Deep learning-enabled fluorescence imaging for surgical guidance: in silico training for oral cancer depth quantification

Oral cancer surgery requires accurate margin delineation to balance complete resection with post-operative functionality. Current fluorescence imaging systems provide two-dimensional margin assessment yet fail to quantify tumor depth prior to resection. Harnessing structured light in combination wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical optics 2025-01, Vol.30 (Suppl 1), p.S13706
Hauptverfasser: Won, Natalie J, Bartling, Mandolin, La Macchia, Josephine, Markevich, Stefanie, Holtshousen, Scott, Jagota, Arjun, Negus, Christina, Najjar, Esmat, Wilson, Brian C, Irish, Jonathan C, Daly, Michael J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue Suppl 1
container_start_page S13706
container_title Journal of biomedical optics
container_volume 30
creator Won, Natalie J
Bartling, Mandolin
La Macchia, Josephine
Markevich, Stefanie
Holtshousen, Scott
Jagota, Arjun
Negus, Christina
Najjar, Esmat
Wilson, Brian C
Irish, Jonathan C
Daly, Michael J
description Oral cancer surgery requires accurate margin delineation to balance complete resection with post-operative functionality. Current fluorescence imaging systems provide two-dimensional margin assessment yet fail to quantify tumor depth prior to resection. Harnessing structured light in combination with deep learning (DL) may provide near real-time three-dimensional margin detection. A DL-enabled fluorescence spatial frequency domain imaging (SFDI) system trained with tumor models was developed to quantify the depth of oral tumors. A convolutional neural network was designed to produce tumor depth and concentration maps from SFDI images. Three representations of oral cancer lesions were developed to train the DL architecture: cylinders, spherical harmonics, and composite spherical harmonics (CSHs). Each model was validated with SFDI images of patient-derived tongue tumors, and the CSH model was further validated with optical phantoms. The performance of the CSH model was superior when presented with patient-derived tumors ( ). The CSH model could predict depth and concentration within 0.4 mm and , respectively, for tumors with depths less than 10 mm. A DL-enabled SFDI system trained with CSH demonstrates promise in defining the deep margins of oral tumors.
doi_str_mv 10.1117/1.JBO.30.S1.S13706
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11408754</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3106735289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1996-1eba211b762b4140d9ac3333784330dc7ab225072b690aadfe95d2d7f38b1c513</originalsourceid><addsrcrecordid>eNpVUUtPHSEUJk0b33-gi4ZlN3PlwAwMbky1amtMXKhrwgAz0nDhCjNN_PfFXDWVkHCS73HO4UPoK5AVAIhjWF2f3a4YWd1BvUwQ_gntQcdJQ2kPn2tNetYwzvtdtF_KH0JIzyXfQbtMUtkJ1u6h55_ObXBwOkcfp8ZFPQRn8RiWlF0xLhqH_VpPFcRjyrgsefJGBzwt3uqKnmAfcfHBm4TnrH18Y6ZcWeaFkrF1m_kRPy06zn6s8tmneIi-jDoUd_T6HqCHy4v781_Nze3V7_MfN40BKXkDbtAUYBCcDi20xEptWD2ibxkj1gg9UNoRQQcuidZ2dLKz1IqR9QOYDtgBOt36bpZh7WxdqY4Z1CbXtfKzStqrj0j0j2pKfxXUbr3o2urw_dUhp6fFlVmtff2aEHR0aSmKAeGCdbSXlUq3VJNTKdmN732AqJfQFKgammJE3YHahlZF3_6f8F3ylhL7BwrKlfo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106735289</pqid></control><display><type>article</type><title>Deep learning-enabled fluorescence imaging for surgical guidance: in silico training for oral cancer depth quantification</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ProQuest Central UK/Ireland</source><source>PubMed Central</source><source>ProQuest Central</source><creator>Won, Natalie J ; Bartling, Mandolin ; La Macchia, Josephine ; Markevich, Stefanie ; Holtshousen, Scott ; Jagota, Arjun ; Negus, Christina ; Najjar, Esmat ; Wilson, Brian C ; Irish, Jonathan C ; Daly, Michael J</creator><creatorcontrib>Won, Natalie J ; Bartling, Mandolin ; La Macchia, Josephine ; Markevich, Stefanie ; Holtshousen, Scott ; Jagota, Arjun ; Negus, Christina ; Najjar, Esmat ; Wilson, Brian