Oligodendrocytes and myelin limit neuronal plasticity in visual cortex

Developmental myelination is a protracted process in the mammalian brain 1 . One theory for why oligodendrocytes mature so slowly posits that myelination may stabilize neuronal circuits and temper neuronal plasticity as animals age 2 – 4 . We tested this theory in the visual cortex, which has a well...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2024-09, Vol.633 (8031), p.856-863
Hauptverfasser: Xin, Wendy, Kaneko, Megumi, Roth, Richard H., Zhang, Albert, Nocera, Sonia, Ding, Jun B., Stryker, Michael P., Chan, Jonah R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 863
container_issue 8031
container_start_page 856
container_title Nature (London)
container_volume 633
creator Xin, Wendy
Kaneko, Megumi
Roth, Richard H.
Zhang, Albert
Nocera, Sonia
Ding, Jun B.
Stryker, Michael P.
Chan, Jonah R.
description Developmental myelination is a protracted process in the mammalian brain 1 . One theory for why oligodendrocytes mature so slowly posits that myelination may stabilize neuronal circuits and temper neuronal plasticity as animals age 2 – 4 . We tested this theory in the visual cortex, which has a well-defined critical period for experience-dependent neuronal plasticity 5 . During adolescence, visual experience modulated the rate of oligodendrocyte maturation in visual cortex. To determine whether oligodendrocyte maturation in turn regulates neuronal plasticity, we genetically blocked oligodendrocyte differentiation and myelination in adolescent mice. In adult mice lacking adolescent oligodendrogenesis, a brief period of monocular deprivation led to a significant decrease in visual cortex responses to the deprived eye, reminiscent of the plasticity normally restricted to adolescence. This enhanced functional plasticity was accompanied by a greater turnover of dendritic spines and coordinated reductions in spine size following deprivation. Furthermore, inhibitory synaptic transmission, which gates experience-dependent plasticity at the circuit level, was diminished in the absence of adolescent oligodendrogenesis. These results establish a critical role for oligodendrocytes in shaping the maturation and stabilization of cortical circuits and support the concept of developmental myelination acting as a functional brake on neuronal plasticity. Through genetic blocking of oligodendrocyte differentiation and myelination in adolescent mice, we demonstrate that oligodendrocytes have a critical role in shaping the maturation and stabilization of visual cortical circuits.
doi_str_mv 10.1038/s41586-024-07853-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11424474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112175738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-880c9b566bbcb7a773df82cc8c480c269b30000bea49d7d8ca72588b672756283</originalsourceid><addsrcrecordid>eNp9kUlvHCEUhFGUyB4vf8CHqKVcfOmEndenKLK8RLLki31GNM1MsGiYQLfl-fdmPF6SHHJCor5X1KMQOiH4K8EMvhVOBMgWU95iBYK18AEtCFey5RLUR7TAmEKLgcl9dFDKPcZYEMX30D7riOwIiAW6uAl-lQYXh5zsZnKlMXFoxo0LPjbBj35qoptziiY062DK5K2fNk0VH3yZ66VNeXKPR-jT0oTijl_OQ3R3cX57dtVe31z-PPtx3Vom5NQCYNv1Qsq-t70ySrFhCdRasLwqVHY9qyFx7wzvBjWANYoKgF4qqoSkwA7R953veu5HN1gXp2yCXmc_mrzRyXj9txL9L71KD5oQTjlXvDqcvjjk9Ht2ZdKjL9aFYKJLc9EMd0Iq2QGt6Jd_0Ps05_oTlSKEEiUU20aiO8rmVEp2y7c0BOttT3rXk6496eee9Hbo8597vI28FlMBtgNKleLK5fe3_2P7BPJOntc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112175738</pqid></control><display><type>article</type><title>Oligodendrocytes and myelin limit neuronal plasticity in visual cortex</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Xin, Wendy ; Kaneko, Megumi ; Roth, Richard H. ; Zhang, Albert ; Nocera, Sonia ; Ding, Jun B. ; Stryker, Michael P. ; Chan, Jonah R.</creator><creatorcontrib>Xin, Wendy ; Kaneko, Megumi ; Roth, Richard H. ; Zhang, Albert ; Nocera, Sonia ; Ding, Jun B. ; Stryker, Michael P. ; Chan, Jonah R.