Temporal epigenome modulation enables efficient bacteriophage engineering and functional analysis of phage DNA modifications
Lytic bacteriophages hold substantial promise in medical and biotechnological applications. Therefore a comprehensive understanding of phage infection mechanisms is crucial. CRISPR-Cas systems offer a way to explore these mechanisms via site-specific phage mutagenesis. However, phages can resist Cas...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2024-09, Vol.20 (9), p.e1011384 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | e1011384 |
container_title | PLoS genetics |
container_volume | 20 |
creator | Pozhydaieva, Nadiia Billau, Franziska Anna Wolfram-Schauerte, Maik Ramírez Rojas, Adán Andrés Paczia, Nicole Schindler, Daniel Höfer, Katharina |
description | Lytic bacteriophages hold substantial promise in medical and biotechnological applications. Therefore a comprehensive understanding of phage infection mechanisms is crucial. CRISPR-Cas systems offer a way to explore these mechanisms via site-specific phage mutagenesis. However, phages can resist Cas-mediated cleavage through extensive DNA modifications like cytosine glycosylation, hindering mutagenesis efficiency. Our study utilizes the eukaryotic enzyme NgTET to temporarily reduce phage DNA modifications, facilitating Cas nuclease cleavage and enhancing mutagenesis efficiency. This approach enables precise DNA targeting and seamless point mutation integration, exemplified by deactivating specific ADP-ribosyltransferases crucial for phage infection. Furthermore, by temporally removing DNA modifications, we elucidated the effects of these modifications on T4 phage infections without necessitating gene deletions. Our results present a strategy enabling the investigation of phage epigenome functions and streamlining the engineering of phages with cytosine DNA modifications. The described temporal modulation of the phage epigenome is valuable for synthetic biology and fundamental research to comprehend phage infection mechanisms through the generation of mutants. |
doi_str_mv | 10.1371/journal.pgen.1011384 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11404850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A811451970</galeid><sourcerecordid>A811451970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-736b427e43808fbc1852b0c08ccb23839a84cffac7f7280e4e61bd1074e7d463</originalsourceid><addsrcrecordid>eNqVkl2L1DAYRoMo7rr6D0QKgujFjEmTNumVDOvXwrILOngb0vRNJ0ua1KYVF_zxpjvjMgUvlELaJuc5kORB6DnBa0I5eXsTpsErt-5b8GuCCaGCPUCnpCjoijPMHh59n6AnMd5gTAtR8cfohFY5JaQqT9GvLXR9GJTLoLfJFDrIutBMTo02-Ay8qh3EDIyx2oIfs1rpEQYb-p1qIa231kP6922mfJOZyes5mHwqDbfRxiyYbA-_v9rMbptUd_b4FD0yykV4dnifoe3HD9vzz6vL608X55vLlWYsH1ecljXLOTAqsDC1JqLIa6yx0LrOqaCVEkwbozQ3PBcYGJSkbgjmDHjDSnqG3u21_VR30Oi0jbRh2Q-2U8OtDMrK5Yq3O9mGH5KQdHaiwMnw-mAYwvcJ4ig7GzU4pzyEKUpKMK4IK0WV0Jd7tFUOpPUmJKWecbkRSViQis_C9V-o9DTQWR08GJvmF4E3i0BiRvg5tmqKUV58_fIf7NW_s9ffluyrI3YHyo27GNx0d5dLkO1BPYQYBzD3Z02wnMsrD-WVc3nlobwp9uL4nu5Df9pKfwNrwu0r</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100914689</pqid></control><display><type>article</type><title>Temporal epigenome modulation enables efficient bacteriophage engineering and functional analysis of phage DNA modifications</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Pozhydaieva, Nadiia ; Billau, Franziska Anna ; Wolfram-Schauerte, Maik ; Ramírez Rojas, Adán Andrés ; Paczia, Nicole ; Schindler, Daniel ; Höfer, Katharina</creator><contributor>Dalia, Ankur B.</contributor><creatorcontrib>Pozhydaieva, Nadiia ; Billau, Franziska Anna ; Wolfram-Schauerte, Maik ; Ramírez Rojas, Adán Andrés ; Paczia, Nicole ; Schindler, Daniel ; Höfer, Katharina ; Dalia, Ankur B.