Oligodendrocytes and myelin limit neuronal plasticity in visual cortex
Developmental myelination is a protracted process in the mammalian brain 1 . One theory for why oligodendrocytes mature so slowly posits that myelination may stabilize neuronal circuits and temper neuronal plasticity as animals age 2 – 4 . We tested this theory in the visual cortex, which has a well...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2024-09, Vol.633 (8031), p.856-863 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 863 |
---|---|
container_issue | 8031 |
container_start_page | 856 |
container_title | Nature (London) |
container_volume | 633 |
creator | Xin, Wendy Kaneko, Megumi Roth, Richard H. Zhang, Albert Nocera, Sonia Ding, Jun B. Stryker, Michael P. Chan, Jonah R. |
description | Developmental myelination is a protracted process in the mammalian brain
1
. One theory for why oligodendrocytes mature so slowly posits that myelination may stabilize neuronal circuits and temper neuronal plasticity as animals age
2
–
4
. We tested this theory in the visual cortex, which has a well-defined critical period for experience-dependent neuronal plasticity
5
. During adolescence, visual experience modulated the rate of oligodendrocyte maturation in visual cortex. To determine whether oligodendrocyte maturation in turn regulates neuronal plasticity, we genetically blocked oligodendrocyte differentiation and myelination in adolescent mice. In adult mice lacking adolescent oligodendrogenesis, a brief period of monocular deprivation led to a significant decrease in visual cortex responses to the deprived eye, reminiscent of the plasticity normally restricted to adolescence. This enhanced functional plasticity was accompanied by a greater turnover of dendritic spines and coordinated reductions in spine size following deprivation. Furthermore, inhibitory synaptic transmission, which gates experience-dependent plasticity at the circuit level, was diminished in the absence of adolescent oligodendrogenesis. These results establish a critical role for oligodendrocytes in shaping the maturation and stabilization of cortical circuits and support the concept of developmental myelination acting as a functional brake on neuronal plasticity.
Through genetic blocking of oligodendrocyte differentiation and myelination in adolescent mice, we demonstrate that oligodendrocytes have a critical role in shaping the maturation and stabilization of visual cortical circuits. |
doi_str_mv | 10.1038/s41586-024-07853-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11424474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3112175738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-880c9b566bbcb7a773df82cc8c480c269b30000bea49d7d8ca72588b672756283</originalsourceid><addsrcrecordid>eNp9kUlvHCEUhFGUyB4vf8CHqKVcfOmEndenKLK8RLLki31GNM1MsGiYQLfl-fdmPF6SHHJCor5X1KMQOiH4K8EMvhVOBMgWU95iBYK18AEtCFey5RLUR7TAmEKLgcl9dFDKPcZYEMX30D7riOwIiAW6uAl-lQYXh5zsZnKlMXFoxo0LPjbBj35qoptziiY062DK5K2fNk0VH3yZ66VNeXKPR-jT0oTijl_OQ3R3cX57dtVe31z-PPtx3Vom5NQCYNv1Qsq-t70ySrFhCdRasLwqVHY9qyFx7wzvBjWANYoKgF4qqoSkwA7R953veu5HN1gXp2yCXmc_mrzRyXj9txL9L71KD5oQTjlXvDqcvjjk9Ht2ZdKjL9aFYKJLc9EMd0Iq2QGt6Jd_0Ps05_oTlSKEEiUU20aiO8rmVEp2y7c0BOttT3rXk6496eee9Hbo8597vI28FlMBtgNKleLK5fe3_2P7BPJOntc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3112175738</pqid></control><display><type>article</type><title>Oligodendrocytes and myelin limit neuronal plasticity in visual cortex</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Xin, Wendy ; Kaneko, Megumi ; Roth, Richard H. ; Zhang, Albert ; Nocera, Sonia ; Ding, Jun B. ; Stryker, Michael P. ; Chan, Jonah R.</creator><creatorcontrib>Xin, Wendy ; Kaneko, Megumi ; Roth, Richard H. ; Zhang, Albert ; Nocera, Sonia ; Ding, Jun B. ; Stryker, Michael P. ; Chan, Jonah R.</creatorcontrib><description>Developmental myelination is a protracted process in the mammalian brain
1
. One theory for why oligodendrocytes mature so slowly posits that myelination may stabilize neuronal circuits and temper neuronal plasticity as animals age
2
–
4
. We tested this theory in the visual cortex, which has a well-defined critical period for experience-dependent neuronal plasticity
5
. During adolescence, visual experience modulated the rate of oligodendrocyte maturation in visual cortex. To determine whether oligodendrocyte maturation in turn regulates neuronal plasticity, we genetically blocked oligodendrocyte differentiation and myelination in adolescent mice. In adult mice lacking adolescent oligodendrogenesis, a brief period of monocular deprivation led to a significant decrease in visual cortex responses to the deprived eye, reminiscent of the plasticity normally restricted to adolescence. This enhanced functional plasticity was accompanied by a greater turnover of dendritic spines and coordinated reductions in spine size following deprivation. Furthermore, inhibitory synaptic transmission, which gates experience-dependent plasticity at the circuit level, was diminished in the absence of adolescent oligodendrogenesis. These results establish a critical role for oligodendrocytes in shaping the maturation and stabilization of cortical circuits and support the concept of developmental myelination acting as a functional brake on neuronal plasticity.
