Error Estimates and Adaptivity of the Space-Time Discontinuous Galerkin Method for Solving the Richards Equation

We present a higher-order space-time adaptive method for the numerical solution of the Richards equation that describes a flow motion through variably saturated media. The discretization is based on the space-time discontinuous Galerkin method, which provides high stability and accuracy and can natu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of scientific computing 2024, Vol.101 (1), p.11, Article 11
Hauptverfasser: Dolejší, Vít, Shin, Hyun-Geun, Vlasák, Miloslav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 11
container_title Journal of scientific computing
container_volume 101
creator Dolejší, Vít
Shin, Hyun-Geun
Vlasák, Miloslav
description We present a higher-order space-time adaptive method for the numerical solution of the Richards equation that describes a flow motion through variably saturated media. The discretization is based on the space-time discontinuous Galerkin method, which provides high stability and accuracy and can naturally handle varying meshes. We derive reliable and efficient a posteriori error estimates in the residual-based norm. The estimates use well-balanced spatial and temporal flux reconstructions which are constructed locally over space-time elements or space-time patches. The accuracy of the estimates is verified by numerical experiments. Moreover, we develop the hp -adaptive method and demonstrate its efficiency and usefulness on a practically relevant example.
doi_str_mv 10.1007/s10915-024-02650-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11415456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108391034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-99d04e0e37ae38db844830664a064627c9653fbea452670014ee6e375cebf1523</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EotPCH2CBLLFhE7iOH4lXqCpDi1SERMva8iQ3My4ZO7WdUfvvcTulPBYsLC_ud47v8SHkFYN3DKB5nxhoJiuoRTlKQnXzhCyYbHjVKM2ekgW0rawa0YgDcpjSFQDoVtfPyQHXHHSt-YJMyxhDpMuU3dZmTNT6nh73dspu5_ItDQPNG6QXk-2wunRbpB9d6oLPzs9hTvTUjhh_OE-_YN6Eng7F7CKMO-fX98JvrtvY2Ce6vJ5tdsG_IM8GOyZ8-XAfke-flpcnZ9X519PPJ8fnVcelypXWPQgE5I1F3varVoiWg1LCghKqbjqtJB9WaIWsVQPABKIqtOxwNTBZ8yPyYe87zast9h36HO1oplhyxlsTrDN_T7zbmHXYGcYEk0Kq4vD2wSGG6xlTNtsSHcfReizRDWfQcs2Ai4K--Qe9CnP0JZ8pHy20qDXcGdZ7qoshpYjD4zYMzF2jZt-oKY2a-0bNTRG9_jPHo-RXhQXgeyCVkV9j_P32f2x_ApqHrVo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094942906</pqid></control><display><type>article</type><title>Error Estimates and Adaptivity of the Space-Time Discontinuous Galerkin Method for Solving the Richards Equation</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Dolejší, Vít ; Shin, Hyun-Geun ; Vlasák, Miloslav</creator><creatorcontrib>Dolejší, Vít ; Shin, Hyun-Geun ; Vlasák, Miloslav</creatorcontrib><description>We present a higher-order space-time adaptive method for the numerical solution of the Richards equation that describes a flow motion through variably saturated media. The discretization is based on the space-time discontinuous Galerkin method, which provides high stability and accuracy and can naturally handle varying meshes. We derive reliable and efficient a posteriori error estimates in the residual-based norm. The estimates use well-balanced spatial and temporal flux reconstructions which are constructed locally over space-time elements or space-time patches. The accuracy of the estimates is verified by numerical experiments. Moreover, we develop the hp -adaptive method and demonstrate its efficiency and usefulness on a practically relevant example.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-024-02650-x</identifier><identifier>PMID: 39309293</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptation ; Algorithms ; Approximation ; Computational Mathematics and Numerical Analysis ; Estimates ; Galerkin method ; Hydraulics ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Spacetime ; Theoretical</subject><ispartof>Journal of scientific computing, 2024, Vol.101 (1), p.11, Article 11</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024.</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c356t-99d04e0e37ae38db844830664a064627c9653fbea452670014ee6e375cebf1523</cites><orcidid>0000-0001-6356-934X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-024-02650-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10915-024-02650-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,33727,33728,41471,42540,51302,64366,64368</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39309293$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dolejší, Vít</creatorcontrib><creatorcontrib>Shin, Hyun-Geun</creatorcontrib><creatorcontrib>Vlasák, Miloslav</creatorcontrib><title>Error Estimates and Adaptivity of the Space-Time Discontinuous Galerkin Method for Solving the Richards Equation</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><addtitle>J Sci Comput</addtitle><description>We present a higher-order space-time adaptive method for the numerical solution of the Richards equation that describes a flow motion through variably saturated media. The discretization is based on the space-time discontinuous Galerkin method, which provides high stability and accuracy and can naturally handle varying meshes. We derive reliable and efficient a posteriori error estimates in the residual-based norm. The estimates use well-balanced spatial and temporal flux reconstructions which are constructed locally over space-time elements or space-time patches. The accuracy of the estimates is verified by numerical experiments. Moreover, we develop the hp -adaptive method and demonstrate its efficiency and usefulness on a practically relevant example.