Role of the mechanotransductor PIEZO1 in megakaryocyte differentiation

From haematopoietic stem cells to megakaryocytes (Mks), cells undergo various mechanical forces that affect Mk differentiation, maturation and proplatelet formation. The mechanotransductor PIEZO1 appears to be a natural candidate for sensing these mechanical forces and regulating megakaryopoiesis an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular and molecular medicine 2024-09, Vol.28 (18), p.e70055-n/a
Hauptverfasser: Demagny, Julien, Poirault‐Chassac, Sonia, Ilsaint, Damtz Nehemie, Marchelli, Aurore, Gomila, Cathy, Ouled‐Haddou, Hakim, Collet, Louison, Le Guyader, Maïlys, Gaussem, Pascale, Garçon, Loïc, Bachelot‐Loza, Christilla
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 18
container_start_page e70055
container_title Journal of cellular and molecular medicine
container_volume 28
creator Demagny, Julien
Poirault‐Chassac, Sonia
Ilsaint, Damtz Nehemie
Marchelli, Aurore
Gomila, Cathy
Ouled‐Haddou, Hakim
Collet, Louison
Le Guyader, Maïlys
Gaussem, Pascale
Garçon, Loïc
Bachelot‐Loza, Christilla
description From haematopoietic stem cells to megakaryocytes (Mks), cells undergo various mechanical forces that affect Mk differentiation, maturation and proplatelet formation. The mechanotransductor PIEZO1 appears to be a natural candidate for sensing these mechanical forces and regulating megakaryopoiesis and thrombopoiesis. Gain‐of‐function mutations of PIEZO1 cause hereditary xerocytosis, a haemolytic anaemia associated with thrombotic events. If some functions of PIEZO1 have been reported in platelets, few data exist on PIEZO1 role in megakaryopoiesis. To address this subject, we used an in vitro model of Mk differentiation from CD34+ cells and studied step‐by‐step the effects of PIEZO1 activation by the chemical activator YODA1 during Mk differentiation and maturation. We report that PIEZO1 activation by 4 μM YODA1 at early stages of culture induced cytosolic calcium ion influx and reduced cell maturation. Indeed, CD41+CD42+ numbers were reduced by around 1.5‐fold, with no effects on proliferation. At later stages of Mk differentiation, PIEZO1 activation promoted endomitosis and proplatelet formation that was reversed by PIEZO1 gene invalidation with a shRNA‐PIEZO1. Same observations on endomitosis were reproduced in HEL cells induced into Mks by PMA and treated with YODA1. We provide for the first time results suggesting a dual role of PIEZO1 mechanotransductor during megakaryopoiesis.
doi_str_mv 10.1111/jcmm.70055
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11415291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3111071237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3725-b4c4300a19f1493a6c65f54b87acdab5935163c944ea1bed7963102acf75002a3</originalsourceid><addsrcrecordid>eNp9kcFP2zAUxi00RKHjwh8wRdplTCrzi-0kPiFUwVpU1GkaFy6W4zjUXRIzOwH1v8chHYIe8OVZfj9__vw-hE4An0FYP9aqrs9SjBnbQ4fAsnhCOaGftnvISDZCR96vMSYJEH6ARoQTTDlNDtHVb1vpyJZRu9JRrdVKNrZ1svFFp1rrol_zy7slRKYJzXv5V7qNVZtWR4UpS-100xrZGtt8RvulrLw-3tYxur26_DOdTRbLn_PpxWKiSBqzSU4VJRhL4CUEjzJRCSsZzbNUqkLmjBMGCVGcUi0h10XKEwI4lqpMGQ6VjNH5oPvQ5bUuVDDgZCUenKmDNWGlEe87jVmJe_soACiwmENQOB0UVjv3ZhcL0Z9hmoah8uyxZ79tX3P2X6d9K2rjla4q2WjbeRG8BV8so2lAv-6ga9u5JswiUBA4iElPfR8o5az3TpevDgCLPkvRZylesgzwl7d_fUX_hxcAGIAnU-nNB1LienpzM4g-A-aDqDI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111071237</pqid></control><display><type>article</type><title>Role of the mechanotransductor PIEZO1 in megakaryocyte differentiation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Demagny, Julien ; Poirault‐Chassac, Sonia ; Ilsaint, Damtz Nehemie ; Marchelli, Aurore ; Gomila, Cathy ; Ouled‐Haddou, Hakim ; Collet, Louison ; Le Guyader, Maïlys ; Gaussem, Pascale ; Garçon, Loïc ; Bachelot‐Loza, Christilla</creator><creatorcontrib>Demagny, Julien ; Poirault‐Chassac, Sonia ; Ilsaint, Damtz Nehemie ; Marchelli, Aurore ; Gomila, Cathy ; Ouled‐Haddou, Hakim ; Collet, Louison ; Le Guyader, Maïlys ; Gaussem, Pascale ; Garçon, Loïc ; Bachelot‐Loza, Christilla</creatorcontrib><description>From haematopoietic stem cells to megakaryocytes (Mks), cells undergo various mechanical forces that affect Mk differentiation, maturation and proplatelet formation. The mechanotransductor PIEZO1 appears to be a natural candidate for sensing these mechanical forces and regulating megakaryopoiesis and thrombopoiesis. Gain‐of‐function mutations of PIEZO1 cause hereditary xerocytosis, a haemolytic anaemia associated with thrombotic events. If some functions of PIEZO1 have been reported in platelets, few data exist on PIEZO1 role in megakaryopoiesis. To address this subject, we used an in vitro model of Mk differentiation from CD34+ cells and studied step‐by‐step the effects of PIEZO1 activation by the chemical activator YODA1 during Mk differentiation and maturation. We report that PIEZO1 activation by 4 μM YODA1 at early stages of culture induced cytosolic calcium ion influx and reduced cell maturation. Indeed, CD41+CD42+ numbers were reduced by around 1.5‐fold, with no effects on proliferation. At later stages of Mk differentiation, PIEZO1 activation promoted endomitosis and proplatelet formation that was reversed by PIEZO1 gene invalidation with a shRNA‐PIEZO1. Same observations on endomitosis were reproduced in HEL cells induced into Mks by PMA and treated with YODA1. We provide for the first time results suggesting a dual role of PIEZO1 mechanotransductor during megakaryopoiesis.</description><identifier>ISSN: 1582-1838</identifier><identifier>ISSN: 1582-4934</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.70055</identifier><identifier>PMID: 39304946</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Anemia, Hemolytic, Congenital - genetics ; Anemia, Hemolytic, Congenital - metabolism ; Anemia, Hemolytic, Congenital - pathology ; Antigens, CD34 - metabolism ; Automation ; Blood ; Blood Platelets - metabolism ; Calcium - metabolism ; Calcium influx ; CD34 antigen ; Cell activation ; Cell culture ; Cell differentiation ; Cell Differentiation - genetics ; Cell growth ; Cell proliferation ; Flow cytometry ; Hematology ; Hematopoietic stem cells ; Hematopoietic Stem Cells - cytology ; Hematopoietic Stem Cells - metabolism ; Hemolytic anemia ; Human health and pathology ; Humans ; Hydrops Fetalis - genetics ; Hydrops Fetalis - metabolism ; Hydrops Fetalis - pathology ; Ion Channels - genetics ; Ion Channels - metabolism ; Life Sciences ; Mechanical properties ; Mechanotransduction, Cellular ; Megakaryocytes ; Megakaryocytes - cytology ; Megakaryocytes - metabolism ; Mortality ; Mutation ; Original ; Phosphorylation ; PIEZO1 ; proplatelet formation ; Pyrazines ; Shear stress ; Thiadiazoles ; Thrombopoiesis ; Thrombopoiesis - genetics</subject><ispartof>Journal of cellular and molecular medicine, 2024-09, Vol.28 (18), p.e70055-n/a</ispartof><rights>2024 The Author(s). published by Foundation for Cellular and Molecular Medicine and John Wiley &amp; Sons Ltd.</rights><rights>2024 The Author(s). Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley &amp; Sons Ltd.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3725-b4c4300a19f1493a6c65f54b87acdab5935163c944ea1bed7963102acf75002a3</cites><orcidid>0000-0002-3342-1288 ; 0000-0002-8536-9733</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415291/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415291/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39304946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://u-picardie.hal.science/hal-04711198$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Demagny, Julien</creatorcontrib><creatorcontrib>Poirault‐Chassac, Sonia</creatorcontrib><creatorcontrib>Ilsaint, Damtz Nehemie</creatorcontrib><creatorcontrib>Marchelli, Aurore</creatorcontrib><creatorcontrib>Gomila, Cathy</creatorcontrib><creatorcontrib>Ouled‐Haddou, Hakim</creatorcontrib><creatorcontrib>Collet, Louison</creatorcontrib><creatorcontrib>Le