Coniferous Bark as Filler for Polylactic Acid-Based Biocomposites
This study explores the possibilities of utilisation of coniferous bark as a filler in wood-polymer composites (WPCs), its impact on properties such as the modulus of rupture (MOR), modulus of elasticity (MOE), thickness swelling (TS) and water absorption (WA) after 2 h and 24 h of immersion in wate...
Gespeichert in:
Veröffentlicht in: | Polymers 2024-09, Vol.16 (18), p.2669 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 18 |
container_start_page | 2669 |
container_title | Polymers |
container_volume | 16 |
creator | Jasiński, Wojciech Auriga, Radosław Lee, Seng Hua Adamik, Łukasz Borysiuk, Piotr |
description | This study explores the possibilities of utilisation of coniferous bark as a filler in wood-polymer composites (WPCs), its impact on properties such as the modulus of rupture (MOR), modulus of elasticity (MOE), thickness swelling (TS) and water absorption (WA) after 2 h and 24 h of immersion in water and the significance of this impact compared to other factors. Six variants of bark-polylactic acid (PLA) WPCs were manufactured, differentiated by their filler content and filler particle size. As a comparison, analogous composites filled with coniferous sawdust were also manufactured. Bark-filled composites were characterised by lower TS and WA after both 2 h and 24 h of immersion, as well as lower water contact angles and surface free energy. The bark filler decreased the composites' MORs and MOEs, while greater differences were noticed for variants filled with small particles. The type of filler was the second most important factor contributing to variance in this study, with the filler content being the most important one. |
doi_str_mv | 10.3390/polym16182669 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11435800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A810842865</galeid><sourcerecordid>A810842865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-7bbc5bcad5a6afaf3ab46efbd4052bce393d75194416bf6df12976e8965719b53</originalsourceid><addsrcrecordid>eNpdkc1PGzEQxa0K1CDg2Gu1Ui9cNvX37p5QEjUFKRIc2rNle8fU4F2n9gYp_31NkyKofbBl_-bNPD2EPhE8Z6zDX7cx7AciSUul7D6gM4obVnMm8cmb-wxd5vyIy-JCStJ8RDPWlXLC6BlarOLoHaS4y9VSp6dK52rtQ4BUuZiq-9IgaDt5Wy2s7-ulztBXSx9tHLYx-wnyBTp1OmS4PJ7n6Of624_VTb25-367WmxqyzCd6sYYK4zVvdBSO-2YNlyCMz3HghoLZaS-EaTjnEjjZO8I7RoJbSdFQzoj2Dm6Puhud2aA3sI4JR3UNvlBp72K2qv3P6P_pR7isyKEM9FiXBSujgop_t5BntTgs4UQ9AjFv2KE4I5QQWVBv_yHPsZdGou_v5SUnDW8UPMD9aADKD-6WBrbsnsYvI0jOF_eFy3BLaetfPFQHwpsijkncK_jE6xeElXvEi3857eeX-l_-bE_0decPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110664374</pqid></control><display><type>article</type><title>Coniferous Bark as Filler for Polylactic Acid-Based Biocomposites</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Jasiński, Wojciech ; Auriga, Radosław ; Lee, Seng Hua ; Adamik, Łukasz ; Borysiuk, Piotr</creator><creatorcontrib>Jasiński, Wojciech ; Auriga, Radosław ; Lee, Seng Hua ; Adamik, Łukasz ; Borysiuk, Piotr</creatorcontrib><description>This study explores the possibilities of utilisation of coniferous bark as a filler in wood-polymer composites (WPCs), its impact on properties such as the modulus of rupture (MOR), modulus of elasticity (MOE), thickness swelling (TS) and water absorption (WA) after 2 h and 24 h of immersion in water and the significance of this impact compared to other factors. Six variants of bark-polylactic acid (PLA) WPCs were manufactured, differentiated by their filler content and filler particle size. As a comparison, analogous composites filled with coniferous sawdust were also manufactured. Bark-filled composites were characterised by lower TS and WA after both 2 h and 24 h of immersion, as well as lower water contact angles and surface free energy. The bark filler decreased the composites' MORs and MOEs, while greater differences were noticed for variants filled with small particles. The type of filler was the second most important factor contributing to variance in this study, with the filler content being the most important one.