A distribution-free and analytic method for power and sample size calculation in single-cell differential expression

Differential expression analysis in single-cell transcriptomics unveils cell type-specific responses to various treatments or biological conditions. To ensure the robustness and reliability of the analysis, it is essential to have a solid experimental design with ample statistical power and sample s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2024-09, Vol.40 (9)
Hauptverfasser: Hsu, Chih-Yuan, Liu, Qi, Shyr, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Bioinformatics (Oxford, England)
container_volume 40
creator Hsu, Chih-Yuan
Liu, Qi
Shyr, Yu
description Differential expression analysis in single-cell transcriptomics unveils cell type-specific responses to various treatments or biological conditions. To ensure the robustness and reliability of the analysis, it is essential to have a solid experimental design with ample statistical power and sample size. However, existing methods for power and sample size calculation often assume a specific distribution for single-cell transcriptomics data, potentially deviating from the true data distribution. Moreover, they commonly overlook cell-cell correlations within individual samples, posing challenges in accurately representing biological phenomena. Additionally, due to the complexity of deriving an analytic formula, most methods employ time-consuming simulation-based strategies. We propose an analytic-based method named scPS for calculating power and sample sizes based on generalized estimating equations. scPS stands out by making no assumptions about the data distribution and considering cell-cell correlations within individual samples. scPS is a rapid and powerful approach for designing experiments in single-cell differential expression analysis. scPS is freely available at https://github.com/cyhsuTN/scPS and Zenodo https://zenodo.org/records/13375996.
doi_str_mv 10.1093/bioinformatics/btae540
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11407695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3100914470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-7071e275ee4e6bebda70e766ac1e2fc0e03080515705fc735e1fc33ff02efce13</originalsourceid><addsrcrecordid>eNpVUU1P3DAQtSoqoMBfQD5ySXccxzE5oRWCthJSL-3ZcpwxuHLiYDu0219fL2zR7sEaa-a9Nx-PkEsGnxl0fNW74CYb4qizM2nVZ42igQ_klPFWVs01Y0d7_xPyKaVfACBAtMfkhHc1Z8DbU5LXdHApR9cv2YWpshGR6mkoT_tN0aYj5qcw0NKLzuE3xtdq0uPskSb3F6nR3ixeb-nUTSU3PXqsDHpfpK3FiFN22lP8M0dMqcDOyUerfcKLXTwjP-_vftx-rR6-f_l2u36oTN3VuZIgGdZSIDbY9tgPWgLKttWmpK0BBA7XIJiQIKyRXCCzhnNroUZrkPEzcvOmOy_9iIMpg0Tt1RzdqONGBe3UYWVyT-oxvCjGGpBtJ4rC1U4hhucFU1ajS9vV9IRhSapcETrWNBIKtH2DmhhSimjf-zBQW8_UoWdq51khXu5P-U77bxL_B4tPnQo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100914470</pqid></control><display><type>article</type><title>A distribution-free and analytic method for power and sample size calculation in single-cell differential expression</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Hsu, Chih-Yuan ; Liu, Qi ; Shyr, Yu</creator><contributor>Mathelier, Anthony</contributor><creatorcontrib>Hsu, Chih-Yuan ; Liu, Qi ; Shyr, Yu ; Mathelier, Anthony</creatorcontrib><description>Differential expression analysis in single-cell transcriptomics unveils cell type-specific responses to various treatments or biological conditions. To ensure the robustness and reliability of the analysis, it is essential to have a solid experimental design with ample statistical power and sample size. However, existing methods for power and sample size calculation often assume a specific distribution for single-cell transcriptomics data, potentially deviating from the true data distribution. Moreover, they commonly overlook cell-cell correlations within individual samples, posing challenges in accurately representing biological phenomena. Additionally, due to the complexity of deriving an analytic formula, most methods employ time-consuming simulation-based strategies. We propose an analytic-based method named scPS for calculating power and sample sizes based on generalized estimating equations. scPS stands out by making no assumptions about the data distribution and considering cell-cell correlations within individual samples. scPS is a rapid and powerful approach for designing experiments in single-cell differential expression analysis. scPS is freely available at https://github.com/cyhsuTN/scPS and Zenodo https://zenodo.org/records/13375996.</description><identifier>ISSN: 1367-4811</identifier><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btae540</identifier><identifier>PMID: 39231036</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Gene Expression Profiling - methods ; Humans ; Original Paper ; Sample Size ; Single-Cell Analysis - methods ; Software ; Transcriptome</subject><ispartof>Bioinformatics (Oxford, England), 2024-09, Vol.40 (9)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press.</rights><rights>The Author(s) 2024. Published by Oxford University Press. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c292t-7071e275ee4e6bebda70e766ac1e2fc0e03080515705fc735e1fc33ff02efce13</cites><orcidid>0000-0001-8325-2112 ; 0000-0001-8892-7078</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407695/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11407695/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39231036$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mathelier, Anthony</contributor><creatorcontrib>Hsu, Chih-Yuan</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Shyr, Yu</creatorcontrib><title>A distribution-free and analytic method for power and sample size calculation in single-cell differential expression</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Differential expression analysis in single-cell transcriptomics unveils cell type-specific responses to various treatments or biological conditions. To ensure