</description><subject>Adaptation</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Estimates</subject><subject>Galerkin method</subject><subject>Hydraulics</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Spacetime</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kUtv1DAUhS0EotPCH2CBLLFhE7iOH4lXqCpDi1SERMva8iQ3My4ZO7WdUfvvcTulPBYsLC_ud47v8SHkFYN3DKB5nxhoJiuoRTlKQnXzhCyYbHjVKM2ekgW0rawa0YgDcpjSFQDoVtfPyQHXHHSt-YJMyxhDpMuU3dZmTNT6nh73dspu5_ItDQPNG6QXk-2wunRbpB9d6oLPzs9hTvTUjhh_OE-_YN6Eng7F7CKMO-fX98JvrtvY2Ce6vJ5tdsG_IM8GOyZ8-XAfke-flpcnZ9X519PPJ8fnVcelypXWPQgE5I1F3varVoiWg1LCghKqbjqtJB9WaIWsVQPABKIqtOxwNTBZ8yPyYe87zast9h36HO1oplhyxlsTrDN_T7zbmHXYGcYEk0Kq4vD2wSGG6xlTNtsSHcfReizRDWfQcs2Ai4K--Qe9CnP0JZ8pHy20qDXcGdZ7qoshpYjD4zYMzF2jZt-oKY2a-0bNTRG9_jPHo-RXhQXgeyCVkV9j_P32f2x_ApqHrVo</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Dolejší, Vít</creator><creator>Shin, Hyun-Geun</creator><creator>Vlasák, Miloslav</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6356-934X</orcidid></search><sort><creationdate>2024</creationdate><title>Error Estimates and Adaptivity of the Space-Time Discontinuous Galerkin Method for Solving the Richards Equation</title><author>Dolejší, Vít ; Shin, Hyun-Geun ; Vlasák, Miloslav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-99d04e0e37ae38db844830664a064627c9653fbea452670014ee6e375cebf1523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Estimates</topic><topic>Galerkin method</topic><topic>Hydraulics</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Spacetime</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dolejší, Vít</creatorcontrib><creatorcontrib>Shin, Hyun-Geun</creatorcontrib><creatorcontrib>Vlasák, Miloslav</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dolejší, Vít</au><au>Shin, Hyun-Geun</au><au>Vlasák, Miloslav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Error Estimates and Adaptivity of the Space-Time Discontinuous Galerkin Method for Solving the Richards Equation</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><addtitle>J Sci Comput</addtitle><date>2024</date><risdate>2024</risdate><volume>101</volume><issue>1</issue><spage>11</spage><pages>11-</pages><artnum>11</artnum><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>We present a higher-order space-time adaptive method for the numerical solution of the Richards equation that describes a flow motion through variably saturated media. The discretization is based on the space-time discontinuous Galerkin method, which provides high stability and accuracy and can naturally handle varying meshes. We derive reliable and efficient a posteriori error estimates in the residual-based norm. The estimates use well-balanced spatial and temporal flux reconstructions which are constructed locally over space-time elements or space-time patches. The accuracy of the estimates is verified by numerical experiments. Moreover, we develop the hp -adaptive method and demonstrate its efficiency and usefulness on a practically relevant example.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>39309293</pmid><doi>10.1007/s10915-024-02650-x</doi><orcidid>https://orcid.org/0000-0001-6356-934X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2024, Vol.101 (1), p.11, Article 11
issn 0885-7474
1573-7691
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11415456
source SpringerLink Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Adaptation
Algorithms
Approximation
Computational Mathematics and Numerical Analysis
Estimates
Galerkin method
Hydraulics
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Spacetime
Theoretical
title Error Estimates and Adaptivity of the Space-Time Discontinuous Galerkin Method for Solving the Richards Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A30%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Error%20Estimates%20and%20Adaptivity%20of%20the%20Space-Time%20Discontinuous%20Galerkin%20Method%20for%20Solving%20the%20Richards%20Equation&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Dolej%C5%A1%C3%AD,%20V%C3%ADt&rft.date=2024&rft.volume=101&rft.issue=1&rft.spage=11&rft.pages=11-&rft.artnum=11&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-024-02650-x&rft_dat=%3Cproquest_pubme%3E3108391034%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3094942906&rft_id=info:pmid/39309293&rfr_iscdi=true