</creatorcontrib><description>Developmental myelination is a protracted process in the mammalian brain 1 . One theory for why oligodendrocytes mature so slowly posits that myelination may stabilize neuronal circuits and temper neuronal plasticity as animals age 2 – 4 . We tested this theory in the visual cortex, which has a well-defined critical period for experience-dependent neuronal plasticity 5 . During adolescence, visual experience modulated the rate of oligodendrocyte maturation in visual cortex. To determine whether oligodendrocyte maturation in turn regulates neuronal plasticity, we genetically blocked oligodendrocyte differentiation and myelination in adolescent mice. In adult mice lacking adolescent oligodendrogenesis, a brief period of monocular deprivation led to a significant decrease in visual cortex responses to the deprived eye, reminiscent of the plasticity normally restricted to adolescence. This enhanced functional plasticity was accompanied by a greater turnover of dendritic spines and coordinated reductions in spine size following deprivation. Furthermore, inhibitory synaptic transmission, which gates experience-dependent plasticity at the circuit level, was diminished in the absence of adolescent oligodendrogenesis. These results establish a critical role for oligodendrocytes in shaping the maturation and stabilization of cortical circuits and support the concept of developmental myelination acting as a functional brake on neuronal plasticity. Through genetic blocking of oligodendrocyte differentiation and myelination in adolescent mice, we demonstrate that oligodendrocytes have a critical role in shaping the maturation and stabilization of visual cortical circuits.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07853-8</identifier><identifier>PMID: 39169185</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 14/1 ; 14/63 ; 14/69 ; 631/378/2596/1705 ; 631/378/87 ; 64 ; 64/110 ; 82 ; 82/51 ; 9/74 ; Adolescents ; Aging - physiology ; Animals ; Cell death ; Cell Differentiation - genetics ; Child development ; Critical period ; Dendritic plasticity ; Dendritic spines ; Dendritic Spines - metabolism ; Dendritic Spines - physiology ; Deprivation ; Developmental plasticity ; Female ; Functional morphology ; Functional plasticity ; Gates (circuits) ; Genetic engineering ; Humanities and Social Sciences ; Hypotheses ; Male ; Maturation ; Mice ; Monocular vision ; multidisciplinary ; Myelin ; Myelin Sheath - metabolism ; Myelination ; Neuronal Plasticity - physiology ; Neuroplasticity ; Oligodendrocytes ; Oligodendroglia - cytology ; Oligodendroglia - metabolism ; Oligodendroglia - physiology ; Optic nerve ; Postpartum period ; Proteins ; Science ; Science (multidisciplinary) ; Sensory Deprivation - physiology ; Spine ; Synaptic plasticity ; Synaptic transmission ; Synaptic Transmission - physiology ; Vision, Monocular - physiology ; Visual cortex ; Visual Cortex - cytology ; Visual Cortex - growth &amp; development ; Visual Cortex - physiology ; Visual deprivation ; Visual pathways ; Visual plasticity</subject><ispartof>Nature (London), 2024-09, Vol.633 (8031), p.856-863</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group Sep 26, 2024</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c356t-880c9b566bbcb7a773df82cc8c480c269b30000bea49d7d8ca72588b672756283</cites><orcidid>0000-0003-0690-1312 ; 0000-0002-1425-834X ; 0000-0002-2176-1242 ; 0000-0002-6855-999X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-024-07853-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-024-07853-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39169185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xin, Wendy</creatorcontrib><creatorcontrib>Kaneko, Megumi</creatorcontrib><creatorcontrib>Roth, Richard H.</creatorcontrib><creatorcontrib>Zhang, Albert</creatorcontrib><creatorcontrib>Nocera, Sonia</creatorcontrib><creatorcontrib>Ding, Jun B.</creatorcontrib><creatorcontrib>Stryker, Michael P.</creatorcontrib><creatorcontrib>Chan, Jonah R.