Ultra-High Strength in FCC+BCC High-Entropy Alloy via Different Gradual Morphology

In this study, high-pressure torsion (HPT) processing is applied to the as-cast Al CoCrFeNi high-entropy alloy (HEA) for 1, 3, and 5 turns. Microstructural observations reveal a significant refinement of the second phase after HPT processing. This refinement effect is influenced by the number of pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-09, Vol.17 (18), p.4535
Hauptverfasser: Ding, Ziheng, Ding, Chaogang, Yang, Zhiqin, Zhang, Hao, Wang, Fanghui, Li, Hushan, Xu, Jie, Shan, Debin, Guo, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 18
container_start_page 4535
container_title Materials
container_volume 17
creator Ding, Ziheng
Ding, Chaogang
Yang, Zhiqin
Zhang, Hao
Wang, Fanghui
Li, Hushan
Xu, Jie
Shan, Debin
Guo, Bin
description In this study, high-pressure torsion (HPT) processing is applied to the as-cast Al CoCrFeNi high-entropy alloy (HEA) for 1, 3, and 5 turns. Microstructural observations reveal a significant refinement of the second phase after HPT processing. This refinement effect is influenced by the number of processing turns and the distance of the processing position from the center. As the number of processing turns or the distance of the processing position from the center increases, the fragmentation effect on the second phase becomes more pronounced. The hardness of the alloy is greatly enhanced after HPT processing, but there is an upper limit to this enhancement. After increasing the number of processing turns to 5, the increase in hardness at the edge becomes less significant, while the overall hardness becomes more uniform. Additionally, the strength of the processed alloy is significantly enhanced, while its ductility undergoes a noticeable decrease. With an increase in the number of processing turns, the second phase is further refined, resulting in improvement of strength and ductility.
doi_str_mv 10.3390/ma17184535
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11432965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A811105691</galeid><sourcerecordid>A811105691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2505-864fa3ec08fd6b1d0798af106e73927fa245ccf5881dd4fa78e2d0217eeeba13</originalsourceid><addsrcrecordid>eNpdkc1u3CAUhVGUKonSbPoAFVI3USunXGMwrKqJm59KiSK16RoxGDxE2EywHWnevkwnTdPCAsT97uEeHYTeATmjVJLPvYYaRMUo20NHICUvQFbV_qv7IToZxweSF6UgSnmADqmklJc1P0Lff4Yp6eLadyv8Y0p26KYV9gO-bJpP502Dt4XiYphSXG_wIoS4wU9e46_eOZvpCV8l3c464NuY1qsYYrd5i944HUZ78nweo_vLi_vmuri5u_rWLG4KUzLCCsErp6k1RLiWL6EltRTaAeG2prKsnS4rZoxjQkDbZrQWtmxJCbW1dqmBHqMvO9n1vOxta_IwSQe1Tr7XaaOi9urfyuBXqotPCqCipeQsK5w-K6T4ONtxUr0fjQ1BDzbOo6IARBJJmcjoh__QhzinIdv7TTHJRVVn6mxHdTpY5QcX88cm79b23sTBOp_fFwK2LVxuPXzcNZgUxzFZ9zI-ELWNV_2NN8PvXxt-Qf-ESX8BbOyeTA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3110596847</pqid></control><display><type>article</type><title>Ultra-High Strength in FCC+BCC High-Entropy Alloy via Different Gradual Morphology</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Ding, Ziheng ; Ding, Chaogang ; Yang, Zhiqin ; Zhang, Hao ; Wang, Fanghui ; Li, Hushan ; Xu, Jie ; Shan, Debin ; Guo, Bin</creator><creatorcontrib>Ding, Ziheng ; Ding, Chaogang ; Yang, Zhiqin ; Zhang, Hao ; Wang, Fanghui ; Li, Hushan ; Xu, Jie ; Shan, Debin ; Guo, Bin</creatorcontrib><description>In this study, high-pressure torsion (HPT) processing is applied to the as-cast Al CoCrFeNi high-entropy alloy (HEA) for 1, 3, and 5 turns. Microstructural observations reveal a significant refinement of the second phase after HPT processing. This refinement effect is influenced by the number of processing turns and the distance of the processing position from the center. As the number of processing turns or the distance of the processing position from the center increases, the fragmentation effect on the second phase becomes more pronounced. The hardness of the alloy is greatly enhanced after HPT processing, but there is an upper limit to this enhancement. After increasing the number of processing turns to 5, the increase in hardness at the edge becomes less significant, while the overall hardness becomes more uniform. Additionally, the strength of the processed alloy is significantly enhanced, while its ductility undergoes a noticeable decrease. With an increase in the number of processing turns, the second phase is further refined, resulting in improvement of strength and ductility.