Guyader, Maïlys</creatorcontrib><creatorcontrib>Gaussem, Pascale</creatorcontrib><creatorcontrib>Garçon, Loïc</creatorcontrib><creatorcontrib>Bachelot‐Loza, Christilla</creatorcontrib><title>Role of the mechanotransductor PIEZO1 in megakaryocyte differentiation</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>From haematopoietic stem cells to megakaryocytes (Mks), cells undergo various mechanical forces that affect Mk differentiation, maturation and proplatelet formation. The mechanotransductor PIEZO1 appears to be a natural candidate for sensing these mechanical forces and regulating megakaryopoiesis and thrombopoiesis. Gain‐of‐function mutations of PIEZO1 cause hereditary xerocytosis, a haemolytic anaemia associated with thrombotic events. If some functions of PIEZO1 have been reported in platelets, few data exist on PIEZO1 role in megakaryopoiesis. To address this subject, we used an in vitro model of Mk differentiation from CD34+ cells and studied step‐by‐step the effects of PIEZO1 activation by the chemical activator YODA1 during Mk differentiation and maturation. We report that PIEZO1 activation by 4 μM YODA1 at early stages of culture induced cytosolic calcium ion influx and reduced cell maturation. Indeed, CD41+CD42+ numbers were reduced by around 1.5‐fold, with no effects on proliferation. At later stages of Mk differentiation, PIEZO1 activation promoted endomitosis and proplatelet formation that was reversed by PIEZO1 gene invalidation with a shRNA‐PIEZO1. Same observations on endomitosis were reproduced in HEL cells induced into Mks by PMA and treated with YODA1. We provide for the first time results suggesting a dual role of PIEZO1 mechanotransductor during megakaryopoiesis.</description><subject>Anemia, Hemolytic, Congenital - genetics</subject><subject>Anemia, Hemolytic, Congenital - metabolism</subject><subject>Anemia, Hemolytic, Congenital - pathology</subject><subject>Antigens, CD34 - metabolism</subject><subject>Automation</subject><subject>Blood</subject><subject>Blood Platelets - metabolism</subject><subject>Calcium - metabolism</subject><subject>Calcium influx</subject><subject>CD34 antigen</subject><subject>Cell activation</subject><subject>Cell culture</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - genetics</subject><subject>Cell growth</subject><subject>Cell proliferation</subject><subject>Flow cytometry</subject><subject>Hematology</subject><subject>Hematopoietic stem cells</subject><subject>Hematopoietic Stem Cells - cytology</subject><subject>Hematopoietic Stem Cells - metabolism</subject><subject>Hemolytic anemia</subject><subject>Human health and pathology</subject><subject>Humans</subject><subject>Hydrops Fetalis - genetics</subject><subject>Hydrops Fetalis - metabolism</subject><subject>Hydrops Fetalis - pathology</subject><subject>Ion Channels - genetics</subject><subject>Ion Channels - metabolism</subject><subject>Life Sciences</subject><subject>Mechanical properties</subject><subject>Mechanotransduction, Cellular</subject><subject>Megakaryocytes</subject><subject>Megakaryocytes - cytology</subject><subject>Megakaryocytes - metabolism</subject><subject>Mortality</subject><subject>Mutation</subject><subject>Original</subject><subject>Phosphorylation</subject><subject>PIEZO1</subject><subject>proplatelet formation</subject><subject>Pyrazines</subject><subject>Shear stress</subject><subject>Thiadiazoles</subject><subject>Thrombopoiesis</subject><subject>Thrombopoiesis - genetics</subject><issn>1582-1838</issn><issn>1582-4934</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFP2zAUxi00RKHjwh8wRdplTCrzi-0kPiFUwVpU1GkaFy6W4zjUXRIzOwH1v8chHYIe8OVZfj9__vw-hE4An0FYP9aqrs9SjBnbQ4fAsnhCOaGftnvISDZCR96vMSYJEH6ARoQTTDlNDtHVb1vpyJZRu9JRrdVKNrZ1svFFp1rrol_zy7slRKYJzXv5V7qNVZtWR4UpS-100xrZGtt8RvulrLw-3tYxur26_DOdTRbLn_PpxWKiSBqzSU4VJRhL4CUEjzJRCSsZzbNUqkLmjBMGCVGcUi0h10XKEwI4lqpMGQ6VjNH5oPvQ5bUuVDDgZCUenKmDNWGlEe87jVmJe_soACiwmENQOB0UVjv3ZhcL0Z9hmoah8uyxZ79tX3P2X6d9K2rjla4q2WjbeRG8BV8so2lAv-6ga9u5JswiUBA4iElPfR8o5az3TpevDgCLPkvRZylesgzwl7d_fUX_hxcAGIAnU-nNB1LienpzM4g-A-aDqDI</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Demagny, Julien</creator><creator>Poirault‐Chassac, Sonia</creator><creator>Ilsaint, Damtz Nehemie</creator><creator>Marchelli, Aurore</creator><creator>Gomila, Cathy</creator><creator>Ouled‐Haddou, Hakim</creator><creator>Collet, Louison</creator><creator>Le Guyader, Maïlys</creator><creator>Gaussem, Pascale</creator><creator>Garçon, Loïc</creator><creator>Bachelot‐Loza, Christilla</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Open Access</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3342-1288</orcidid><orcidid>https://orcid.org/0000-0002-8536-9733</orcidid></search><sort><creationdate>202409</creationdate><title>Role of the mechanotransductor PIEZO1 in megakaryocyte differentiation</title><author>Demagny, Julien ; Poirault‐Chassac, Sonia ; Ilsaint, Damtz Nehemie ; Marchelli, Aurore ; Gomila, Cathy ; Ouled‐Haddou, Hakim ; Collet, Louison ; Le Guyader, Maïlys ; Gaussem, Pascale ; Garçon, Loïc ; Bachelot‐Loza, Christilla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3725-b4c4300a19f1493a6c65f54b87acdab5935163c944ea1bed7963102acf75002a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anemia, Hemolytic, Congenital - genetics</topic><topic>Anemia, Hemolytic, Congenital - metabolism</topic><topic>Anemia, Hemolytic, Congenital - pathology</topic><topic>Antigens, CD34 - metabolism</topic><topic>Automation</topic><topic>Blood</topic><topic>Blood Platelets - metabolism</topic><topic>Calcium - metabolism</topic><topic>Calcium influx</topic><topic>CD34 antigen</topic><topic>Cell activation</topic><topic>Cell culture</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - genetics</topic><topic>Cell growth</topic><topic>Cell proliferation</topic><topic>Flow cytometry</topic><topic>Hematology</topic><topic>Hematopoietic stem cells</topic><topic>Hematopoietic Stem Cells - cytology</topic><topic>Hematopoietic Stem Cells - metabolism</topic><topic>Hemolytic anemia</topic><topic>Human health and pathology</topic><topic>Humans</topic><topic>Hydrops Fetalis - genetics</topic><topic>Hydrops Fetalis - metabolism</topic><topic>Hydrops Fetalis - pathology</topic><topic>Ion Channels - genetics</topic><topic>Ion Channels - metabolism</topic><topic>Life Sciences</topic><topic>Mechanical properties</topic><topic>Mechanotransduction, Cellular</topic><topic>Megakaryocytes</topic><topic>Megakaryocytes - cytology</topic><topic>Megakaryocytes - metabolism</topic><topic>Mortality</topic><topic>Mutation</topic><topic>Original</topic><topic>Phosphorylation</topic><topic>PIEZO1</topic><topic>proplatelet formation</topic><topic>Pyrazines</topic><topic>Shear stress</topic><topic>Thiadiazoles</topic><topic>Thrombopoiesis</topic><topic>Thrombopoiesis - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demagny, Julien</creatorcontrib><creatorcontrib>Poirault‐Chassac, Sonia</creatorcontrib><creatorcontrib>Ilsaint, Damtz Nehemie</creatorcontrib><creatorcontrib>Marchelli, Aurore</creatorcontrib><creatorcontrib>Gomila, Cathy</creatorcontrib><creatorcontrib>Ouled‐Haddou, Hakim</creatorcontrib><creatorcontrib>Collet, Louison</creatorcontrib><creatorcontrib>Le Guyader, Maïlys</creatorcontrib><creatorcontrib>Gaussem, Pascale</creatorcontrib><creatorcontrib>Garçon, Loïc</creatorcontrib><creatorcontrib>Bachelot‐Loza, Christilla</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demagny, Julien</au><au>Poirault‐Chassac, Sonia</au><au>Ilsaint, Damtz Nehemie</au><au>Marchelli, Aurore</au><au>Gomila, Cathy</au><au>Ouled‐Haddou, Hakim</au><au>Collet, Louison</au><au>Le Guyader, Maïlys</au><au>Gaussem, Pascale</au><au>Garçon, Loïc</au><au>Bachelot‐Loza, Christilla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of