</creatorcontrib><title>Oligodendrocytes and myelin limit neuronal plasticity in visual cortex</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Developmental myelination is a protracted process in the mammalian brain 1 . One theory for why oligodendrocytes mature so slowly posits that myelination may stabilize neuronal circuits and temper neuronal plasticity as animals age 2 – 4 . We tested this theory in the visual cortex, which has a well-defined critical period for experience-dependent neuronal plasticity 5 . During adolescence, visual experience modulated the rate of oligodendrocyte maturation in visual cortex. To determine whether oligodendrocyte maturation in turn regulates neuronal plasticity, we genetically blocked oligodendrocyte differentiation and myelination in adolescent mice. In adult mice lacking adolescent oligodendrogenesis, a brief period of monocular deprivation led to a significant decrease in visual cortex responses to the deprived eye, reminiscent of the plasticity normally restricted to adolescence. This enhanced functional plasticity was accompanied by a greater turnover of dendritic spines and coordinated reductions in spine size following deprivation. Furthermore, inhibitory synaptic transmission, which gates experience-dependent plasticity at the circuit level, was diminished in the absence of adolescent oligodendrogenesis. These results establish a critical role for oligodendrocytes in shaping the maturation and stabilization of cortical circuits and support the concept of developmental myelination acting as a functional brake on neuronal plasticity. Through genetic blocking of oligodendrocyte differentiation and myelination in adolescent mice, we demonstrate that oligodendrocytes have a critical role in shaping the maturation and stabilization of visual cortical circuits.</description><subject>14</subject><subject>14/1</subject><subject>14/63</subject><subject>14/69</subject><subject>631/378/2596/1705</subject><subject>631/378/87</subject><subject>64</subject><subject>64/110</subject><subject>82</subject><subject>82/51</subject><subject>9/74</subject><subject>Adolescents</subject><subject>Aging - physiology</subject><subject>Animals</subject><subject>Cell death</subject><subject>Cell Differentiation - genetics</subject><subject>Child development</subject><subject>Critical period</subject><subject>Dendritic plasticity</subject><subject>Dendritic spines</subject><subject>Dendritic Spines - metabolism</subject><subject>Dendritic Spines - physiology</subject><subject>Deprivation</subject><subject>Developmental plasticity</subject><subject>Female</subject><subject>Functional morphology</subject><subject>Functional plasticity</subject><subject>Gates (circuits)</subject><subject>Genetic engineering</subject><subject>Humanities and Social Sciences</subject><subject>Hypotheses</subject><subject>Male</subject><subject>Maturation</subject><subject>Mice</subject><subject>Monocular vision</subject><subject>multidisciplinary</subject><subject>Myelin</subject><subject>Myelin Sheath - metabolism</subject><subject>Myelination</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neuroplasticity</subject><subject>Oligodendrocytes</subject><subject>Oligodendroglia - cytology</subject><subject>Oligodendroglia - metabolism</subject><subject>Oligodendroglia - physiology</subject><subject>Optic nerve</subject><subject>Postpartum period</subject><subject>Proteins</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensory Deprivation - physiology</subject><subject>Spine</subject><subject>Synaptic plasticity</subject><subject>Synaptic transmission</subject><subject>Synaptic Transmission - physiology</subject><subject>Vision, Monocular - physiology</subject><subject>Visual cortex</subject><subject>Visual Cortex - cytology</subject><subject>Visual Cortex - growth &amp; development</subject><subject>Visual Cortex - physiology</subject><subject>Visual deprivation</subject><subject>Visual pathways</subject><subject>Visual plasticity</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUlvHCEUhFGUyB4vf8CHqKVcfOmEndenKLK8RLLki31GNM1MsGiYQLfl-fdmPF6SHHJCor5X1KMQOiH4K8EMvhVOBMgWU95iBYK18AEtCFey5RLUR7TAmEKLgcl9dFDKPcZYEMX30D7riOwIiAW6uAl-lQYXh5zsZnKlMXFoxo0LPjbBj35qoptziiY062DK5K2fNk0VH3yZ66VNeXKPR-jT0oTijl_OQ3R3cX57dtVe31z-PPtx3Vom5NQCYNv1Qsq-t70ySrFhCdRasLwqVHY9qyFx7wzvBjWANYoKgF4qqoSkwA7R953veu5HN1gXp2yCXmc_mrzRyXj9txL9L71KD5oQTjlXvDqcvjjk9Ht2ZdKjL9aFYKJLc9EMd0Iq2QGt6Jd_0Ps05_oTlSKEEiUU20aiO8rmVEp2y7c0BOttT3rXk6496eee9Hbo8597vI28FlMBtgNKleLK5fe3_2P7BPJOntc</recordid><startdate>20240926</startdate><enddate>20240926</enddate><creator>Xin, Wendy</creator><creator>Kaneko, Megumi</creator><creator>Roth, Richard H.