Through genetic blocking of oligodendrocyte differentiation and myelination in adolescent mice, we demonstrate that oligodendrocytes have a critical role in shaping the maturation and stabilization of visual cortical circuits.</description><identifier>ISSN: 0028-0836</identifier><identifier>ISSN: 1476-4687</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-024-07853-8</identifier><identifier>PMID: 39169185</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 14/1 ; 14/63 ; 14/69 ; 631/378/2596/1705 ; 631/378/87 ; 64 ; 64/110 ; 82 ; 82/51 ; 9/74 ; Adolescents ; Aging - physiology ; Animals ; Cell death ; Cell Differentiation - genetics ; Child development ; Critical period ; Dendritic plasticity ; Dendritic spines ; Dendritic Spines - metabolism ; Dendritic Spines - physiology ; Deprivation ; Developmental plasticity ; Female ; Functional morphology ; Functional plasticity ; Gates (circuits) ; Genetic engineering ; Humanities and Social Sciences ; Hypotheses ; Male ; Maturation ; Mice ; Monocular vision ; multidisciplinary ; Myelin ; Myelin Sheath - metabolism ; Myelination ; Neuronal Plasticity - physiology ; Neuroplasticity ; Oligodendrocytes ; Oligodendroglia - cytology ; Oligodendroglia - metabolism ; Oligodendroglia - physiology ; Optic nerve ; Postpartum period ; Proteins ; Science ; Science (multidisciplinary) ; Sensory Deprivation - physiology ; Spine ; Synaptic plasticity ; Synaptic transmission ; Synaptic Transmission - physiology ; Vision, Monocular - physiology ; Visual cortex ; Visual Cortex - cytology ; Visual Cortex - growth & development ; Visual Cortex - physiology ; Visual deprivation ; Visual pathways ; Visual plasticity</subject><ispartof>Nature (London), 2024-09, Vol.633 (8031), p.856-863</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group Sep 26, 2024</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c356t-880c9b566bbcb7a773df82cc8c480c269b30000bea49d7d8ca72588b672756283</cites><orcidid>0000-0003-0690-1312 ; 0000-0002-1425-834X ; 0000-0002-2176-1242 ; 0000-0002-6855-999X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-024-07853-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-024-07853-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39169185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xin, Wendy</creatorcontrib><creatorcontrib>Kaneko, Megumi</creatorcontrib><creatorcontrib>Roth, Richard H.</creatorcontrib><creatorcontrib>Zhang, Albert</creatorcontrib><creatorcontrib>Nocera, Sonia</creatorcontrib><creatorcontrib>Ding, Jun B.</creatorcontrib><creatorcontrib>Stryker, Michael P.</creatorcontrib><creatorcontrib>Chan, Jonah R.</creatorcontrib><title>Oligodendrocytes and myelin limit neuronal plasticity in visual cortex</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Developmental myelination is a protracted process in the mammalian brain
1
. One theory for why oligodendrocytes mature so slowly posits that myelination may stabilize neuronal circuits and temper neuronal plasticity as animals age
2
–
4
. We tested this theory in the visual cortex, which has a well-defined critical period for experience-dependent neuronal plasticity
5
. During adolescence, visual experience modulated the rate of oligodendrocyte maturation in visual cortex. To determine whether oligodendrocyte maturation in turn regulates neuronal plasticity, we genetically blocked oligodendrocyte differentiation and myelination in adolescent mice. In adult mice lacking adolescent oligodendrogenesis, a brief period of monocular deprivation led to a significant decrease in visual cortex responses to the deprived eye, reminiscent of the plasticity normally restricted to adolescence. This enhanced functional plasticity was accompanied by a greater turnover of dendritic spines and coordinated reductions in spine size following deprivation. Furthermore, inhibitory synaptic transmission, which gates experience-dependent plasticity at the circuit level, was diminished in the absence of adolescent oligodendrogenesis. These results establish a critical role for oligodendrocytes in shaping the maturation and stabilization of cortical circuits and support the concept of developmental myelination acting as a functional brake on neuronal plasticity.