</creatorcontrib><description>Lytic bacteriophages hold substantial promise in medical and biotechnological applications. Therefore a comprehensive understanding of phage infection mechanisms is crucial. CRISPR-Cas systems offer a way to explore these mechanisms via site-specific phage mutagenesis. However, phages can resist Cas-mediated cleavage through extensive DNA modifications like cytosine glycosylation, hindering mutagenesis efficiency. Our study utilizes the eukaryotic enzyme NgTET to temporarily reduce phage DNA modifications, facilitating Cas nuclease cleavage and enhancing mutagenesis efficiency. This approach enables precise DNA targeting and seamless point mutation integration, exemplified by deactivating specific ADP-ribosyltransferases crucial for phage infection. Furthermore, by temporally removing DNA modifications, we elucidated the effects of these modifications on T4 phage infections without necessitating gene deletions. Our results present a strategy enabling the investigation of phage epigenome functions and streamlining the engineering of phages with cytosine DNA modifications. The described temporal modulation of the phage epigenome is valuable for synthetic biology and fundamental research to comprehend phage infection mechanisms through the generation of mutants.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1011384</identifier><identifier>PMID: 39231196</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Bacteriophage T4 - genetics ; Bacteriophages ; Bacteriophages - genetics ; Biology and Life Sciences ; CRISPR-Cas Systems ; DNA ; DNA, Viral - genetics ; Engineering and Technology ; Enzymes ; Epigenome ; Escherichia coli - genetics ; Escherichia coli - virology ; Gene mutations ; Genetic aspects ; Genetic Engineering - methods ; Genome, Viral ; Genomes ; Health aspects ; Identification and classification ; Infection ; Medical research ; Medicine and Health Sciences ; Medicine, Experimental ; Mutagenesis, Site-Directed - methods ; Research and Analysis Methods</subject><ispartof>PLoS genetics, 2024-09, Vol.20 (9), p.e1011384</ispartof><rights>Copyright: © 2024 Pozhydaieva et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Pozhydaieva et al 2024 Pozhydaieva et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c442t-736b427e43808fbc1852b0c08ccb23839a84cffac7f7280e4e61bd1074e7d463</cites><orcidid>0000-0001-6988-2775 ; 0000-0003-2468-4235 ; 0000-0002-7472-9887 ; 0009-0003-3257-456X ; 0000-0001-7423-6540</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404850/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404850/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2926,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39231196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Dalia, Ankur B.</contributor><creatorcontrib>Pozhydaieva, Nadiia</creatorcontrib><creatorcontrib>Billau, Franziska Anna</creatorcontrib><creatorcontrib>Wolfram-Schauerte, Maik</creatorcontrib><creatorcontrib>Ramírez Rojas, Adán Andrés</creatorcontrib><creatorcontrib>Paczia, Nicole</creatorcontrib><creatorcontrib>Schindler, Daniel</creatorcontrib><creatorcontrib>Höfer, Katharina</creatorcontrib><title>Temporal epigenome modulation enables efficient bacteriophage engineering and functional analysis of phage DNA modifications</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Lytic bacteriophages hold substantial promise in medical and biotechnological applications. Therefore a comprehensive understanding of phage infection mechanisms is crucial. CRISPR-Cas systems offer a way to explore these mechanisms via site-specific phage mutagenesis. However, phages can resist Cas-mediated cleavage through extensive DNA modifications like cytosine glycosylation, hindering mutagenesis efficiency. Our study utilizes the eukaryotic enzyme NgTET to temporarily reduce phage DNA modifications, facilitating Cas nuclease cleavage and enhancing mutagenesis efficiency. This approach enables precise DNA targeting and seamless point mutation integration, exemplified by deactivating specific ADP-ribosyltransferases crucial for phage infection. Furthermore, by temporally removing DNA modifications, we elucidated the effects of these modifications on T4 phage infections without necessitating gene deletions. Our results present a strategy enabling the investigation of phage epigenome functions and streamlining the engineering of phages with cytosine DNA modifications. The described temporal modulation of the phage epigenome is valuable for synthetic biology and fundamental research to comprehend phage infection mechanisms through the generation of mutants.