Integration of CTCF loops, methylome, and transcriptome in differentiating LUHMES as a model for imprinting dynamics of the 15q11-q13 locus in human neurons
Abstract Human cell line models, including the neuronal precursor line LUHMES, are important for investigating developmental transcriptional dynamics within imprinted regions, particularly the 15q11-q13 Angelman (AS) and Prader-Willi (PWS) syndrome locus. AS results from loss of maternal UBE3A in ne...
Gespeichert in:
Veröffentlicht in: | Human molecular genetics 2024-09, Vol.33 (19), p.1711-1725 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1725 |
---|---|
container_issue | 19 |
container_start_page | 1711 |
container_title | Human molecular genetics |
container_volume | 33 |
creator | Gutierrez Fugón, Orangel J Sharifi, Osman Heath, Nicholas Soto, Daniela C Gomez, J Antonio Yasui, Dag H Mendiola, Aron Judd P O’Geen, Henriette Beitnere, Ulrika Tomkova, Marketa Haghani, Viktoria Dillon, Greg Segal, David J LaSalle, Janine M |
description | Abstract
Human cell line models, including the neuronal precursor line LUHMES, are important for investigating developmental transcriptional dynamics within imprinted regions, particularly the 15q11-q13 Angelman (AS) and Prader-Willi (PWS) syndrome locus. AS results from loss of maternal UBE3A in neurons, where the paternal allele is silenced by a convergent antisense transcript UBE3A-ATS, a lncRNA that terminates at PWAR1 in non-neurons. qRT-PCR analysis confirmed the exclusive and progressive increase in UBE3A-ATS in differentiating LUHMES neurons, validating their use for studying UBE3A silencing. Genome-wide transcriptome analyses revealed changes to 11 834 genes during neuronal differentiation, including the upregulation of most genes within the 15q11-q13 locus. To identify dynamic changes in chromatin loops linked to transcriptional activity, we performed a HiChIP validated by 4C, which identified two neuron-specific CTCF loops between MAGEL2-SNRPN and PWAR1-UBE3A. To determine if allele-specific differentially methylated regions (DMR) may be associated with CTCF loop anchors, whole genome long-read nanopore sequencing was performed. We identified a paternally hypomethylated DMR near the SNRPN upstream loop anchor exclusive to neurons and a paternally hypermethylated DMR near the PWAR1 CTCF anchor exclusive to undifferentiated cells, consistent with increases in neuronal transcription. Additionally, DMRs near CTCF loop anchors were observed in both cell types, indicative of allele-specific differences in chromatin loops regulating imprinted transcription. These results provide an integrated view of the 15q11-q13 epigenetic landscape during LUHMES neuronal differentiation, underscoring the complex interplay of transcription, chromatin looping, and DNA methylation. They also provide insights for future therapeutic approaches for AS and PWS. |
doi_str_mv | 10.1093/hmg/ddae111 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11413648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/hmg/ddae111</oup_id><sourcerecordid>3084028565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-7cc07e1615baa87b8f30f4c1cff57ac9004eac32f54a0b89c04ad7724128ed4a3</originalsourceid><addsrcrecordid>eNp9kc1uEzEURi0EomlhxR55hZDaob5jz98KoaillYJY0K6tG4-dMRrbiT2DlHfhYXFIqGDDypJ9fL579RHyBtgHYB2_Htzmuu9RA8AzsgBRs6JkLX9OFqyrRVF3rD4j5yl9ZwxqwZuX5Ix3TFR12SzIz3s_6U3EyQZPg6HLh-UtHUPYpivq9DTsx-D0FUXf0ymiTyra7ZSvqPW0t8boqP1k83e_oavHuy833ygmitSFXo_UhEit20brfwP93qOzKh2CpkFTqHYAxQ54TlRzOjiH2aGnXs8x-PSKvDA4Jv36dF6Qx9ubh-Vdsfr6-X75aVUozmAqGqVYo6GGao3YNuvWcGaEAmVM1aDqGBMaFS9NJZCt204xgX3TlALKVvcC-QX5ePRu57XTvcorRRxlntth3MuAVv774u0gN-GHBBDAa9Fmw_uTIYbdrNMknU1KjyN6HeYkOWsFK9uqrjJ6eURVDClFbZ5ygMlDoTIXKk-FZvrt36M9sX8azMC7IxDm7X9NvwDkjax3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084028565</pqid></control><display><type>article</type><title>Integration of CTCF loops, methylome, and transcriptome in differentiating LUHMES as a model for imprinting dynamics of the 