Through genetic blocking of oligodendrocyte differentiation and myelination in adolescent mice, we demonstrate that oligodendrocytes have a critical role in shaping the maturation and stabilization of visual cortical circuits.</description><subject>14</subject><subject>14/1</subject><subject>14/63</subject><subject>14/69</subject><subject>631/378/2596/1705</subject><subject>631/378/87</subject><subject>64</subject><subject>64/110</subject><subject>82</subject><subject>82/51</subject><subject>9/74</subject><subject>Adolescents</subject><subject>Aging - physiology</subject><subject>Animals</subject><subject>Cell death</subject><subject>Cell Differentiation - genetics</subject><subject>Child development</subject><subject>Critical period</subject><subject>Dendritic plasticity</subject><subject>Dendritic spines</subject><subject>Dendritic Spines - metabolism</subject><subject>Dendritic Spines - physiology</subject><subject>Deprivation</subject><subject>Developmental plasticity</subject><subject>Female</subject><subject>Functional morphology</subject><subject>Functional plasticity</subject><subject>Gates (circuits)</subject><subject>Genetic engineering</subject><subject>Humanities and Social Sciences</subject><subject>Hypotheses</subject><subject>Male</subject><subject>Maturation</subject><subject>Mice</subject><subject>Monocular vision</subject><subject>multidisciplinary</subject><subject>Myelin</subject><subject>Myelin Sheath - metabolism</subject><subject>Myelination</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neuroplasticity</subject><subject>Oligodendrocytes</subject><subject>Oligodendroglia - cytology</subject><subject>Oligodendroglia - metabolism</subject><subject>Oligodendroglia - physiology</subject><subject>Optic nerve</subject><subject>Postpartum period</subject><subject>Proteins</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensory Deprivation - physiology</subject><subject>Spine</subject><subject>Synaptic plasticity</subject><subject>Synaptic transmission</subject><subject>Synaptic Transmission - physiology</subject><subject>Vision, Monocular - physiology</subject><subject>Visual cortex</subject><subject>Visual Cortex - cytology</subject><subject>Visual Cortex - growth & development</subject><subject>Visual Cortex - physiology</subject><subject>Visual deprivation</subject><subject>Visual pathways</subject><subject>Visual plasticity</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUlvHCEUhFGUyB4vf8CHqKVcfOmEndenKLK8RLLki31GNM1MsGiYQLfl-fdmPF6SHHJCor5X1KMQOiH4K8EMvhVOBMgWU95iBYK18AEtCFey5RLUR7TAmEKLgcl9dFDKPcZYEMX30D7riOwIiAW6uAl-lQYXh5zsZnKlMXFoxo0LPjbBj35qoptziiY062DK5K2fNk0VH3yZ66VNeXKPR-jT0oTijl_OQ3R3cX57dtVe31z-PPtx3Vom5NQCYNv1Qsq-t70ySrFhCdRasLwqVHY9qyFx7wzvBjWANYoKgF4qqoSkwA7R953veu5HN1gXp2yCXmc_mrzRyXj9txL9L71KD5oQTjlXvDqcvjjk9Ht2ZdKjL9aFYKJLc9EMd0Iq2QGt6Jd_0Ps05_oTlSKEEiUU20aiO8rmVEp2y7c0BOttT3rXk6496eee9Hbo8597vI28FlMBtgNKleLK5fe3_2P7BPJOntc</recordid><startdate>20240926</startdate><enddate>20240926</enddate><creator>Xin, Wendy</creator><creator>Kaneko, Megumi</creator><creator>Roth, Richard H.</creator><creator>Zhang, Albert</creator><creator>Nocera, Sonia</creator><creator>Ding, Jun B.</creator><creator>Stryker, Michael P.</creator><creator>Chan, Jonah R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>KL.