the robustness and reliability of the analysis, it is essential to have a solid experimental design with ample statistical power and sample size. However, existing methods for power and sample size calculation often assume a specific distribution for single-cell transcriptomics data, potentially deviating from the true data distribution. Moreover, they commonly overlook cell-cell correlations within individual samples, posing challenges in accurately representing biological phenomena. Additionally, due to the complexity of deriving an analytic formula, most methods employ time-consuming simulation-based strategies. We propose an analytic-based method named scPS for calculating power and sample sizes based on generalized estimating equations. scPS stands out by making no assumptions about the data distribution and considering cell-cell correlations within individual samples. scPS is a rapid and powerful approach for designing experiments in single-cell differential expression analysis. scPS is freely available at https://github.com/cyhsuTN/scPS and Zenodo https://zenodo.org/records/13375996.</description><subject>Algorithms</subject><subject>Gene Expression Profiling - methods</subject><subject>Humans</subject><subject>Original Paper</subject><subject>Sample Size</subject><subject>Single-Cell Analysis - methods</subject><subject>Software</subject><subject>Transcriptome</subject><issn>1367-4811</issn><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1P3DAQtSoqoMBfQD5ySXccxzE5oRWCthJSL-3ZcpwxuHLiYDu0219fL2zR7sEaa-a9Nx-PkEsGnxl0fNW74CYb4qizM2nVZ42igQ_klPFWVs01Y0d7_xPyKaVfACBAtMfkhHc1Z8DbU5LXdHApR9cv2YWpshGR6mkoT_tN0aYj5qcw0NKLzuE3xtdq0uPskSb3F6nR3ixeb-nUTSU3PXqsDHpfpK3FiFN22lP8M0dMqcDOyUerfcKLXTwjP-_vftx-rR6-f_l2u36oTN3VuZIgGdZSIDbY9tgPWgLKttWmpK0BBA7XIJiQIKyRXCCzhnNroUZrkPEzcvOmOy_9iIMpg0Tt1RzdqONGBe3UYWVyT-oxvCjGGpBtJ4rC1U4hhucFU1ajS9vV9IRhSapcETrWNBIKtH2DmhhSimjf-zBQW8_UoWdq51khXu5P-U77bxL_B4tPnQo</recordid><startdate>20240902</startdate><enddate>20240902</enddate><creator>Hsu, Chih-Yuan</creator><creator>Liu, Qi</creator><creator>Shyr, Yu</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8325-2112</orcidid><orcidid>https://orcid.org/0000-0001-8892-7078</orcidid></search><sort><creationdate>20240902</creationdate><title>A distribution-free and analytic method for power and sample size calculation in single-cell differential expression</title><author>Hsu, Chih-Yuan ; Liu, Qi ; Shyr, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-7071e275ee4e6bebda70e766ac1e2fc0e03080515705fc735e1fc33ff02efce13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Gene Expression Profiling - methods</topic><topic>Humans</topic><topic>Original Paper</topic><topic>Sample Size</topic><topic>Single-Cell Analysis - methods</topic><topic>Software</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Chih-Yuan</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Shyr, Yu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Chih-Yuan</au><au>Liu, Qi</au><au>Shyr, Yu</au><au>Mathelier, Anthony</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A distribution-free and analytic method for power and sample size calculation in single-cell differential expression</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2024-09-02</date><risdate>2024</risdate><volume>40</volume><issue>9</issue><issn>1367-4811</issn><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Differential expression analysis in single-cell transcriptomics unveils cell type-specific responses to various treatments or biological conditions. To ensure the robustness and reliability of the analysis, it is essential to have a solid experimental design with ample statistical power and sample size. However, existing methods for power and sample size calculation often assume a specific distribution for single-cell transcriptomics data, potentially deviating from the true data distribution. Moreover, they commonly overlook cell-cell correlations within individual samples, posing challenges in accurately representing biological phenomena. Additionally, due to the complexity of deriving an analytic formula, most methods employ time-consuming simulation-based strategies. We propose an analytic-based method named scPS for calculating power and sample sizes based on generalized estimating equations. scPS stands out by making no assumptions about the data distribution and considering cell-cell correlations within individual samples. scPS is a rapid and powerful approach for designing experiments in single-cell differential expression analysis. scPS is freely available at https://github.com/cyhsuTN/scPS and Zenodo https://zenodo.org/records/13375996.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>39231036</pmid><doi>10.1093/bioinformatics/btae540</doi><orcidid>https://orcid.org/0000-0001-8325-2112</orcidid><orcidid>https://orcid.org/0000-0001-8892-7078</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4811
ispartof Bioinformatics (Oxford, England), 2024-09, Vol.40 (9)
issn 1367-4811
1367-4803
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11407695
source MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Gene Expression Profiling - methods
Humans
Original Paper
Sample Size
Single-Cell Analysis - methods
Software
Transcriptome
title A distribution-free and analytic method for power and sample size calculation in single-cell differential expression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20distribution-free%20and%20analytic%20method%20for%20power%20and%20sample%20size%20calculation%20in%20single-cell%20differential%20expression&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Hsu,%20Chih-Yuan&rft.date=2024-09-02&rft.volume=40&rft.issue=9&rft.issn=1367-4811&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btae540&rft_dat=%3Cproquest_pubme%3E3100914470%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100914470&rft_id=info:pmid/39231036&rfr_iscdi=true