</creator><creator>Zhang, Albert</creator><creator>Nocera, Sonia</creator><creator>Ding, Jun B.</creator><creator>Stryker, Michael P.</creator><creator>Chan, Jonah R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0690-1312</orcidid><orcidid>https://orcid.org/0000-0002-1425-834X</orcidid><orcidid>https://orcid.org/0000-0002-2176-1242</orcidid><orcidid>https://orcid.org/0000-0002-6855-999X</orcidid></search><sort><creationdate>20240926</creationdate><title>Oligodendrocytes and myelin limit neuronal plasticity in visual cortex</title><author>Xin, Wendy ; Kaneko, Megumi ; Roth, Richard H. ; Zhang, Albert ; Nocera, Sonia ; Ding, Jun B. ; Stryker, Michael P. ; Chan, Jonah R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-880c9b566bbcb7a773df82cc8c480c269b30000bea49d7d8ca72588b672756283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>14</topic><topic>14/1</topic><topic>14/63</topic><topic>14/69</topic><topic>631/378/2596/1705</topic><topic>631/378/87</topic><topic>64</topic><topic>64/110</topic><topic>82</topic><topic>82/51</topic><topic>9/74</topic><topic>Adolescents</topic><topic>Aging - physiology</topic><topic>Animals</topic><topic>Cell death</topic><topic>Cell Differentiation - genetics</topic><topic>Child development</topic><topic>Critical period</topic><topic>Dendritic plasticity</topic><topic>Dendritic spines</topic><topic>Dendritic Spines - metabolism</topic><topic>Dendritic Spines - physiology</topic><topic>Deprivation</topic><topic>Developmental plasticity</topic><topic>Female</topic><topic>Functional morphology</topic><topic>Functional plasticity</topic><topic>Gates (circuits)</topic><topic>Genetic engineering</topic><topic>Humanities and Social Sciences</topic><topic>Hypotheses</topic><topic>Male</topic><topic>Maturation</topic><topic>Mice</topic><topic>Monocular vision</topic><topic>multidisciplinary</topic><topic>Myelin</topic><topic>Myelin Sheath - metabolism</topic><topic>Myelination</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neuroplasticity</topic><topic>Oligodendrocytes</topic><topic>Oligodendroglia - cytology</topic><topic>Oligodendroglia - metabolism</topic><topic>Oligodendroglia - physiology</topic><topic>Optic nerve</topic><topic>Postpartum period</topic><topic>Proteins</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensory Deprivation - physiology</topic><topic>Spine</topic><topic>Synaptic plasticity</topic><topic>Synaptic transmission</topic><topic>Synaptic Transmission - physiology</topic><topic>Vision, Monocular - physiology</topic><topic>Visual cortex</topic><topic>Visual Cortex - cytology</topic><topic>Visual Cortex - growth &amp; development</topic><topic>Visual Cortex - physiology</topic><topic>Visual deprivation</topic><topic>Visual pathways</topic><topic>Visual plasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xin, Wendy</creatorcontrib><creatorcontrib>Kaneko, Megumi</creatorcontrib><creatorcontrib>Roth, Richard H.</creatorcontrib><creatorcontrib>Zhang, Albert</creatorcontrib><creatorcontrib>Nocera, Sonia</creatorcontrib><creatorcontrib>Ding, Jun B.</creatorcontrib><creatorcontrib>Stryker, Michael P.</creatorcontrib><creatorcontrib>Chan, Jonah R.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xin, Wendy</au><au>Kaneko, Megumi</au><au>Roth, Richard H.</au><au>Zhang, Albert</au><au>Nocera, Sonia</au><au>Ding, Jun B.</au><au>Stryker, Michael P.