Artificial intelligence for predicting response to neoadjuvant chemotherapy for bladder cancer A comprehensive systematic review and meta-analysis

Neoadjuvant cisplatin-based combination chemotherapy (NAC) followed by radical cystectomy is the standard of care for cisplatin-fit patients harboring muscle-invasive bladder cancer (MIBC). Prediction of response to NAC is essential for clinical decision-making regarding alternatives in case of non-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian Urological Association journal 2024-09, Vol.18 (9), p.E276-E284
Hauptverfasser: Suartz, Caio Vinícius, Martinez, Lucas Motta, Cordeiro, Maurício Dener, Flores, Hunter Ausley, Kodama, Sarah, Cardili, Leonardo, Mota, José Maurício, Coelho, Fernando Morbeck Almeida, de Bessa Junior, José, Camargo, Cristina Pires, Teoh, Jeremy Yuen-Chun, Shariat, Shahrokh F, Toren, Paul, Nahas, William Carlos, Ribeiro-Filho, Leopoldo Alves
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E284
container_issue 9
container_start_page E276
container_title Canadian Urological Association journal
container_volume 18
creator Suartz, Caio Vinícius
Martinez, Lucas Motta
Cordeiro, Maurício Dener
Flores, Hunter Ausley
Kodama, Sarah
Cardili, Leonardo
Mota, José Maurício
Coelho, Fernando Morbeck Almeida
de Bessa Junior, José
Camargo, Cristina Pires
Teoh, Jeremy Yuen-Chun
Shariat, Shahrokh F
Toren, Paul
Nahas, William Carlos
Ribeiro-Filho, Leopoldo Alves
description Neoadjuvant cisplatin-based combination chemotherapy (NAC) followed by radical cystectomy is the standard of care for cisplatin-fit patients harboring muscle-invasive bladder cancer (MIBC). Prediction of response to NAC is essential for clinical decision-making regarding alternatives in case of non-response, and bladder-sparing in case of complete response. This research aimed to assess the performance of machine learning in predicting therapeutic response following NAC treatment in patients with MIBC. A systematic review adhering to the PRISMA guidelines was conducted until July 2023. The study integrated articles relating to artificial intelligence and NAC response in MIBC from various databases. The quality of articles was evaluated using the Quality Assessment Tool for Diagnostic Accuracy Studies 2 (QUADAS-2). A meta-analysis was subsequently performed on selected studies to determine the sensitivity and specificity of machine learning algorithms in predicting NAC response. Of 655 articles identified, 12 studies comprising 1523 patients were included, and four studies were eligible for meta-analysis. The sensitivity and specificity of the studies were 0.62 (95% confidence interval [CI] 0.50-0.72) and 0.82 (95% CI 0.72-0.89), respectively, with a heterogeneity score (I ) of 38.5%. The machine learning algorithms used computed tomography, genetic, and anatomopathologic data as input and exhibited promising potential for predicting NAC response. Machine-learning algorithms, especially those using computed tomography, genetic, and pathologic data, demonstrate significant potential for predicting NAC response in MIBC. Standardization of methodologic data analysis and response criteria are needed as validation studies.