C ; Irish, Jonathan C ; Daly, Michael J</creatorcontrib><description>Oral cancer surgery requires accurate margin delineation to balance complete resection with post-operative functionality. Current fluorescence imaging systems provide two-dimensional margin assessment yet fail to quantify tumor depth prior to resection. Harnessing structured light in combination with deep learning (DL) may provide near real-time three-dimensional margin detection. A DL-enabled fluorescence spatial frequency domain imaging (SFDI) system trained with tumor models was developed to quantify the depth of oral tumors. A convolutional neural network was designed to produce tumor depth and concentration maps from SFDI images. Three representations of oral cancer lesions were developed to train the DL architecture: cylinders, spherical harmonics, and composite spherical harmonics (CSHs). Each model was validated with SFDI images of patient-derived tongue tumors, and the CSH model was further validated with optical phantoms. The performance of the CSH model was superior when presented with patient-derived tumors ( ). The CSH model could predict depth and concentration within 0.4 mm and , respectively, for tumors with depths less than 10 mm. A DL-enabled SFDI system trained with CSH demonstrates promise in defining the deep margins of oral tumors.</description><identifier>ISSN: 1083-3668</identifier><identifier>ISSN: 1560-2281</identifier><identifier>EISSN: 1560-2281</identifier><identifier>DOI: 10.1117/1.JBO.30.S1.S13706</identifier><identifier>PMID: 39295734</identifier><language>eng</language><publisher>United States: Society of Photo-Optical Instrumentation Engineers</publisher><subject>Computer Simulation ; Deep Learning ; Humans ; Image Processing, Computer-Assisted - methods ; Margins of Excision ; Mouth Neoplasms - diagnostic imaging ; Mouth Neoplasms - pathology ; Mouth Neoplasms - surgery ; Neural Networks, Computer ; Optical Imaging - methods ; Phantoms, Imaging ; Special Issue on Molecular Guided Surgery ; Surgery, Computer-Assisted - methods</subject><ispartof>Journal of biomedical optics, 2025-01, Vol.30 (Suppl 1), p.S13706</ispartof><rights>2024 The Authors.</rights><rights>2024 The Authors 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1996-1eba211b762b4140d9ac3333784330dc7ab225072b690aadfe95d2d7f38b1c513</cites><orcidid>0000-0001-5543-666X ; 0000-0002-2217-4146</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11408754/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11408754/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,33726,53772,53774,64366</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39295734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Won, Natalie J</creatorcontrib><creatorcontrib>Bartling, Mandolin</creatorcontrib><creatorcontrib>La Macchia, Josephine</creatorcontrib><creatorcontrib>Markevich, Stefanie</creatorcontrib><creatorcontrib>Holtshousen, Scott</creatorcontrib><creatorcontrib>Jagota, Arjun</creatorcontrib><creatorcontrib>Negus, Christina</creatorcontrib><creatorcontrib>Najjar, Esmat</creatorcontrib><creatorcontrib>Wilson, Brian C</creatorcontrib><creatorcontrib>Irish, Jonathan C</creatorcontrib><creatorcontrib>Daly, Michael J</creatorcontrib><title>Deep learning-enabled fluorescence imaging for surgical guidance: in silico training for oral cancer depth quantification</title><title>Journal of biomedical optics</title><addtitle>J Biomed Opt</addtitle><description>Oral cancer surgery requires accurate margin delineation to balance complete resection with post-operative functionality. Current fluorescence imaging systems provide two-dimensional margin assessment yet fail to quantify tumor depth prior to resection. Harnessing structured light in combination with deep learning (DL) may provide near real-time three-dimensional margin detection. A DL-enabled fluorescence spatial frequency domain imaging (SFDI) system trained with tumor models was developed to quantify