phosphate nanoparticles (LCPs) formulated with a fusogenic ionizable lipid in the outer layer of the lipid coat. Nanocomposites of gelatin and hydroxyapatite nanoparticles were prepared at various ratios. Higher hydroxyapatite nanoparticle content increased the viscoelastic properties of the nanocomposite but did not affect its self-healing ability. Combination of these nanocomposites with peptide, lipid, and the LCP mRNA formulations achieved local mRNA release as demonstrated by protein expression in cells in contact with the biomaterials. The LCP-based formulation was superior to the other formulations by showing less sensitivity to hydroxyapatite and the highest cytocompatibility.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39284017</pmid><doi>10.1021/acsami.4c12721</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1395-6127</orcidid><orcidid>https://orcid.org/0000-0002-4022-7643</orcidid><orcidid>https://orcid.org/0000-0002-8097-1127</orcidid><orcidid>https://orcid.org/0000-0003-1471-6133</orcidid><orcidid>https://orcid.org/0000-0002-6623-8439</orcidid><orcidid>https://orcid.org/0009-0005-7715-888X</orcidid><orcidid>https://orcid.org/0000-0001-9950-9517</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2024-09, Vol.16 (38), p.50497-50506
issn 1944-8244
1944-8252
1944-8252
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11440464
source MEDLINE; American Chemical Society Journals
subjects Animals
biocompatible materials
Biocompatible Materials - chemistry
Biological and Medical Applications of Materials and Interfaces
Durapatite - chemistry
gelatin
Gelatin - chemistry
Humans
hydrogels
Hydrogels - chemistry
hydroxyapatite
lipids
Mice
nanocomposites
Nanocomposites - chemistry
nanoparticles
Nanoparticles - chemistry
oligonucleotides
peptides
polymers
protein synthesis
RNA
RNA, Messenger - genetics
RNA, Messenger - metabolism
viscoelasticity
title Local mRNA Delivery from Nanocomposites Made of Gelatin and Hydroxyapatite Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A09%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20mRNA%20Delivery%20from%20Nanocomposites%20Made%20of%20Gelatin%20and%20Hydroxyapatite%20Nanoparticles&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Andre%CC%81e,%20Lea&rft.date=2024-09-25&rft.volume=16&rft.issue=38&rft.spage=50497&rft.epage=50506&rft.pages=50497-50506&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c12721&rft_dat=%3Cproquest_pubme%3E3106044684%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106044684&rft_id=info:pmid/39284017&rfr_iscdi=true