</description><subject>Analysis</subject><subject>Bacteriophage T4 - genetics</subject><subject>Bacteriophages</subject><subject>Bacteriophages - genetics</subject><subject>Biology and Life Sciences</subject><subject>CRISPR-Cas Systems</subject><subject>DNA</subject><subject>DNA, Viral - genetics</subject><subject>Engineering and Technology</subject><subject>Enzymes</subject><subject>Epigenome</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - virology</subject><subject>Gene mutations</subject><subject>Genetic aspects</subject><subject>Genetic Engineering - methods</subject><subject>Genome, Viral</subject><subject>Genomes</subject><subject>Health aspects</subject><subject>Identification and classification</subject><subject>Infection</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Medicine, Experimental</subject><subject>Mutagenesis, Site-Directed - methods</subject><subject>Research and Analysis Methods</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkl2L1DAYRoMo7rr6D0QKgujFjEmTNumVDOvXwrILOngb0vRNJ0ua1KYVF_zxpjvjMgUvlELaJuc5kORB6DnBa0I5eXsTpsErt-5b8GuCCaGCPUCnpCjoijPMHh59n6AnMd5gTAtR8cfohFY5JaQqT9GvLXR9GJTLoLfJFDrIutBMTo02-Ay8qh3EDIyx2oIfs1rpEQYb-p1qIa231kP6922mfJOZyes5mHwqDbfRxiyYbA-_v9rMbptUd_b4FD0yykV4dnifoe3HD9vzz6vL608X55vLlWYsH1ecljXLOTAqsDC1JqLIa6yx0LrOqaCVEkwbozQ3PBcYGJSkbgjmDHjDSnqG3u21_VR30Oi0jbRh2Q-2U8OtDMrK5Yq3O9mGH5KQdHaiwMnw-mAYwvcJ4ig7GzU4pzyEKUpKMK4IK0WV0Jd7tFUOpPUmJKWecbkRSViQis_C9V-o9DTQWR08GJvmF4E3i0BiRvg5tmqKUV58_fIf7NW_s9ffluyrI3YHyo27GNx0d5dLkO1BPYQYBzD3Z02wnMsrD-WVc3nlobwp9uL4nu5Df9pKfwNrwu0r</recordid><startdate>20240904</startdate><enddate>20240904</enddate><creator>Pozhydaieva, Nadiia</creator><creator>Billau, Franziska Anna</creator><creator>Wolfram-Schauerte, Maik</creator><creator>Ramírez Rojas, Adán Andrés</creator><creator>Paczia, Nicole</creator><creator>Schindler, Daniel</creator><creator>Höfer, Katharina</creator><general>Public Library of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6988-2775</orcidid><orcidid>https://orcid.org/0000-0003-2468-4235</orcidid><orcidid>https://orcid.org/0000-0002-7472-9887</orcidid><orcidid>https://orcid.org/0009-0003-3257-456X</orcidid><orcidid>https://orcid.org/0000-0001-7423-6540</orcidid></search><sort><creationdate>20240904</creationdate><title>Temporal epigenome modulation enables efficient bacteriophage engineering and functional analysis of phage DNA modifications</title><author>Pozhydaieva, Nadiia ; Billau, Franziska Anna ; Wolfram-Schauerte, Maik ; Ramírez Rojas, Adán Andrés ; Paczia, Nicole ; Schindler, Daniel ; Höfer, Katharina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-736b427e43808fbc1852b0c08ccb23839a84cffac7f7280e4e61bd1074e7d463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Bacteriophage T4 - genetics</topic><topic>Bacteriophages</topic><topic>Bacteriophages - genetics</topic><topic>Biology and Life Sciences</topic><topic>CRISPR-Cas Systems</topic><topic>DNA</topic><topic>DNA, Viral - genetics</topic><topic>Engineering and Technology</topic><topic>Enzymes</topic><topic>Epigenome</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - virology</topic><topic>Gene mutations</topic><topic>Genetic aspects</topic><topic>Genetic Engineering - methods</topic><topic>Genome, Viral</topic><topic>Genomes</topic><topic>Health aspects</topic><topic>Identification and classification</topic><topic>Infection</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Medicine, Experimental</topic><topic>Mutagenesis, Site-Directed - methods</topic><topic>Research and Analysis Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pozhydaieva, Nadiia</creatorcontrib><creatorcontrib>Billau, Franziska Anna</creatorcontrib><creatorcontrib>Wolfram-Schauerte, Maik</creatorcontrib><creatorcontrib>Ramírez