the depth of oral tumors. A convolutional neural network was designed to produce tumor depth and concentration maps from SFDI images. Three representations of oral cancer lesions were developed to train the DL architecture: cylinders, spherical harmonics, and composite spherical harmonics (CSHs). Each model was validated with SFDI images of patient-derived tongue tumors, and the CSH model was further validated with optical phantoms. The performance of the CSH model was superior when presented with patient-derived tumors ( ). The CSH model could predict depth and concentration within 0.4 mm and , respectively, for tumors with depths less than 10 mm. A DL-enabled SFDI system trained with CSH demonstrates promise in defining the deep margins of oral tumors.</description><subject>Computer Simulation</subject><subject>Deep Learning</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Margins of Excision</subject><subject>Mouth Neoplasms - diagnostic imaging</subject><subject>Mouth Neoplasms - pathology</subject><subject>Mouth Neoplasms - surgery</subject><subject>Neural Networks, Computer</subject><subject>Optical Imaging - methods</subject><subject>Phantoms, Imaging</subject><subject>Special Issue on Molecular Guided Surgery</subject><subject>Surgery, Computer-Assisted - methods</subject><issn>1083-3668</issn><issn>1560-2281</issn><issn>1560-2281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUUtPHSEUJk0b33-gi4ZlN3PlwAwMbky1amtMXKhrwgAz0nDhCjNN_PfFXDWVkHCS73HO4UPoK5AVAIhjWF2f3a4YWd1BvUwQ_gntQcdJQ2kPn2tNetYwzvtdtF_KH0JIzyXfQbtMUtkJ1u6h55_ObXBwOkcfp8ZFPQRn8RiWlF0xLhqH_VpPFcRjyrgsefJGBzwt3uqKnmAfcfHBm4TnrH18Y6ZcWeaFkrF1m_kRPy06zn6s8tmneIi-jDoUd_T6HqCHy4v781_Nze3V7_MfN40BKXkDbtAUYBCcDi20xEptWD2ibxkj1gg9UNoRQQcuidZ2dLKz1IqR9QOYDtgBOt36bpZh7WxdqY4Z1CbXtfKzStqrj0j0j2pKfxXUbr3o2urw_dUhp6fFlVmtff2aEHR0aSmKAeGCdbSXlUq3VJNTKdmN732AqJfQFKgammJE3YHahlZF3_6f8F3ylhL7BwrKlfo</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Won, Natalie J</creator><creator>Bartling, Mandolin</creator><creator>La Macchia, Josephine</creator><creator>Markevich, Stefanie</creator><creator>Holtshousen, Scott</creator><creator>Jagota, Arjun</creator><creator>Negus, Christina</creator><creator>Najjar, Esmat</creator><creator>Wilson, Brian C</creator><creator>Irish, Jonathan C</creator><creator>Daly, Michael J</creator><general>Society of Photo-Optical Instrumentation Engineers</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5543-666X</orcidid><orcidid>https://orcid.org/0000-0002-2217-4146</orcidid></search><sort><creationdate>202501</creationdate><title>Deep learning-enabled fluorescence imaging for surgical guidance: in silico training for oral cancer depth quantification</title><author>Won, Natalie J ; Bartling, Mandolin ; La Macchia, Josephine ; Markevich, Stefanie ; Holtshousen, Scott ; Jagota, Arjun ; Negus, Christina ; Najjar, Esmat ; Wilson, Brian C ; Irish, Jonathan C ; Daly, Michael J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1996-1eba211b762b4140d9ac3333784330dc7ab225072b690aadfe95d2d7f38b1c513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Computer Simulation</topic><topic>Deep Learning</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Margins of Excision</topic><topic>Mouth Neoplasms - diagnostic imaging</topic><topic>Mouth Neoplasms - pathology</topic><topic>Mouth Neoplasms - surgery</topic><topic>Neural Networks, Computer</topic><topic>Optical Imaging - methods</topic><topic>Phantoms, Imaging</topic><topic>Special Issue on Molecular Guided Surgery</topic><topic>Surgery, Computer-Assisted - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Won, Natalie J</creatorcontrib><creatorcontrib>Bartling, Mandolin</creatorcontrib><creatorcontrib>La Macchia, Josephine</creatorcontrib><creatorcontrib>Markevich, Stefanie</creatorcontrib><creatorcontrib>Holtshousen, Scott</creatorcontrib><creatorcontrib>Jagota, Arjun</creatorcontrib><creatorcontrib>Negus, Christina</creatorcontrib><creatorcontrib>Najjar, Esmat</creatorcontrib><creatorcontrib>Wilson, Brian