15q11-q13 locus in human neurons</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><creator>Gutierrez Fugón, Orangel J ; Sharifi, Osman ; Heath, Nicholas ; Soto, Daniela C ; Gomez, J Antonio ; Yasui, Dag H ; Mendiola, Aron Judd P ; O’Geen, Henriette ; Beitnere, Ulrika ; Tomkova, Marketa ; Haghani, Viktoria ; Dillon, Greg ; Segal, David J ; LaSalle, Janine M</creator><creatorcontrib>Gutierrez Fugón, Orangel J ; Sharifi, Osman ; Heath, Nicholas ; Soto, Daniela C ; Gomez, J Antonio ; Yasui, Dag H ; Mendiola, Aron Judd P ; O’Geen, Henriette ; Beitnere, Ulrika ; Tomkova, Marketa ; Haghani, Viktoria ; Dillon, Greg ; Segal, David J ; LaSalle, Janine M</creatorcontrib><description>Abstract
Human cell line models, including the neuronal precursor line LUHMES, are important for investigating developmental transcriptional dynamics within imprinted regions, particularly the 15q11-q13 Angelman (AS) and Prader-Willi (PWS) syndrome locus. AS results from loss of maternal UBE3A in neurons, where the paternal allele is silenced by a convergent antisense transcript UBE3A-ATS, a lncRNA that terminates at PWAR1 in non-neurons. qRT-PCR analysis confirmed the exclusive and progressive increase in UBE3A-ATS in differentiating LUHMES neurons, validating their use for studying UBE3A silencing. Genome-wide transcriptome analyses revealed changes to 11 834 genes during neuronal differentiation, including the upregulation of most genes within the 15q11-q13 locus. To identify dynamic changes in chromatin loops linked to transcriptional activity, we performed a HiChIP validated by 4C, which identified two neuron-specific CTCF loops between MAGEL2-SNRPN and PWAR1-UBE3A. To determine if allele-specific differentially methylated regions (DMR) may be associated with CTCF loop anchors, whole genome long-read nanopore sequencing was performed. We identified a paternally hypomethylated DMR near the SNRPN upstream loop anchor exclusive to neurons and a paternally hypermethylated DMR near the PWAR1 CTCF anchor exclusive to undifferentiated cells, consistent with increases in neuronal transcription. Additionally, DMRs near CTCF loop anchors were observed in both cell types, indicative of allele-specific differences in chromatin loops regulating imprinted transcription. These results provide an integrated view of the 15q11-q13 epigenetic landscape during LUHMES neuronal differentiation, underscoring the complex interplay of transcription, chromatin looping, and DNA methylation. They also provide insights for future therapeutic approaches for AS and PWS.</description><identifier>ISSN: 0964-6906</identifier><identifier>ISSN: 1460-2083</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/ddae111</identifier><identifier>PMID: 39045627</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Alleles ; Angelman Syndrome - genetics ; Angelman Syndrome - pathology ; CCCTC-Binding Factor - genetics ; CCCTC-Binding Factor - metabolism ; Cell Differentiation - genetics ; Cell Line ; Chromosomes, Human, Pair 15 - genetics ; DNA Methylation - genetics ; Epigenome ; Genomic Imprinting - genetics ; Humans ; Neurons - metabolism ; Original ; Prader-Willi Syndrome - genetics ; Prader-Willi Syndrome - metabolism ; Prader-Willi Syndrome - pathology ; RNA, Long Noncoding - genetics ; snRNP Core Proteins - genetics ; snRNP Core Proteins - metabolism ; Transcriptome - genetics ; Ubiquitin-Protein Ligases - genetics ; Ubiquitin-Protein Ligases - metabolism</subject><ispartof>Human molecular genetics, 2024-09, Vol.33 (19), p.1711-1725</ispartof><rights>The Author(s) 2024. Published by Oxford University Press. 2024</rights><rights>The Author(s) 2024. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-7cc07e1615baa87b8f30f4c1cff57ac9004eac32f54a0b89c04ad7724128ed4a3</cites><orcidid>0000-0002-6292-655X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,1578,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39045627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gutierrez Fugón, Orangel J</creatorcontrib><creatorcontrib>Sharifi, Osman</creatorcontrib><creatorcontrib>Heath, Nicholas</creatorcontrib><creatorcontrib>Soto, Daniela C</creatorcontrib><creatorcontrib>Gomez, J Antonio</creatorcontrib><creatorcontrib>Yasui, Dag H</creatorcontrib><creatorcontrib>Mendiola, Aron Judd P</creatorcontrib><creatorcontrib>O’Geen, Henriette</creatorcontrib><creatorcontrib>Beitnere, Ulrika</creatorcontrib><creatorcontrib>Tomkova, Marketa</creatorcontrib><creatorcontrib>Haghani, Viktoria</creatorcontrib><creatorcontrib>Dillon, Greg</creatorcontrib><creatorcontrib>Segal, David J</creatorcontrib><creatorcontrib>LaSalle, Janine M</creatorcontrib><title>Integration of CTCF loops, methylome, and transcriptome in differentiating LUHMES as a model for imprinting dynamics of the 15q11-q13 locus in human neurons</title><title>Human molecular genetics</title><addtitle>Hum Mol Genet</addtitle><description>Abstract
Human cell line models, including the neuronal precursor line LUHMES, are important for investigating developmental transcriptional dynamics within imprinted regions, particularly the 15q11-q13 Angelman (AS) and Prader-Willi (PWS) syndrome locus. AS results from loss of maternal UBE3A in neurons, where the paternal allele is silenced by a convergent antisense transcript UBE3A-ATS, a lncRNA that terminates at PWAR1 in non-neurons. qRT-PCR analysis confirmed the exclusive and progressive increase in UBE3A-ATS in differentiating LUHMES neurons, validating their use for studying UBE3A silencing. Genome-wide transcriptome analyses revealed changes to 11 834 genes during neuronal differentiation, including the upregulation of most genes within the 15q11-q13 locus. To identify dynamic changes in chromatin loops linked to transcriptional activity, we performed a HiChIP validated by 4C, which identified two neuron-specific CTCF loops between MAGEL2-SNRPN and PWAR1-UBE3A. To determine if allele-specific differentially methylated regions (DMR) may be associated with CTCF loop anchors, whole genome long-read nanopore sequencing was performed. We identified a paternally hypomethylated DMR near the SNRPN upstream loop anchor exclusive to neurons and a paternally hypermethylated DMR near the PWAR1 CTCF anchor exclusive to undifferentiated cells, consistent with increases in neuronal transcription. Additionally, DMRs near CTCF loop anchors were observed in both cell types, indicative of allele-specific differences in chromatin loops regulating imprinted transcription. These results provide an integrated view of the 15q11-q13 epigenetic landscape during LUHMES neuronal differentiation, underscoring the complex interplay of transcription, chromatin looping, and DNA methylation. They also provide insights for future therapeutic approaches for AS and PWS.</description><subject>Alleles</subject><subject>Angelman Syndrome - genetics</subject><subject>Angelman Syndrome - pathology</subject><subject>CCCTC-Binding Factor - genetics</subject><subject>CCCTC-Binding Factor - metabolism</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Line</subject><subject>Chromosomes, Human, Pair 15 - genetics</subject><subject>DNA Methylation - genetics</subject><subject>Epigenome</subject><subject>Genomic Imprinting - genetics</subject><subject>Humans</subject><subject>Neurons - metabolism</subject><subject>Original</subject><subject>Prader-Willi Syndrome - genetics</subject><subject>Prader-Willi Syndrome - metabolism</subject><subject>Prader-Willi Syndrome - pathology</subject><subject>RNA, Long Noncoding - genetics</subject><subject>snRNP Core Proteins - genetics</subject><subject>snRNP Core Proteins - metabolism</subject><subject>Transcriptome - genetics</subject><subject>Ubiquitin-Protein Ligases - genetics</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><issn>0964-6906</issn><issn>1460-2083</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc1uEzEURi0EomlhxR55hZDaob5jz98KoaillYJY0K6tG4-dMRrbiT2DlHfhYXFIqGDDypJ9fL579RHyBtgHYB2_Htzmuu9RA8AzsgBRs6JkLX9OFqyrRVF3rD4j5yl9ZwxqwZuX5Ix3TFR12SzIz3s_6U3EyQZPg6HLh-UtHUPYpivq9DTsx-D0FUXf0ymiTyra7ZSvqPW0t8boqP1k83e_oavHuy833ygmitSFXo_UhEit20brfwP93qOzKh2CpkFTqHYAxQ54TlRzOjiH2aGnXs8x-PSKvDA4Jv36dF6Qx9ubh-Vdsfr6-X75aVUozmAqGqVYo6GGao3YNuvWcGaEAmVM1aDqGBMaFS9NJZCt204xgX3TlALKVvcC-QX5ePRu57XTvcorRRxlntth3MuAVv774u0gN-GHBBDAa9Fmw_uTIYbdrNMknU1KjyN6HeYkOWsFK9uqrjJ6eURVDClFbZ5ygMlDoTIXKk-FZvrt36M9sX8azMC7IxDm7X9NvwDkjax3</recordid><startdate>20240919</startdate><enddate>20240919</enddate><creator>Gutierrez Fugón, Orangel J</creator><creator>Sharifi, Osman</creator><creator>Heath, Nicholas</creator><creator>Soto, Daniela C</creator><creator>Gomez, J Antonio</creator><creator>Yasui, Dag H</creator><creator>Mendiola, Aron Judd P</creator><creator>O’Geen, Henriette</creator><creator>Beitnere, Ulrika</creator><creator>Tomkova, Marketa</creator><creator>Haghani, Viktoria</creator><creator>Dillon, Greg</creator><creator>Segal, David J</creator><creator>LaSalle, Janine M</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6292-655X</orcidid></search><sort><creationdate>20240919</creationdate><title>Integration of CTCF loops, methylome, and transcriptome in differentiating LUHMES as a model for imprinting dynamics of the 15q11-q13 locus in human neurons</title><author>Gutierrez Fugón, Orangel J ; Sharifi, Osman ; Heath, Nicholas ; Soto, Daniela C ; Gomez, J Antonio ; Yasui, Dag H ; Mendiola, Aron Judd P ; O’Geen, Henriette ; Beitnere, Ulrika ; Tomkova, Marketa ; Haghani, Viktoria ; Dillon, Greg ; Segal, David J ; LaSalle, Janine M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-7cc07e1615baa87b8f30f4c1cff57ac9004eac32f54a0b89c04ad7724128ed4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alleles</topic><topic>Angelman Syndrome - genetics</topic><topic>Angelman Syndrome - pathology</topic><topic>CCCTC-Binding Factor - genetics</topic><topic>CCCTC-Binding Factor - metabolism</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Line</topic><topic>Chromosomes, Human, Pair 15 - genetics</topic><topic>DNA Methylation - genetics</topic><topic>Epigenome</topic><topic>Genomic Imprinting - genetics</topic><topic>Humans</topic><topic>Neurons - metabolism</topic><topic>Original</topic><topic>Prader-Willi Syndrome - genetics</topic><topic>Prader-Willi Syndrome - metabolism</topic><topic>Prader-Willi Syndrome - pathology</topic><topic>RNA, Long Noncoding - genetics</topic><topic>snRNP Core Proteins - genetics</topic><topic>snRNP Core Proteins - metabolism</topic><topic>Transcriptome - genetics</topic><topic>Ubiquitin-Protein Ligases - genetics</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gutierrez Fugón, Orangel J</creatorcontrib><creatorcontrib>Sharifi, Osman</creatorcontrib><creatorcontrib>Heath, Nicholas</creatorcontrib><creatorcontrib>Soto, Daniela C</creatorcontrib><creatorcontrib>Gomez, J Antonio</creatorcontrib><creatorcontrib>Yasui, Dag H</creatorcontrib><creatorcontrib>Mendiola, Aron Judd P</creatorcontrib><creatorcontrib>O’Geen, Henriette</creatorcontrib><creatorcontrib>Beitnere, Ulrika</creatorcontrib><creatorcontrib>Tomkova, Marketa</creatorcontrib><creatorcontrib>Haghani, Viktoria</creatorcontrib><creatorcontrib>Dillon, Greg</creatorcontrib><creatorcontrib>Segal, David J</creatorcontrib><creatorcontrib>LaSalle, Janine M</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gutierrez Fugón, Orangel J</au><au>Sharifi, Osman</au><au>Heath, Nicholas</au><au>Soto, Daniela C</au><au>Gomez, J Antonio</au><au>Yasui, Dag H</au><au>Mendiola, Aron Judd P</au><au>O’Geen, Henriette</au><au>Beitnere, Ulrika</au><au>Tomkova, Marketa</au><au>Haghani, Viktoria</au><au>Dillon, Greg</au><au>Segal, David J</au><au>LaSalle, Janine M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of CTCF loops, methylome, and transcriptome in differentiating LUHMES as a model for imprinting dynamics of the 15q11-q13 locus in human neurons</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum Mol Genet</addtitle><date>2024-09-19</date><risdate>2024</risdate><volume>33</volume><issue>19</issue><spage>1711</spage><epage>1725</epage><pages>1711-1725</pages><issn>0964-6906</issn><issn>1460-2083</issn><eissn>1460-2083</eissn><abstract>Abstract