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0690-1312</orcidid><orcidid>https://orcid.org/0000-0002-1425-834X</orcidid><orcidid>https://orcid.org/0000-0002-2176-1242</orcidid><orcidid>https://orcid.org/0000-0002-6855-999X</orcidid></search><sort><creationdate>20240926</creationdate><title>Oligodendrocytes and myelin limit neuronal plasticity in visual cortex</title><author>Xin, Wendy ; Kaneko, Megumi ; Roth, Richard H. ; Zhang, Albert ; Nocera, Sonia ; Ding, Jun B. ; Stryker, Michael P. ; Chan, Jonah R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-880c9b566bbcb7a773df82cc8c480c269b30000bea49d7d8ca72588b672756283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>14</topic><topic>14/1</topic><topic>14/63</topic><topic>14/69</topic><topic>631/378/2596/1705</topic><topic>631/378/87</topic><topic>64</topic><topic>64/110</topic><topic>82</topic><topic>82/51</topic><topic>9/74</topic><topic>Adolescents</topic><topic>Aging - physiology</topic><topic>Animals</topic><topic>Cell death</topic><topic>Cell Differentiation - genetics</topic><topic>Child development</topic><topic>Critical period</topic><topic>Dendritic plasticity</topic><topic>Dendritic spines</topic><topic>Dendritic Spines - metabolism</topic><topic>Dendritic Spines - physiology</topic><topic>Deprivation</topic><topic>Developmental plasticity</topic><topic>Female</topic><topic>Functional morphology</topic><topic>Functional plasticity</topic><topic>Gates (circuits)</topic><topic>Genetic engineering</topic><topic>Humanities and Social Sciences</topic><topic>Hypotheses</topic><topic>Male</topic><topic>Maturation</topic><topic>Mice</topic><topic>Monocular vision</topic><topic>multidisciplinary</topic><topic>Myelin</topic><topic>Myelin Sheath - metabolism</topic><topic>Myelination</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neuroplasticity</topic><topic>Oligodendrocytes</topic><topic>Oligodendroglia - cytology</topic><topic>Oligodendroglia - metabolism</topic><topic>Oligodendroglia - physiology</topic><topic>Optic nerve</topic><topic>Postpartum period</topic><topic>Proteins</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensory Deprivation - physiology</topic><topic>Spine</topic><topic>Synaptic plasticity</topic><topic>Synaptic transmission</topic><topic>Synaptic Transmission - physiology</topic><topic>Vision, Monocular - physiology</topic><topic>Visual cortex</topic><topic>Visual Cortex - cytology</topic><topic>Visual Cortex - growth & development</topic><topic>Visual Cortex - physiology</topic><topic>Visual deprivation</topic><topic>Visual pathways</topic><topic>Visual plasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xin, Wendy</creatorcontrib><creatorcontrib>Kaneko, Megumi</creatorcontrib><creatorcontrib>Roth, Richard H.</creatorcontrib><creatorcontrib>Zhang, Albert</creatorcontrib><creatorcontrib>Nocera, Sonia</creatorcontrib><creatorcontrib>Ding, Jun B.</creatorcontrib><creatorcontrib>Stryker, Michael P.</creatorcontrib><creatorcontrib>Chan, Jonah R.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xin, Wendy</au><au>Kaneko, Megumi</au><au>Roth, Richard H.</au><au>Zhang, Albert</au><au>Nocera, Sonia</au><au>Ding, Jun B.</au><au>Stryker, Michael P.</au><au>Chan, Jonah R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oligodendrocytes and myelin limit neuronal plasticity in visual cortex</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2024-09-26</date><risdate>2024</risdate><volume>633</volume><issue>8031</issue><spage>856</spage><epage>863</epage><pages>856-863</pages><issn>0028-0836</issn><issn>1476-4687</issn><eissn>1476-4687</eissn><abstract>Developmental myelination is a protracted process in the mammalian brain
1
. One theory for why oligodendrocytes mature so slowly posits that myelination may stabilize neuronal circuits and temper neuronal plasticity as animals age
2
–
4
. We tested this theory in the visual cortex, which has a well-defined critical period for experience-dependent neuronal plasticity