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym16182669</identifier><identifier>PMID: 39339132</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Bark ; Biopolymers ; Contact angle ; Fillers ; Free energy ; Impact strength ; Mechanical properties ; Modulus of elasticity ; Modulus of rupture ; Particle size ; Particulate composites ; Polyethylene ; Polylactic acid ; Polymer industry ; Polymer matrix composites ; Polymers ; Polyvinyl chloride ; Sawdust ; Skeletal composites ; Submerging ; Variance analysis ; Water absorption ; Wood</subject><ispartof>Polymers, 2024-09, Vol.16 (18), p.2669</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-7bbc5bcad5a6afaf3ab46efbd4052bce393d75194416bf6df12976e8965719b53</cites><orcidid>0009-0000-3414-0448 ; 0000-0001-6369-9902 ; 0000-0001-5627-2425 ; 0000-0002-7508-9359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435800/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435800/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39339132$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jasiński, Wojciech</creatorcontrib><creatorcontrib>Auriga, Radosław</creatorcontrib><creatorcontrib>Lee, Seng Hua</creatorcontrib><creatorcontrib>Adamik, Łukasz</creatorcontrib><creatorcontrib>Borysiuk, Piotr</creatorcontrib><title>Coniferous Bark as Filler for Polylactic Acid-Based Biocomposites</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>This study explores the possibilities of utilisation of coniferous bark as a filler in wood-polymer composites (WPCs), its impact on properties such as the modulus of rupture (MOR), modulus of elasticity (MOE), thickness swelling (TS) and water absorption (WA) after 2 h and 24 h of immersion in water and the significance of this impact compared to other factors. Six variants of bark-polylactic acid (PLA) WPCs were manufactured, differentiated by their filler content and filler particle size. As a comparison, analogous composites filled with coniferous sawdust were also manufactured. Bark-filled composites were characterised by lower TS and WA after both 2 h and 24 h of immersion, as well as lower water contact angles and surface free energy. The bark filler decreased the composites' MORs and MOEs, while greater differences were noticed for variants filled with small particles. The type of filler was the second most important factor contributing to variance in this study, with the filler content being the most important one.</description><subject>Bark</subject><subject>Biopolymers</subject><subject>Contact angle</subject><subject>Fillers</subject><subject>Free energy</subject><subject>Impact strength</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Modulus of rupture</subject><subject>Particle size</subject><subject>Particulate composites</subject><subject>Polyethylene</subject><subject>Polylactic acid</subject><subject>Polymer industry</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Polyvinyl chloride</subject><subject>Sawdust</subject><subject>Skeletal composites</subject><subject>Submerging</subject><subject>Variance analysis</subject><subject>Water absorption</subject><subject>Wood</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkc1PGzEQxa0K1CDg2Gu1Ui9cNvX37p5QEjUFKRIc2rNle8fU4F2n9gYp_31NkyKofbBl_-bNPD2EPhE8Z6zDX7cx7AciSUul7D6gM4obVnMm8cmb-wxd5vyIy-JCStJ8RDPWlXLC6BlarOLoHaS4y9VSp6dK52rtQ4BUuZiq-9IgaDt5Wy2s7-ulztBXSx9tHLYx-wnyBTp1OmS4PJ7n6Of624_VTb25-367WmxqyzCd6sYYK4zVvdBSO-2YNlyCMz3HghoLZaS-EaTjnEjjZO8I7RoJbSdFQzoj2Dm6Puhud2aA3sI4JR3UNvlBp72K2qv3P6P_pR7isyKEM9FiXBSujgop_t5BntTgs4UQ9AjFv2KE4I5QQWVBv_yHPsZdGou_v5SUnDW8UPMD9aADKD-6WBrbsnsYvI0jOF_eFy3BLaetfPFQHwpsijkncK_jE6xeElXvEi3857eeX-l_-bE_0decPw</recordid><startdate>20240922</startdate><enddate>20240922</enddate><creator>Jasiński, Wojciech</creator><creator>Auriga, Radosław</creator><creator>Lee, Seng Hua</creator><creator>Adamik, Łukasz</creator><creator>Borysiuk, Piotr</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0000-3414-0448</orcidid><orcidid>https://orcid.org/0000-0001-6369-9902</orcidid><orcidid>https://orcid.org/0000-0001-5627-2425</orcidid><orcidid>https://orcid.org/0000-0002-7508-9359</orcidid></search><sort><creationdate>20240922</creationdate><title>Coniferous Bark as Filler for Polylactic Acid-Based