Error Estimates and Adaptivity of the Space-Time Discontinuous Galerkin Method for Solving the Richards Equation
We present a higher-order space-time adaptive method for the numerical solution of the Richards equation that describes a flow motion through variably saturated media. The discretization is based on the space-time discontinuous Galerkin method, which provides high stability and accuracy and can natu...
Gespeichert in:
Veröffentlicht in: | Journal of scientific computing 2024, Vol.101 (1), p.11, Article 11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 11 |
container_title | Journal of scientific computing |
container_volume | 101 |
creator | Dolejší, Vít Shin, Hyun-Geun Vlasák, Miloslav |
description | We present a higher-order space-time adaptive method for the numerical solution of the Richards equation that describes a flow motion through variably saturated media. The discretization is based on the space-time discontinuous Galerkin method, which provides high stability and accuracy and can naturally handle varying meshes. We derive reliable and efficient a posteriori error estimates in the residual-based norm. The estimates use well-balanced spatial and temporal flux reconstructions which are constructed locally over space-time elements or space-time patches. The accuracy of the estimates is verified by numerical experiments. Moreover, we develop the
hp
-adaptive method and demonstrate its efficiency and usefulness on a practically relevant example. |
doi_str_mv | 10.1007/s10915-024-02650-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11415456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3108391034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-99d04e0e37ae38db844830664a064627c9653fbea452670014ee6e375cebf1523</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EotPCH2CBLLFhE7iOH4lXqCpDi1SERMva8iQ3My4ZO7WdUfvvcTulPBYsLC_ud47v8SHkFYN3DKB5nxhoJiuoRTlKQnXzhCyYbHjVKM2ekgW0rawa0YgDcpjSFQDoVtfPyQHXHHSt-YJMyxhDpMuU3dZmTNT6nh73dspu5_ItDQPNG6QXk-2wunRbpB9d6oLPzs9hTvTUjhh_OE-_YN6Eng7F7CKMO-fX98JvrtvY2Ce6vJ5tdsG_IM8GOyZ8-XAfke-flpcnZ9X519PPJ8fnVcelypXWPQgE5I1F3varVoiWg1LCghKqbjqtJB9WaIWsVQPABKIqtOxwNTBZ8yPyYe87zast9h36HO1oplhyxlsTrDN_T7zbmHXYGcYEk0Kq4vD2wSGG6xlTNtsSHcfReizRDWfQcs2Ai4K--Qe9CnP0JZ8pHy20qDXcGdZ7qoshpYjD4zYMzF2jZt-oKY2a-0bNTRG9_jPHo-RXhQXgeyCVkV9j_P32f2x_ApqHrVo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094942906</pqid></control><display><type>article</type><title>Error Estimates and Adaptivity of the Space-Time Discontinuous Galerkin Method for Solving the Richards Equation</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Dolejší, Vít ; Shin, Hyun-Geun ; Vlasák, Miloslav</creator><creatorcontrib>Dolejší, Vít ; Shin, Hyun-Geun ; Vlasák, Miloslav</creatorcontrib><description>We present a higher-order space-time adaptive method for the numerical solution of the Richards equation that describes a flow motion through variably saturated media. The discretization is based on the space-time discontinuous Galerkin method, which provides high stability and accuracy and can naturally handle varying meshes. We derive reliable and efficient a posteriori error estimates in the residual-based norm. The estimates use well-balanced spatial and temporal flux reconstructions which are constructed locally over space-time elements or space-time patches. The accuracy of the estimates is verified by numerical experiments. Moreover, we develop the
hp
-adaptive method and demonstrate its efficiency and usefulness on a practically relevant example.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-024-02650-x</identifier><identifier>PMID: 39309293</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptation ; Algorithms ; Approximation ; Computational Mathematics and Numerical Analysis ; Estimates ; Galerkin method ; Hydraulics ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Spacetime ; Theoretical</subject><ispartof>Journal of scientific computing, 2024, Vol.101 (1), p.11, Article 11</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024.</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c356t-99d04e0e37ae38db844830664a064627c9653fbea452670014ee6e375cebf1523</cites><orcidid>0000-0001-6356-934X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10915-024-02650-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10915-024-02650-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,33727,33728,41471,42540,51302,64366,64368</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39309293$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dolejší, Vít</creatorcontrib><creatorcontrib>Shin, Hyun-Geun</creatorcontrib><creatorcontrib>Vlasák, Miloslav</creatorcontrib><title>Error Estimates and Adaptivity of the Space-Time Discontinuous Galerkin Method for Solving the Richards Equation</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><addtitle>J Sci Comput</addtitle><description>We present a higher-order space-time adaptive method for the numerical solution of the Richards equation that describes a flow motion through variably saturated media. The discretization is based on the space-time discontinuous Galerkin method, which provides high stability and accuracy and can naturally handle varying meshes. We derive reliable and efficient a posteriori error estimates in the residual-based norm. The estimates use well-balanced spatial and temporal flux reconstructions which are constructed locally over space-time elements or space-time patches. The accuracy of the estimates is verified by numerical experiments. Moreover, we develop the