5
. During adolescence, visual experience modulated the rate of oligodendrocyte maturation in visual cortex. To determine whether oligodendrocyte maturation in turn regulates neuronal plasticity, we genetically blocked oligodendrocyte differentiation and myelination in adolescent mice. In adult mice lacking adolescent oligodendrogenesis, a brief period of monocular deprivation led to a significant decrease in visual cortex responses to the deprived eye, reminiscent of the plasticity normally restricted to adolescence. This enhanced functional plasticity was accompanied by a greater turnover of dendritic spines and coordinated reductions in spine size following deprivation. Furthermore, inhibitory synaptic transmission, which gates experience-dependent plasticity at the circuit level, was diminished in the absence of adolescent oligodendrogenesis. These results establish a critical role for oligodendrocytes in shaping the maturation and stabilization of cortical circuits and support the concept of developmental myelination acting as a functional brake on neuronal plasticity.
Through genetic blocking of oligodendrocyte differentiation and myelination in adolescent mice, we demonstrate that oligodendrocytes have a critical role in shaping the maturation and stabilization of visual cortical circuits.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39169185</pmid><doi>10.1038/s41586-024-07853-8</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0690-1312</orcidid><orcidid>https://orcid.org/0000-0002-1425-834X</orcidid><orcidid>https://orcid.org/0000-0002-2176-1242</orcidid><orcidid>https://orcid.org/0000-0002-6855-999X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2024-09, Vol.633 (8031), p.856-863 |
issn | 0028-0836 1476-4687 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11424474 |
source | MEDLINE; SpringerLink Journals; Nature |
subjects | 14 14/1 14/63 14/69 631/378/2596/1705 631/378/87 64 64/110 82 82/51 9/74 Adolescents Aging - physiology Animals Cell death Cell Differentiation - genetics Child development Critical period Dendritic plasticity Dendritic spines Dendritic Spines - metabolism Dendritic Spines - physiology Deprivation Developmental plasticity Female Functional morphology Functional plasticity Gates (circuits) Genetic engineering Humanities and Social Sciences Hypotheses Male Maturation Mice Monocular vision multidisciplinary Myelin Myelin Sheath - metabolism Myelination Neuronal Plasticity - physiology Neuroplasticity Oligodendrocytes Oligodendroglia - cytology Oligodendroglia - metabolism Oligodendroglia - physiology Optic nerve Postpartum period Proteins Science Science (multidisciplinary) Sensory Deprivation - physiology Spine Synaptic plasticity Synaptic transmission Synaptic Transmission - physiology Vision, Monocular - physiology Visual cortex Visual Cortex - cytology Visual Cortex - growth & development Visual Cortex - physiology Visual deprivation Visual pathways Visual plasticity |
title | Oligodendrocytes and myelin limit neuronal plasticity in visual cortex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A49%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oligodendrocytes%20and%20myelin%20limit%20neuronal%20plasticity%20in%20visual%20cortex&rft.jtitle=Nature%20(London)&rft.au=Xin,%20Wendy&rft.date=2024-09-26&rft.volume=633&rft.issue=8031&rft.spage=856&rft.epage=863&rft.pages=856-863&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-024-07853-8&rft_dat=%3Cproquest_pubme%3E3112175738%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3112175738&rft_id=info:pmid/39169185&rfr_iscdi=true |