doi_str_mv 10.5489/cuaj.8681
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11404678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A809036243</galeid><sourcerecordid>A809036243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-efd7b3e6455d363bb58172052fa1188e8987f09a03978e1b76516bb8d61b09fc3</originalsourceid><addsrcrecordid>eNptkstu1DAUhiMEoqWw4AWQBRKCRQZ7nIu9qkYVl0oVLIC1deKcTDxK7KntDMxr8MQ4tFQz0sgLW8efv8XvP8teMrooCyE_6Ak2C1EJ9ig7Z3JJc7ZkxeP5zFheFTU9y56FsKG0SpP6aXbGJZOU1eV59mflo-mMNjAQYyMOg1mj1Ug658nWY2t0NHZNPIatswFJdMSig3Yz7cBGonscXezRw3b_700zQNuiJxqSxZMV0W5Mnh5tMDskYR8ijhCNTsqdwV8EbEtGjJCDhWEfTHiePelgCPjifr_Ifn76-OPqS37z7fP11eom11zSmGPX1g3HqijLlle8aUrB6iUtlx0wJgQKKeqOSqBc1gJZU1clq5pGtBVrqOw0v8gu77zbqRmx1Wijh0FtvRnB75UDo45vrOnV2u0UYwUtqlokw7t7g3e3E4aoRhN0yhBSRFNQnMq6kGXBeULf3KFrGFAZ27mk1DOuVoJKyqtlMVOvT1B6a27VIbQ4AaXV4mi0s9iZND-yvj96kJiIv-MaphDU9fevx-zbA7ZHGGIf3DBFk37_pFR7F4LH7iE4RtXcSjW3Us2tTOyrw6QfyP815H8Bi4Dd9w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097495433</pqid></control><display><type>article</type><title>Artificial intelligence for predicting response to neoadjuvant chemotherapy for bladder cancer A comprehensive systematic review and meta-analysis</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Suartz, Caio Vinícius ; Martinez, Lucas Motta ; Cordeiro, Maurício Dener ; Flores, Hunter Ausley ; Kodama, Sarah ; Cardili, Leonardo ; Mota, José Maurício ; Coelho, Fernando Morbeck Almeida ; de Bessa Junior, José ; Camargo, Cristina Pires ; Teoh, Jeremy Yuen-Chun ; Shariat, Shahrokh F ; Toren, Paul ; Nahas, William Carlos ; Ribeiro-Filho, Leopoldo Alves</creator><creatorcontrib>Suartz, Caio Vinícius ; Martinez, Lucas Motta ; Cordeiro, Maurício Dener ; Flores, Hunter Ausley ; Kodama, Sarah ; Cardili, Leonardo ; Mota, José Maurício ; Coelho, Fernando Morbeck Almeida ; de Bessa Junior, José ; Camargo, Cristina Pires ; Teoh, Jeremy Yuen-Chun ; Shariat, Shahrokh F ; Toren, Paul ; Nahas, William Carlos ; Ribeiro-Filho, Leopoldo Alves</creatorcontrib><description>Neoadjuvant cisplatin-based combination chemotherapy (NAC) followed by radical cystectomy is the standard of care for cisplatin-fit patients harboring muscle-invasive bladder cancer (MIBC). Prediction of response to NAC is essential for clinical decision-making regarding alternatives in case of non-response, and bladder-sparing in case of complete response. This research aimed to assess the performance of machine learning in predicting therapeutic response following NAC treatment in patients with MIBC. A systematic review adhering to the PRISMA guidelines was conducted until July 2023. The study integrated articles relating to artificial intelligence and NAC response in MIBC from various databases. The quality of articles was evaluated using the Quality Assessment Tool for Diagnostic Accuracy Studies 2 (QUADAS-2). A meta-analysis was subsequently performed on selected studies to determine the sensitivity and specificity of machine learning algorithms in predicting NAC response. Of 655 articles identified, 12 studies comprising 1523 patients were included, and four studies were eligible for meta-analysis. The sensitivity and specificity of the studies were 0.62 (95% confidence interval [CI] 0.50-0.72) and 0.82 (95% CI 0.72-0.89), respectively, with a heterogeneity score (I ) of 38.5%. The machine learning algorithms used computed tomography, genetic, and anatomopathologic data as input and exhibited promising potential for predicting NAC response. Machine-learning algorithms, especially those using computed tomography, genetic, and pathologic data, demonstrate significant potential for predicting NAC response in MIBC. Standardization of methodologic data analysis and response criteria are needed as validation studies.