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17184535</identifier><identifier>PMID: 39336276</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alloys ; Body centered cubic lattice ; Deformation ; Ductility ; Entropy ; Face centered cubic lattice ; Hardness ; High entropy alloys ; High strength alloys ; Influence ; Mechanical properties ; Microstructure ; Morphology ; Scanning electron microscopy ; Shear strain ; Specialty metals industry ; Strain hardening ; Temperature</subject><ispartof>Materials, 2024-09, Vol.17 (18), p.4535</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2505-864fa3ec08fd6b1d0798af106e73927fa245ccf5881dd4fa78e2d0217eeeba13</cites><orcidid>0000-0002-1065-3203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11432965/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11432965/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39336276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Ziheng</creatorcontrib><creatorcontrib>Ding, Chaogang</creatorcontrib><creatorcontrib>Yang, Zhiqin</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Wang, Fanghui</creatorcontrib><creatorcontrib>Li, Hushan</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Shan, Debin</creatorcontrib><creatorcontrib>Guo, Bin</creatorcontrib><title>Ultra-High Strength in FCC+BCC High-Entropy Alloy via Different Gradual Morphology</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>In this study, high-pressure torsion (HPT) processing is applied to the as-cast Al CoCrFeNi high-entropy alloy (HEA) for 1, 3, and 5 turns. Microstructural observations reveal a significant refinement of the second phase after HPT processing. This refinement effect is influenced by the number of processing turns and the distance of the processing position from the center. As the number of processing turns or the distance of the processing position from the center increases, the fragmentation effect on the second phase becomes more pronounced. The hardness of the alloy is greatly enhanced after HPT processing, but there is an upper limit to this enhancement. After increasing the number of processing turns to 5, the increase in hardness at the edge becomes less significant, while the overall hardness becomes more uniform. Additionally, the strength of the processed alloy is significantly enhanced, while its ductility undergoes a noticeable decrease. With an increase in the number of processing turns, the second phase is further refined, resulting in improvement of strength and ductility.</description><subject>Alloys</subject><subject>Body centered cubic lattice</subject><subject>Deformation</subject><subject>Ductility</subject><subject>Entropy</subject><subject>Face centered cubic lattice</subject><subject>Hardness</subject><subject>High entropy alloys</subject><subject>High strength alloys</subject><subject>Influence</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Scanning electron microscopy</subject><subject>Shear strain</subject><subject>Specialty metals industry</subject><subject>Strain hardening</subject><subject>Temperature</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkc1u3CAUhVGUKonSbPoAFVI3USunXGMwrKqJm59KiSK16RoxGDxE2EywHWnevkwnTdPCAsT97uEeHYTeATmjVJLPvYYaRMUo20NHICUvQFbV_qv7IToZxweSF6UgSnmADqmklJc1P0Lff4Yp6eLadyv8Y0p26KYV9gO-bJpP502Dt4XiYphSXG_wIoS4wU9e46_eOZvpCV8l3c464NuY1qsYYrd5i944HUZ78nweo_vLi_vmuri5u_rWLG4KUzLCCsErp6k1RLiWL6EltRTaAeG2prKsnS4rZoxjQkDbZrQWtmxJCbW1dqmBHqMvO9n1vOxta_IwSQe1Tr7XaaOi9urfyuBXqotPCqCipeQsK5w-K6T4ONtxUr0fjQ1BDzbOo6IARBJJmcjoh__QhzinIdv7TTHJRVVn6mxHdTpY5QcX88cm79b23sTBOp_fFwK2LVxuPXzcNZgUxzFZ9zI-ELWNV_2NN8PvXxt-Qf-ESX8BbOyeTA</recordid><startdate>20240915</startdate><enddate>20240915</enddate><creator>Ding, Ziheng</creator><creator>Ding, Chaogang</creator><creator>Yang, Zhiqin</creator><creator>Zhang, Hao</creator><creator>Wang, Fanghui</creator><creator>Li, Hushan</creator><creator>Xu, Jie</creator><creator>Shan, Debin</creator><creator>Guo, Bin</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1065-3203</orcidid></search><sort><creationdate>20240915</creationdate><title>Ultra-High