Temporal epigenome modulation enables efficient bacteriophage engineering and functional analysis of phage DNA modifications

Lytic bacteriophages hold substantial promise in medical and biotechnological applications. Therefore a comprehensive understanding of phage infection mechanisms is crucial. CRISPR-Cas systems offer a way to explore these mechanisms via site-specific phage mutagenesis. However, phages can resist Cas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2024-09, Vol.20 (9), p.e1011384
Hauptverfasser: Pozhydaieva, Nadiia, Billau, Franziska Anna, Wolfram-Schauerte, Maik, Ramírez Rojas, Adán Andrés, Paczia, Nicole, Schindler, Daniel, Höfer, Katharina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page e1011384
container_title PLoS genetics
container_volume 20
creator Pozhydaieva, Nadiia
Billau, Franziska Anna
Wolfram-Schauerte, Maik
Ramírez Rojas, Adán Andrés
Paczia, Nicole
Schindler, Daniel
Höfer, Katharina
description Lytic bacteriophages hold substantial promise in medical and biotechnological applications. Therefore a comprehensive understanding of phage infection mechanisms is crucial. CRISPR-Cas systems offer a way to explore these mechanisms via site-specific phage mutagenesis. However, phages can resist Cas-mediated cleavage through extensive DNA modifications like cytosine glycosylation, hindering mutagenesis efficiency. Our study utilizes the eukaryotic enzyme NgTET to temporarily reduce phage DNA modifications, facilitating Cas nuclease cleavage and enhancing mutagenesis efficiency. This approach enables precise DNA targeting and seamless point mutation integration, exemplified by deactivating specific ADP-ribosyltransferases crucial for phage infection. Furthermore, by temporally removing DNA modifications, we elucidated the effects of these modifications on T4 phage infections without necessitating gene deletions. Our results present a strategy enabling the investigation of phage epigenome functions and streamlining the engineering of phages with cytosine DNA modifications. The described temporal modulation of the phage epigenome is valuable for synthetic biology and fundamental research to comprehend phage infection mechanisms through the generation of mutants.
doi_str_mv 10.1371/journal.pgen.1011384
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11404850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A811451970</galeid><sourcerecordid>A811451970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-736b427e43808fbc1852b0c08ccb23839a84cffac7f7280e4e61bd1074e7d463</originalsourceid><addsrcrecordid>eNqVkl2L1DAYRoMo7rr6D0QKgujFjEmTNumVDOvXwrILOngb0vRNJ0ua1KYVF_zxpjvjMgUvlELaJuc5kORB6DnBa0I5eXsTpsErt-5b8GuCCaGCPUCnpCjoijPMHh59n6AnMd5gTAtR8cfohFY5JaQqT9GvLXR9GJTLoLfJFDrIutBMTo02-Ay8qh3EDIyx2oIfs1rpEQYb-p1qIa231kP6922mfJOZyes5mHwqDbfRxiyYbA-_v9rMbptUd_b4FD0yykV4dnifoe3HD9vzz6vL608X55vLlWYsH1ecljXLOTAqsDC1JqLIa6yx0LrOqaCVEkwbozQ3PBcYGJSkbgjmDHjDSnqG3u21_VR30Oi0jbRh2Q-2U8OtDMrK5Yq3O9mGH5KQdHaiwMnw-mAYwvcJ4ig7GzU4pzyEKUpKMK4IK0WV0Jd7tFUOpPUmJKWecbkRSViQis_C9V-o9DTQWR08GJvmF4E3i0BiRvg5tmqKUV58_fIf7NW_s9ffluyrI3YHyo27GNx0d5dLkO1BPYQYBzD3Z02wnMsrD-WVc3nlobwp9uL4nu5Df9pKfwNrwu0r</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3100914689</pqid></control><display><type>article</type><title>Temporal epigenome modulation enables efficient bacteriophage engineering and functional analysis of phage DNA modifications</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Pozhydaieva, Nadiia ; Billau, Franziska Anna ; Wolfram-Schauerte, Maik ; Ramírez Rojas, Adán Andrés ; Paczia, Nicole ; Schindler, Daniel ; Höfer, Katharina</creator><contributor>Dalia, Ankur B.</contributor><creatorcontrib>Pozhydaieva, Nadiia ; Billau, Franziska Anna ; Wolfram-Schauerte, Maik ; Ramírez Rojas, Adán Andrés ; Paczia, Nicole ; Schindler, Daniel ; Höfer, Katharina ; Dalia, Ankur B.