</au><au>Chan, Jonah R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oligodendrocytes and myelin limit neuronal plasticity in visual cortex</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-09-26</date><risdate>2024</risdate><volume>633</volume><issue>8031</issue><spage>856</spage><epage>863</epage><pages>856-863</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Developmental myelination is a protracted process in the mammalian brain 1 . One theory for why oligodendrocytes mature so slowly posits that myelination may stabilize neuronal circuits and temper neuronal plasticity as animals age 2 – 4 . We tested this theory in the visual cortex, which has a well-defined critical period for experience-dependent neuronal plasticity 5 . During adolescence, visual experience modulated the rate of oligodendrocyte maturation in visual cortex. To determine whether oligodendrocyte maturation in turn regulates neuronal plasticity, we genetically blocked oligodendrocyte differentiation and myelination in adolescent mice. In adult mice lacking adolescent oligodendrogenesis, a brief period of monocular deprivation led to a significant decrease in visual cortex responses to the deprived eye, reminiscent of the plasticity normally restricted to adolescence. This enhanced functional plasticity was accompanied by a greater turnover of dendritic spines and coordinated reductions in spine size following deprivation. Furthermore, inhibitory synaptic transmission, which gates experience-dependent plasticity at the circuit level, was diminished in the absence of adolescent oligodendrogenesis. These results establish a critical role for oligodendrocytes in shaping the maturation and stabilization of cortical circuits and support the concept of developmental myelination acting as a functional brake on neuronal plasticity. Through genetic blocking of oligodendrocyte differentiation and myelination in adolescent mice, we demonstrate that oligodendrocytes have a critical role in shaping the maturation and stabilization of visual cortical circuits.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39169185</pmid><doi>10.1038/s41586-024-07853-8</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0690-1312</orcidid><orcidid>https://orcid.org/0000-0002-1425-834X</orcidid><orcidid>https://orcid.org/0000-0002-2176-1242</orcidid><orcidid>https://orcid.org/0000-0002-6855-999X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2024-09, Vol.633 (8031), p.856-863
issn 0028-0836
1476-4687
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11424474
source MEDLINE; SpringerLink Journals; Nature
subjects 14
14/1
14/63
14/69
631/378/2596/1705
631/378/87
64
64/110
82
82/51
9/74
Adolescents
Aging - physiology
Animals
Cell death
Cell Differentiation - genetics
Child development
Critical period
Dendritic plasticity
Dendritic spines
Dendritic Spines - metabolism
Dendritic Spines - physiology
Deprivation
Developmental plasticity
Female
Functional morphology
Functional plasticity
Gates (circuits)
Genetic engineering
Humanities and Social Sciences
Hypotheses
Male
Maturation
Mice
Monocular vision
multidisciplinary
Myelin
Myelin Sheath - metabolism
Myelination
Neuronal Plasticity - physiology
Neuroplasticity
Oligodendrocytes
Oligodendroglia - cytology
Oligodendroglia - metabolism
Oligodendroglia - physiology
Optic nerve
Postpartum period
Proteins
Science
Science (multidisciplinary)
Sensory Deprivation - physiology
Spine
Synaptic plasticity
Synaptic transmission
Synaptic Transmission - physiology
Vision, Monocular - physiology
Visual cortex
Visual Cortex - cytology
Visual Cortex - growth & development
Visual Cortex - physiology
Visual deprivation
Visual pathways
Visual plasticity
title Oligodendrocytes and myelin limit neuronal plasticity in visual cortex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A49%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oligodendrocytes%20and%20myelin%20limit%20neuronal%20plasticity%20in%20visual%20cortex&rft.jtitle=Nature%20(London)&rft.au=Xin,%20Wendy&rft.date=2024-09-26&rft.volume=633&rft.issue=8031&rft.spage=856&rft.epage=863&rft.pages=856-863&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07853-8&rft_dat=%3Cproquest_pubme%3E3112175738%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112175738&rft_id=info:pmid/39169185&rfr_iscdi=true