Strength in FCC+BCC High-Entropy Alloy via Different Gradual Morphology</title><author>Ding, Ziheng ; Ding, Chaogang ; Yang, Zhiqin ; Zhang, Hao ; Wang, Fanghui ; Li, Hushan ; Xu, Jie ; Shan, Debin ; Guo, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2505-864fa3ec08fd6b1d0798af106e73927fa245ccf5881dd4fa78e2d0217eeeba13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alloys</topic><topic>Body centered cubic lattice</topic><topic>Deformation</topic><topic>Ductility</topic><topic>Entropy</topic><topic>Face centered cubic lattice</topic><topic>Hardness</topic><topic>High entropy alloys</topic><topic>High strength alloys</topic><topic>Influence</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Scanning electron microscopy</topic><topic>Shear strain</topic><topic>Specialty metals industry</topic><topic>Strain hardening</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Ziheng</creatorcontrib><creatorcontrib>Ding, Chaogang</creatorcontrib><creatorcontrib>Yang, Zhiqin</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Wang, Fanghui</creatorcontrib><creatorcontrib>Li, Hushan</creatorcontrib><creatorcontrib>Xu, Jie</creatorcontrib><creatorcontrib>Shan, Debin</creatorcontrib><creatorcontrib>Guo, Bin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Ziheng</au><au>Ding, Chaogang</au><au>Yang, Zhiqin</au><au>Zhang, Hao</au><au>Wang, Fanghui</au><au>Li, Hushan</au><au>Xu, Jie</au><au>Shan, Debin</au><au>Guo, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-High Strength in FCC+BCC High-Entropy Alloy via Different Gradual Morphology</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-09-15</date><risdate>2024</risdate><volume>17</volume><issue>18</issue><spage>4535</spage><pages>4535-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>In this study, high-pressure torsion (HPT) processing is applied to the as-cast Al CoCrFeNi high-entropy alloy (HEA) for 1, 3, and 5 turns. Microstructural observations reveal a significant refinement of the second phase after HPT processing. This refinement effect is influenced by the number of processing turns and the distance of the processing position from the center. As the number of processing turns or the distance of the processing position from the center increases, the fragmentation effect on the second phase becomes more pronounced. The hardness of the alloy is greatly enhanced after HPT processing, but there is an upper limit to this enhancement. After increasing the number of processing turns to 5, the increase in hardness at the edge becomes less significant, while the overall hardness becomes more uniform. Additionally, the strength of the processed alloy is significantly enhanced, while its ductility undergoes a noticeable decrease. With an increase in the number of processing turns, the second phase is further refined, resulting in improvement of strength and ductility.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39336276</pmid><doi>10.3390/ma17184535</doi><orcidid>https://orcid.org/0000-0002-1065-3203</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-09, Vol.17 (18), p.4535
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11432965
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Alloys
Body centered cubic lattice
Deformation
Ductility
Entropy
Face centered cubic lattice
Hardness
High entropy alloys
High strength alloys
Influence
Mechanical properties
Microstructure
Morphology
Scanning electron microscopy
Shear strain
Specialty metals industry
Strain hardening
Temperature
title Ultra-High Strength in FCC+BCC High-Entropy Alloy via Different Gradual Morphology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A09%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-High%20Strength%20in%20FCC+BCC%20High-Entropy%20Alloy%20via%20Different%20Gradual%20Morphology&rft.jtitle=Materials&rft.au=Ding,%20Ziheng&rft.date=2024-09-15&rft.volume=17&rft.issue=18&rft.spage=4535&rft.pages=4535-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17184535&rft_dat=%3Cgale_pubme%3EA811105691%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3110596847&rft_id=info:pmid/39336276&rft_galeid=A811105691&rfr_iscdi=true