Biocomposites</title><author>Jasiński, Wojciech ; Auriga, Radosław ; Lee, Seng Hua ; Adamik, Łukasz ; Borysiuk, Piotr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-7bbc5bcad5a6afaf3ab46efbd4052bce393d75194416bf6df12976e8965719b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bark</topic><topic>Biopolymers</topic><topic>Contact angle</topic><topic>Fillers</topic><topic>Free energy</topic><topic>Impact strength</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Modulus of rupture</topic><topic>Particle size</topic><topic>Particulate composites</topic><topic>Polyethylene</topic><topic>Polylactic acid</topic><topic>Polymer industry</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Polyvinyl chloride</topic><topic>Sawdust</topic><topic>Skeletal composites</topic><topic>Submerging</topic><topic>Variance analysis</topic><topic>Water absorption</topic><topic>Wood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jasiński, Wojciech</creatorcontrib><creatorcontrib>Auriga, Radosław</creatorcontrib><creatorcontrib>Lee, Seng Hua</creatorcontrib><creatorcontrib>Adamik, Łukasz</creatorcontrib><creatorcontrib>Borysiuk, Piotr</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jasiński, Wojciech</au><au>Auriga, Radosław</au><au>Lee, Seng Hua</au><au>Adamik, Łukasz</au><au>Borysiuk, Piotr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coniferous Bark as Filler for Polylactic Acid-Based Biocomposites</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2024-09-22</date><risdate>2024</risdate><volume>16</volume><issue>18</issue><spage>2669</spage><pages>2669-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>This study explores the possibilities of utilisation of coniferous bark as a filler in wood-polymer composites (WPCs), its impact on properties such as the modulus of rupture (MOR), modulus of elasticity (MOE), thickness swelling (TS) and water absorption (WA) after 2 h and 24 h of immersion in water and the significance of this impact compared to other factors. Six variants of bark-polylactic acid (PLA) WPCs were manufactured, differentiated by their filler content and filler particle size. As a comparison, analogous composites filled with coniferous sawdust were also manufactured. Bark-filled composites were characterised by lower TS and WA after both 2 h and 24 h of immersion, as well as lower water contact angles and surface free energy. The bark filler decreased the composites' MORs and MOEs, while greater differences were noticed for variants filled with small particles. The type of filler was the second most important factor contributing to variance in this study, with the filler content being the most important one.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39339132</pmid><doi>10.3390/polym16182669</doi><orcidid>https://orcid.org/0009-0000-3414-0448</orcidid><orcidid>https://orcid.org/0000-0001-6369-9902</orcidid><orcidid>https://orcid.org/0000-0001-5627-2425</orcidid><orcidid>https://orcid.org/0000-0002-7508-9359</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2024-09, Vol.16 (18), p.2669 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11435800 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central |
subjects | Bark Biopolymers Contact angle Fillers Free energy Impact strength Mechanical properties Modulus of elasticity Modulus of rupture Particle size Particulate composites Polyethylene Polylactic acid Polymer industry Polymer matrix composites Polymers Polyvinyl chloride Sawdust Skeletal composites Submerging Variance analysis Water absorption Wood |
title | Coniferous Bark as Filler for Polylactic Acid-Based Biocomposites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T07%3A10%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coniferous%20Bark%20as%20Filler%20for%20Polylactic%20Acid-Based%20Biocomposites&rft.jtitle=Polymers&rft.au=Jasi%C5%84ski,%20Wojciech&rft.date=2024-09-22&rft.volume=16&rft.issue=18&rft.spage=2669&rft.pages=2669-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym16182669&rft_dat=%3Cgale_pubme%3EA810842865%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110664374&rft_id=info:pmid/39339132&rft_galeid=A810842865&rfr_iscdi=true |