C</creatorcontrib><creatorcontrib>Irish, Jonathan C</creatorcontrib><creatorcontrib>Daly, Michael J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biomedical optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Won, Natalie J</au><au>Bartling, Mandolin</au><au>La Macchia, Josephine</au><au>Markevich, Stefanie</au><au>Holtshousen, Scott</au><au>Jagota, Arjun</au><au>Negus, Christina</au><au>Najjar, Esmat</au><au>Wilson, Brian C</au><au>Irish, Jonathan C</au><au>Daly, Michael J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning-enabled fluorescence imaging for surgical guidance: in silico training for oral cancer depth quantification</atitle><jtitle>Journal of biomedical optics</jtitle><addtitle>J Biomed Opt</addtitle><date>2025-01</date><risdate>2025</risdate><volume>30</volume><issue>Suppl 1</issue><spage>S13706</spage><pages>S13706-</pages><issn>1083-3668</issn><issn>1560-2281</issn><eissn>1560-2281</eissn><abstract>Oral cancer surgery requires accurate margin delineation to balance complete resection with post-operative functionality. Current fluorescence imaging systems provide two-dimensional margin assessment yet fail to quantify tumor depth prior to resection. Harnessing structured light in combination with deep learning (DL) may provide near real-time three-dimensional margin detection. A DL-enabled fluorescence spatial frequency domain imaging (SFDI) system trained with tumor models was developed to quantify the depth of oral tumors. A convolutional neural network was designed to produce tumor depth and concentration maps from SFDI images. Three representations of oral cancer lesions were developed to train the DL architecture: cylinders, spherical harmonics, and composite spherical harmonics (CSHs). Each model was validated with SFDI images of patient-derived tongue tumors, and the CSH model was further validated with optical phantoms. The performance of the CSH model was superior when presented with patient-derived tumors ( ). The CSH model could predict depth and concentration within 0.4 mm and , respectively, for tumors with depths less than 10 mm. A DL-enabled SFDI system trained with CSH demonstrates promise in defining the deep margins of oral tumors.</abstract><cop>United States</cop><pub>Society of Photo-Optical Instrumentation Engineers</pub><pmid>39295734</pmid><doi>10.1117/1.JBO.30.S1.S13706</doi><orcidid>https://orcid.org/0000-0001-5543-666X</orcidid><orcidid>https://orcid.org/0000-0002-2217-4146</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1083-3668
ispartof Journal of biomedical optics, 2025-01, Vol.30 (Suppl 1), p.S13706
issn 1083-3668
1560-2281
1560-2281
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11408754
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ProQuest Central UK/Ireland; PubMed Central; ProQuest Central
subjects Computer Simulation
Deep Learning
Humans
Image Processing, Computer-Assisted - methods
Margins of Excision
Mouth Neoplasms - diagnostic imaging
Mouth Neoplasms - pathology
Mouth Neoplasms - surgery
Neural Networks, Computer
Optical Imaging - methods
Phantoms, Imaging
Special Issue on Molecular Guided Surgery
Surgery, Computer-Assisted - methods
title Deep learning-enabled fluorescence imaging for surgical guidance: in silico training for oral cancer depth quantification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A27%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning-enabled%20fluorescence%20imaging%20for%20surgical%20guidance:%20in%20silico%20training%20for%20oral%20cancer%20depth%20quantification&rft.jtitle=Journal%20of%20biomedical%20optics&rft.au=Won,%20Natalie%20J&rft.date=2025-01&rft.volume=30&rft.issue=Suppl%201&rft.spage=S13706&rft.pages=S13706-&rft.issn=1083-3668&rft.eissn=1560-2281&rft_id=info:doi/10.1117/1.JBO.30.S1.S13706&rft_dat=%3Cproquest_pubme%3E3106735289%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3106735289&rft_id=info:pmid/39295734&rfr_iscdi=true