hp
-adaptive method and demonstrate its efficiency and usefulness on a practically relevant example.</description><subject>Adaptation</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Estimates</subject><subject>Galerkin method</subject><subject>Hydraulics</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Spacetime</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kUtv1DAUhS0EotPCH2CBLLFhE7iOH4lXqCpDi1SERMva8iQ3My4ZO7WdUfvvcTulPBYsLC_ud47v8SHkFYN3DKB5nxhoJiuoRTlKQnXzhCyYbHjVKM2ekgW0rawa0YgDcpjSFQDoVtfPyQHXHHSt-YJMyxhDpMuU3dZmTNT6nh73dspu5_ItDQPNG6QXk-2wunRbpB9d6oLPzs9hTvTUjhh_OE-_YN6Eng7F7CKMO-fX98JvrtvY2Ce6vJ5tdsG_IM8GOyZ8-XAfke-flpcnZ9X519PPJ8fnVcelypXWPQgE5I1F3varVoiWg1LCghKqbjqtJB9WaIWsVQPABKIqtOxwNTBZ8yPyYe87zast9h36HO1oplhyxlsTrDN_T7zbmHXYGcYEk0Kq4vD2wSGG6xlTNtsSHcfReizRDWfQcs2Ai4K--Qe9CnP0JZ8pHy20qDXcGdZ7qoshpYjD4zYMzF2jZt-oKY2a-0bNTRG9_jPHo-RXhQXgeyCVkV9j_P32f2x_ApqHrVo</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Dolejší, Vít</creator><creator>Shin, Hyun-Geun</creator><creator>Vlasák, Miloslav</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6356-934X</orcidid></search><sort><creationdate>2024</creationdate><title>Error Estimates and Adaptivity of the Space-Time Discontinuous Galerkin Method for Solving the Richards Equation</title><author>Dolejší, Vít ; Shin, Hyun-Geun ; Vlasák, Miloslav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-99d04e0e37ae38db844830664a064627c9653fbea452670014ee6e375cebf1523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Estimates</topic><topic>Galerkin method</topic><topic>Hydraulics</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Spacetime</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dolejší, Vít</creatorcontrib><creatorcontrib>Shin, Hyun-Geun</creatorcontrib><creatorcontrib>Vlasák, Miloslav</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dolejší, Vít</au><au>Shin, Hyun-Geun</au><au>Vlasák, Miloslav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Error Estimates and Adaptivity of the Space-Time Discontinuous Galerkin Method for Solving the Richards Equation</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><addtitle>J Sci Comput</addtitle><date>2024</date><risdate>2024</risdate><volume>101</volume><issue>1</issue><spage>11</spage><pages>11-</pages><artnum>11</artnum><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>We present a higher-order space-time adaptive method for the numerical solution of the Richards equation that describes a flow motion through variably saturated media. The discretization is based on the space-time discontinuous Galerkin method, which provides high stability and accuracy and can naturally handle varying meshes. We derive reliable and efficient a posteriori error estimates in the residual-based norm. The estimates use well-balanced spatial and temporal flux reconstructions which are constructed locally over space-time elements or space-time patches. The accuracy of the estimates is verified by numerical experiments. Moreover, we develop the
hp
-adaptive method and demonstrate its efficiency and usefulness on a practically relevant example.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>39309293</pmid><doi>10.1007/s10915-024-02650-x</doi><orcidid>https://orcid.org/0000-0001-6356-934X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-7474 |
ispartof | Journal of scientific computing, 2024, Vol.101 (1), p.11, Article 11 |
issn | 0885-7474 1573-7691 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11415456 |
source | SpringerLink Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Adaptation Algorithms Approximation Computational Mathematics and Numerical Analysis Estimates Galerkin method Hydraulics Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Spacetime Theoretical |
title | Error Estimates and Adaptivity of the Space-Time Discontinuous Galerkin Method for Solving the Richards Equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A30%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Error%20Estimates%20and%20Adaptivity%20of%20the%20Space-Time%20Discontinuous%20Galerkin%20Method%20for%20Solving%20the%20Richards%20Equation&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Dolej%C5%A1%C3%AD,%20V%C3%ADt&rft.date=2024&rft.volume=101&rft.issue=1&rft.spage=11&rft.pages=11-&rft.artnum=11&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-024-02650-x&rft_dat=%3Cproquest_pubme%3E3108391034%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3094942906&rft_id=info:pmid/39309293&rfr_iscdi=true |