the mechanotransductor PIEZO1 in megakaryocyte differentiation</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2024-09</date><risdate>2024</risdate><volume>28</volume><issue>18</issue><spage>e70055</spage><epage>n/a</epage><pages>e70055-n/a</pages><issn>1582-1838</issn><issn>1582-4934</issn><eissn>1582-4934</eissn><abstract>From haematopoietic stem cells to megakaryocytes (Mks), cells undergo various mechanical forces that affect Mk differentiation, maturation and proplatelet formation. The mechanotransductor PIEZO1 appears to be a natural candidate for sensing these mechanical forces and regulating megakaryopoiesis and thrombopoiesis. Gain‐of‐function mutations of PIEZO1 cause hereditary xerocytosis, a haemolytic anaemia associated with thrombotic events. If some functions of PIEZO1 have been reported in platelets, few data exist on PIEZO1 role in megakaryopoiesis. To address this subject, we used an in vitro model of Mk differentiation from CD34+ cells and studied step‐by‐step the effects of PIEZO1 activation by the chemical activator YODA1 during Mk differentiation and maturation. We report that PIEZO1 activation by 4 μM YODA1 at early stages of culture induced cytosolic calcium ion influx and reduced cell maturation. Indeed, CD41+CD42+ numbers were reduced by around 1.5‐fold, with no effects on proliferation. At later stages of Mk differentiation, PIEZO1 activation promoted endomitosis and proplatelet formation that was reversed by PIEZO1 gene invalidation with a shRNA‐PIEZO1. Same observations on endomitosis were reproduced in HEL cells induced into Mks by PMA and treated with YODA1. We provide for the first time results suggesting a dual role of PIEZO1 mechanotransductor during megakaryopoiesis.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>39304946</pmid><doi>10.1111/jcmm.70055</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3342-1288</orcidid><orcidid>https://orcid.org/0000-0002-8536-9733</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1582-1838
ispartof Journal of cellular and molecular medicine, 2024-09, Vol.28 (18), p.e70055-n/a
issn 1582-1838
1582-4934
1582-4934
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11415291
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Wiley Online Library All Journals; PubMed Central
subjects Anemia, Hemolytic, Congenital - genetics
Anemia, Hemolytic, Congenital - metabolism
Anemia, Hemolytic, Congenital - pathology
Antigens, CD34 - metabolism
Automation
Blood
Blood Platelets - metabolism
Calcium - metabolism
Calcium influx
CD34 antigen
Cell activation
Cell culture
Cell differentiation
Cell Differentiation - genetics
Cell growth
Cell proliferation
Flow cytometry
Hematology
Hematopoietic stem cells
Hematopoietic Stem Cells - cytology
Hematopoietic Stem Cells - metabolism
Hemolytic anemia
Human health and pathology
Humans
Hydrops Fetalis - genetics
Hydrops Fetalis - metabolism
Hydrops Fetalis - pathology
Ion Channels - genetics
Ion Channels - metabolism
Life Sciences
Mechanical properties
Mechanotransduction, Cellular
Megakaryocytes
Megakaryocytes - cytology
Megakaryocytes - metabolism
Mortality
Mutation
Original
Phosphorylation
PIEZO1
proplatelet formation
Pyrazines
Shear stress
Thiadiazoles
Thrombopoiesis
Thrombopoiesis - genetics
title Role of the mechanotransductor PIEZO1 in megakaryocyte differentiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A22%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20the%20mechanotransductor%20PIEZO1%20in%20megakaryocyte%20differentiation&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Demagny,%20Julien&rft.date=2024-09&rft.volume=28&rft.issue=18&rft.spage=e70055&rft.epage=n/a&rft.pages=e70055-n/a&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.70055&rft_dat=%3Cproquest_pubme%3E3111071237%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111071237&rft_id=info:pmid/39304946&rfr_iscdi=true