</creatorcontrib><description>Lytic bacteriophages hold substantial promise in medical and biotechnological applications. Therefore a comprehensive understanding of phage infection mechanisms is crucial. CRISPR-Cas systems offer a way to explore these mechanisms via site-specific phage mutagenesis. However, phages can resist Cas-mediated cleavage through extensive DNA modifications like cytosine glycosylation, hindering mutagenesis efficiency. Our study utilizes the eukaryotic enzyme NgTET to temporarily reduce phage DNA modifications, facilitating Cas nuclease cleavage and enhancing mutagenesis efficiency. This approach enables precise DNA targeting and seamless point mutation integration, exemplified by deactivating specific ADP-ribosyltransferases crucial for phage infection. Furthermore, by temporally removing DNA modifications, we elucidated the effects of these modifications on T4 phage infections without necessitating gene deletions. Our results present a strategy enabling the investigation of phage epigenome functions and streamlining the engineering of phages with cytosine DNA modifications. The described temporal modulation of the phage epigenome is valuable for synthetic biology and fundamental research to comprehend phage infection mechanisms through the generation of mutants.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1011384</identifier><identifier>PMID: 39231196</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Bacteriophage T4 - genetics ; Bacteriophages ; Bacteriophages - genetics ; Biology and Life Sciences ; CRISPR-Cas Systems ; DNA ; DNA, Viral - genetics ; Engineering and Technology ; Enzymes ; Epigenome ; Escherichia coli - genetics ; Escherichia coli - virology ; Gene mutations ; Genetic aspects ; Genetic Engineering - methods ; Genome, Viral ; Genomes ; Health aspects ; Identification and classification ; Infection ; Medical research ; Medicine and Health Sciences ; Medicine, Experimental ; Mutagenesis, Site-Directed - methods ; Research and Analysis Methods</subject><ispartof>PLoS genetics, 2024-09, Vol.20 (9), p.e1011384</ispartof><rights>Copyright: © 2024 Pozhydaieva et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.</rights><rights>COPYRIGHT 2024 Public Library of Science</rights><rights>2024 Pozhydaieva et al 2024 Pozhydaieva et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c442t-736b427e43808fbc1852b0c08ccb23839a84cffac7f7280e4e61bd1074e7d463</cites><orcidid>0000-0001-6988-2775 ; 0000-0003-2468-4235 ; 0000-0002-7472-9887 ; 0009-0003-3257-456X ; 0000-0001-7423-6540</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404850/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404850/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2926,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39231196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Dalia, Ankur B.</contributor><creatorcontrib>Pozhydaieva, Nadiia</creatorcontrib><creatorcontrib>Billau, Franziska Anna</creatorcontrib><creatorcontrib>Wolfram-Schauerte, Maik</creatorcontrib><creatorcontrib>Ramírez Rojas, Adán Andrés</creatorcontrib><creatorcontrib>Paczia, Nicole</creatorcontrib><creatorcontrib>Schindler, Daniel</creatorcontrib><creatorcontrib>Höfer, Katharina</creatorcontrib><title>Temporal epigenome modulation enables efficient bacteriophage engineering and functional analysis of phage DNA modifications</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Lytic bacteriophages hold substantial promise in medical and biotechnological applications. Therefore a comprehensive understanding of phage infection mechanisms is crucial. CRISPR-Cas systems offer a way to explore these mechanisms via site-specific phage mutagenesis. However, phages can resist Cas-mediated cleavage through extensive DNA modifications like cytosine glycosylation, hindering mutagenesis efficiency. Our study utilizes the eukaryotic enzyme NgTET to temporarily reduce phage DNA modifications, facilitating Cas nuclease cleavage and enhancing mutagenesis efficiency. This approach enables precise DNA targeting and seamless point mutation integration, exemplified by deactivating specific ADP-ribosyltransferases crucial for phage infection. Furthermore, by temporally removing DNA modifications, we elucidated the effects of these modifications on T4 phage infections without necessitating gene deletions. Our results present a strategy enabling the investigation of phage epigenome functions and streamlining the engineering of phages with cytosine DNA modifications. The described temporal modulation of the phage epigenome is valuable for synthetic biology and fundamental research to comprehend phage infection mechanisms through the generation of mutants.