Rojas, Adán Andrés</creatorcontrib><creatorcontrib>Paczia, Nicole</creatorcontrib><creatorcontrib>Schindler, Daniel</creatorcontrib><creatorcontrib>Höfer, Katharina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pozhydaieva, Nadiia</au><au>Billau, Franziska Anna</au><au>Wolfram-Schauerte, Maik</au><au>Ramírez Rojas, Adán Andrés</au><au>Paczia, Nicole</au><au>Schindler, Daniel</au><au>Höfer, Katharina</au><au>Dalia, Ankur B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal epigenome modulation enables efficient bacteriophage engineering and functional analysis of phage DNA modifications</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2024-09-04</date><risdate>2024</risdate><volume>20</volume><issue>9</issue><spage>e1011384</spage><pages>e1011384-</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Lytic bacteriophages hold substantial promise in medical and biotechnological applications. Therefore a comprehensive understanding of phage infection mechanisms is crucial. CRISPR-Cas systems offer a way to explore these mechanisms via site-specific phage mutagenesis. However, phages can resist Cas-mediated cleavage through extensive DNA modifications like cytosine glycosylation, hindering mutagenesis efficiency. Our study utilizes the eukaryotic enzyme NgTET to temporarily reduce phage DNA modifications, facilitating Cas nuclease cleavage and enhancing mutagenesis efficiency. This approach enables precise DNA targeting and seamless point mutation integration, exemplified by deactivating specific ADP-ribosyltransferases crucial for phage infection. Furthermore, by temporally removing DNA modifications, we elucidated the effects of these modifications on T4 phage infections without necessitating gene deletions. Our results present a strategy enabling the investigation of phage epigenome functions and streamlining the engineering of phages with cytosine DNA modifications. The described temporal modulation of the phage epigenome is valuable for synthetic biology and fundamental research to comprehend phage infection mechanisms through the generation of mutants.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39231196</pmid><doi>10.1371/journal.pgen.1011384</doi><tpages>e1011384</tpages><orcidid>https://orcid.org/0000-0001-6988-2775</orcidid><orcidid>https://orcid.org/0000-0003-2468-4235</orcidid><orcidid>https://orcid.org/0000-0002-7472-9887</orcidid><orcidid>https://orcid.org/0009-0003-3257-456X</orcidid><orcidid>https://orcid.org/0000-0001-7423-6540</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2024-09, Vol.20 (9), p.e1011384 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11404850 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Analysis Bacteriophage T4 - genetics Bacteriophages Bacteriophages - genetics Biology and Life Sciences CRISPR-Cas Systems DNA DNA, Viral - genetics Engineering and Technology Enzymes Epigenome Escherichia coli - genetics Escherichia coli - virology Gene mutations Genetic aspects Genetic Engineering - methods Genome, Viral Genomes Health aspects Identification and classification Infection Medical research Medicine and Health Sciences Medicine, Experimental Mutagenesis, Site-Directed - methods Research and Analysis Methods |
title | Temporal epigenome modulation enables efficient bacteriophage engineering and functional analysis of phage DNA modifications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A33%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20epigenome%20modulation%20enables%20efficient%20bacteriophage%20engineering%20and%20functional%20analysis%20of%20phage%20DNA%20modifications&rft.jtitle=PLoS%20genetics&rft.au=Pozhydaieva,%20Nadiia&rft.date=2024-09-04&rft.volume=20&rft.issue=9&rft.spage=e1011384&rft.pages=e1011384-&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1011384&rft_dat=%3Cgale_pubme%3EA811451970%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100914689&rft_id=info:pmid/39231196&rft_galeid=A811451970&rfr_iscdi=true |