Human cell line models, including the neuronal precursor line LUHMES, are important for investigating developmental transcriptional dynamics within imprinted regions, particularly the 15q11-q13 Angelman (AS) and Prader-Willi (PWS) syndrome locus. AS results from loss of maternal UBE3A in neurons, where the paternal allele is silenced by a convergent antisense transcript UBE3A-ATS, a lncRNA that terminates at PWAR1 in non-neurons. qRT-PCR analysis confirmed the exclusive and progressive increase in UBE3A-ATS in differentiating LUHMES neurons, validating their use for studying UBE3A silencing. Genome-wide transcriptome analyses revealed changes to 11 834 genes during neuronal differentiation, including the upregulation of most genes within the 15q11-q13 locus. To identify dynamic changes in chromatin loops linked to transcriptional activity, we performed a HiChIP validated by 4C, which identified two neuron-specific CTCF loops between MAGEL2-SNRPN and PWAR1-UBE3A. To determine if allele-specific differentially methylated regions (DMR) may be associated with CTCF loop anchors, whole genome long-read nanopore sequencing was performed. We identified a paternally hypomethylated DMR near the SNRPN upstream loop anchor exclusive to neurons and a paternally hypermethylated DMR near the PWAR1 CTCF anchor exclusive to undifferentiated cells, consistent with increases in neuronal transcription. Additionally, DMRs near CTCF loop anchors were observed in both cell types, indicative of allele-specific differences in chromatin loops regulating imprinted transcription. These results provide an integrated view of the 15q11-q13 epigenetic landscape during LUHMES neuronal differentiation, underscoring the complex interplay of transcription, chromatin looping, and DNA methylation. They also provide insights for future therapeutic approaches for AS and PWS.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>39045627</pmid><doi>10.1093/hmg/ddae111</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6292-655X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-6906 |
ispartof | Human molecular genetics, 2024-09, Vol.33 (19), p.1711-1725 |
issn | 0964-6906 1460-2083 1460-2083 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11413648 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE |
subjects | Alleles Angelman Syndrome - genetics Angelman Syndrome - pathology CCCTC-Binding Factor - genetics CCCTC-Binding Factor - metabolism Cell Differentiation - genetics Cell Line Chromosomes, Human, Pair 15 - genetics DNA Methylation - genetics Epigenome Genomic Imprinting - genetics Humans Neurons - metabolism Original Prader-Willi Syndrome - genetics Prader-Willi Syndrome - metabolism Prader-Willi Syndrome - pathology RNA, Long Noncoding - genetics snRNP Core Proteins - genetics snRNP Core Proteins - metabolism Transcriptome - genetics Ubiquitin-Protein Ligases - genetics Ubiquitin-Protein Ligases - metabolism |
title | Integration of CTCF loops, methylome, and transcriptome in differentiating LUHMES as a model for imprinting dynamics of the 15q11-q13 locus in human neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A09%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20CTCF%20loops,%20methylome,%20and%20transcriptome%20in%20differentiating%20LUHMES%20as%20a%20model%20for%20imprinting%20dynamics%20of%20the%2015q11-q13%20locus%20in%20human%20neurons&rft.jtitle=Human%20molecular%20genetics&rft.au=Gutierrez%20Fug%C3%B3n,%20Orangel%20J&rft.date=2024-09-19&rft.volume=33&rft.issue=19&rft.spage=1711&rft.epage=1725&rft.pages=1711-1725&rft.issn=0964-6906&rft.eissn=1460-2083&rft_id=info:doi/10.1093/hmg/ddae111&rft_dat=%3Cproquest_pubme%3E3084028565%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3084028565&rft_id=info:pmid/39045627&rft_oup_id=10.1093/hmg/ddae111&rfr_iscdi=true |