</description><subject>Analysis</subject><subject>Bacteriophage T4 - genetics</subject><subject>Bacteriophages</subject><subject>Bacteriophages - genetics</subject><subject>Biology and Life Sciences</subject><subject>CRISPR-Cas Systems</subject><subject>DNA</subject><subject>DNA, Viral - genetics</subject><subject>Engineering and Technology</subject><subject>Enzymes</subject><subject>Epigenome</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - virology</subject><subject>Gene mutations</subject><subject>Genetic aspects</subject><subject>Genetic Engineering - methods</subject><subject>Genome, Viral</subject><subject>Genomes</subject><subject>Health aspects</subject><subject>Identification and classification</subject><subject>Infection</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Medicine, Experimental</subject><subject>Mutagenesis, Site-Directed - methods</subject><subject>Research and Analysis Methods</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkl2L1DAYRoMo7rr6D0QKgujFjEmTNumVDOvXwrILOngb0vRNJ0ua1KYVF_zxpjvjMgUvlELaJuc5kORB6DnBa0I5eXsTpsErt-5b8GuCCaGCPUCnpCjoijPMHh59n6AnMd5gTAtR8cfohFY5JaQqT9GvLXR9GJTLoLfJFDrIutBMTo02-Ay8qh3EDIyx2oIfs1rpEQYb-p1qIa231kP6922mfJOZyes5mHwqDbfRxiyYbA-_v9rMbptUd_b4FD0yykV4dnifoe3HD9vzz6vL608X55vLlWYsH1ecljXLOTAqsDC1JqLIa6yx0LrOqaCVEkwbozQ3PBcYGJSkbgjmDHjDSnqG3u21_VR30Oi0jbRh2Q-2U8OtDMrK5Yq3O9mGH5KQdHaiwMnw-mAYwvcJ4ig7GzU4pzyEKUpKMK4IK0WV0Jd7tFUOpPUmJKWecbkRSViQis_C9V-o9DTQWR08GJvmF4E3i0BiRvg5tmqKUV58_fIf7NW_s9ffluyrI3YHyo27GNx0d5dLkO1BPYQYBzD3Z02wnMsrD-WVc3nlobwp9uL4nu5Df9pKfwNrwu0r</recordid><startdate>20240904</startdate><enddate>20240904</enddate><creator>Pozhydaieva, Nadiia</creator><creator>Billau, Franziska Anna</creator><creator>Wolfram-Schauerte, Maik</creator><creator>Ramírez Rojas, Adán Andrés</creator><creator>Paczia, Nicole</creator><creator>Schindler, Daniel</creator><creator>Höfer, Katharina</creator><general>Public Library of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6988-2775</orcidid><orcidid>https://orcid.org/0000-0003-2468-4235</orcidid><orcidid>https://orcid.org/0000-0002-7472-9887</orcidid><orcidid>https://orcid.org/0009-0003-3257-456X</orcidid><orcidid>https://orcid.org/0000-0001-7423-6540</orcidid></search><sort><creationdate>20240904</creationdate><title>Temporal epigenome modulation enables efficient bacteriophage engineering and functional analysis of phage DNA modifications</title><author>Pozhydaieva, Nadiia ; Billau, Franziska Anna ; Wolfram-Schauerte, Maik ; Ramírez Rojas, Adán Andrés ; Paczia, Nicole ; Schindler, Daniel ; Höfer, Katharina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-736b427e43808fbc1852b0c08ccb23839a84cffac7f7280e4e61bd1074e7d463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Bacteriophage T4 - genetics</topic><topic>Bacteriophages</topic><topic>Bacteriophages - genetics</topic><topic>Biology and Life Sciences</topic><topic>CRISPR-Cas Systems</topic><topic>DNA</topic><topic>DNA, Viral - genetics</topic><topic>Engineering and Technology</topic><topic>Enzymes</topic><topic>Epigenome</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - virology</topic><topic>Gene mutations</topic><topic>Genetic aspects</topic><topic>Genetic Engineering - methods</topic><topic>Genome, Viral</topic><topic>Genomes</topic><topic>Health aspects</topic><topic>Identification and classification</topic><topic>Infection</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Medicine, Experimental</topic><topic>Mutagenesis, Site-Directed - methods</topic><topic>Research and Analysis Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pozhydaieva, Nadiia</creatorcontrib><creatorcontrib>Billau, Franziska Anna</creatorcontrib><creatorcontrib>Wolfram-Schauerte, Maik</creatorcontrib><creatorcontrib>Ramírez Rojas, Adán Andrés</creatorcontrib><creatorcontrib>Paczia, Nicole</creatorcontrib><creatorcontrib>Schindler, Daniel</creatorcontrib><creatorcontrib>Höfer, Katharina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pozhydaieva, Nadiia</au><au>Billau, Franziska Anna</au><au>Wolfram-Schauerte, Maik</au><au>Ramírez Rojas, Adán Andrés</au><au>Paczia, Nicole</au><au>Schindler, Daniel</au><au>Höfer, Katharina</au><au>Dalia, Ankur B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal epigenome modulation enables efficient bacteriophage engineering and functional analysis of phage DNA modifications</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2024-09-04</date><risdate>2024</risdate><volume>20</volume><issue>9</issue><spage>e1011384</spage><pages>e1011384-</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Lytic bacteriophages hold substantial promise in medical and biotechnological applications. Therefore a comprehensive understanding of phage infection mechanisms is crucial. CRISPR-Cas systems offer a way to explore these mechanisms via site-specific phage mutagenesis. However, phages can resist Cas-mediated cleavage through extensive DNA modifications like cytosine glycosylation, hindering mutagenesis efficiency. Our study utilizes the eukaryotic enzyme NgTET to temporarily reduce phage DNA modifications, facilitating Cas nuclease cleavage and enhancing mutagenesis efficiency. This approach enables precise DNA targeting and seamless point mutation integration, exemplified by deactivating specific ADP-ribosyltransferases crucial for phage infection. Furthermore, by temporally removing DNA modifications, we elucidated the effects of these modifications on T4 phage infections without necessitating gene deletions. Our results present a strategy enabling the investigation of phage epigenome functions and streamlining the engineering of phages with cytosine DNA modifications. The described temporal modulation of the phage epigenome is valuable for synthetic biology and fundamental research to comprehend phage infection mechanisms through the generation of mutants.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>39231196</pmid><doi>10.1371/journal.pgen.1011384</doi><tpages>e1011384</tpages><orcidid>https://orcid.org/0000-0001-6988-2775</orcidid><orcidid>https://orcid.org/0000-0003-2468-4235</orcidid><orcidid>https://orcid.org/0000-0002-7472-9887</orcidid><orcidid>https://orcid.org/0009-0003-3257-456X</orcidid><orcidid>https://orcid.org/0000-0001-7423-6540</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2024-09, Vol.20 (9), p.e1011384
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11404850
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Analysis
Bacteriophage T4 - genetics
Bacteriophages
Bacteriophages - genetics
Biology and Life Sciences
CRISPR-Cas Systems
DNA
DNA, Viral - genetics
Engineering and Technology
Enzymes
Epigenome
Escherichia coli - genetics
Escherichia coli - virology
Gene mutations
Genetic aspects
Genetic Engineering - methods
Genome, Viral
Genomes
Health aspects
Identification and classification
Infection
Medical research
Medicine and Health Sciences
Medicine, Experimental
Mutagenesis, Site-Directed - methods
Research and Analysis Methods
title Temporal epigenome modulation enables efficient bacteriophage engineering and functional analysis of phage DNA modifications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A33%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20epigenome%20modulation%20enables%20efficient%20bacteriophage%20engineering%20and%20functional%20analysis%20of%20phage%20DNA%20modifications&rft.jtitle=PLoS%20genetics&rft.au=Pozhydaieva,%20Nadiia&rft.date=2024-09-04&rft.volume=20&rft.issue=9&rft.spage=e1011384&rft.pages=e1011384-&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1011384&rft_dat=%3Cgale_pubme%3EA811451970%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3100914689&rft_id=info:pmid/39231196&rft_galeid=A811451970&rfr_iscdi=true