</description><identifier>ISSN: 1911-6470</identifier><identifier>EISSN: 1920-1214</identifier><identifier>DOI: 10.5489/cuaj.8681</identifier><identifier>PMID: 39190175</identifier><language>eng</language><publisher>Canada: Canadian Urological Association</publisher><subject>Adjuvant treatment ; Algorithms ; Artificial intelligence ; Bladder cancer ; Cancer ; Care and treatment ; Complications and side effects ; CT imaging ; Data mining ; Drug therapy, Combination ; Health aspects ; Information management ; Machine learning ; Measurement ; Medical research ; Medicine, Experimental ; Neoadjuvant therapy ; Patient outcomes ; Radiation ; Review</subject><ispartof>Canadian Urological Association journal, 2024-09, Vol.18 (9), p.E276-E284</ispartof><rights>COPYRIGHT 2024 Canadian Urological Association</rights><rights>2024 CANADIAN UROLOGICAL ASSOCIATION 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1364-5508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404678/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404678/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39190175$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Suartz, Caio Vinícius</creatorcontrib><creatorcontrib>Martinez, Lucas Motta</creatorcontrib><creatorcontrib>Cordeiro, Maurício Dener</creatorcontrib><creatorcontrib>Flores, Hunter Ausley</creatorcontrib><creatorcontrib>Kodama, Sarah</creatorcontrib><creatorcontrib>Cardili, Leonardo</creatorcontrib><creatorcontrib>Mota, José Maurício</creatorcontrib><creatorcontrib>Coelho, Fernando Morbeck Almeida</creatorcontrib><creatorcontrib>de Bessa Junior, José</creatorcontrib><creatorcontrib>Camargo, Cristina Pires</creatorcontrib><creatorcontrib>Teoh, Jeremy Yuen-Chun</creatorcontrib><creatorcontrib>Shariat, Shahrokh F</creatorcontrib><creatorcontrib>Toren, Paul</creatorcontrib><creatorcontrib>Nahas, William Carlos</creatorcontrib><creatorcontrib>Ribeiro-Filho, Leopoldo Alves</creatorcontrib><title>Artificial intelligence for predicting response to neoadjuvant chemotherapy for bladder cancer A comprehensive systematic review and meta-analysis</title><title>Canadian Urological Association journal</title><addtitle>Can Urol Assoc J</addtitle><description>Neoadjuvant cisplatin-based combination chemotherapy (NAC) followed by radical cystectomy is the standard of care for cisplatin-fit patients harboring muscle-invasive bladder cancer (MIBC). Prediction of response to NAC is essential for clinical decision-making regarding alternatives in case of non-response, and bladder-sparing in case of complete response. This research aimed to assess the performance of machine learning in predicting therapeutic response following NAC treatment in patients with MIBC. A systematic review adhering to the PRISMA guidelines was conducted until July 2023. The study integrated articles relating to artificial intelligence and NAC response in MIBC from various databases. The quality of articles was evaluated using the Quality Assessment Tool for Diagnostic Accuracy Studies 2 (QUADAS-2). A meta-analysis was subsequently performed on selected studies to determine the sensitivity and specificity of machine learning algorithms in predicting NAC response. Of 655 articles identified, 12 studies comprising 1523 patients were included, and four studies were eligible for meta-analysis. The sensitivity and specificity of the studies were 0.62 (95% confidence interval [CI] 0.50-0.72) and 0.82 (95% CI 0.72-0.89), respectively, with a heterogeneity score (I ) of 38.5%. The machine learning algorithms used computed tomography, genetic, and anatomopathologic data as input and exhibited promising potential for predicting NAC response. Machine-learning algorithms, especially those using computed tomography, genetic, and pathologic data, demonstrate significant potential for predicting NAC response in MIBC. Standardization of methodologic data analysis and response criteria are needed as validation studies.</description><subject>Adjuvant treatment</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Bladder cancer</subject><subject>Cancer</subject><subject>Care and treatment</subject><subject>Complications and side effects</subject><subject>CT imaging</subject><subject>Data mining</subject><subject>Drug therapy, Combination</subject><subject>Health aspects</subject><subject>Information management</subject><subject>Machine learning</subject><subject>Measurement</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Neoadjuvant therapy</subject><subject>Patient outcomes</subject><subject>Radiation</subject><subject>Review</subject><issn>1911-6470</issn><issn>1920-1214</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptkstu1DAUhiMEoqWw4AWQBRKCRQZ7nIu9qkYVl0oVLIC1deKcTDxK7KntDMxr8MQ4tFQz0sgLW8efv8XvP8teMrooCyE_6Ak2C1EJ9ig7Z3JJc7ZkxeP5zFheFTU9y56FsKG0SpP6aXbGJZOU1eV59mflo-mMNjAQYyMOg1mj1Ug658nWY2t0NHZNPIatswFJdMSig3Yz7cBGonscXezRw3b_700zQNuiJxqSxZMV0W5Mnh5tMDskYR8ijhCNTsqdwV8EbEtGjJCDhWEfTHiePelgCPjifr_Ifn76-OPqS37z7fP11eom11zSmGPX1g3HqijLlle8aUrB6iUtlx0wJgQKKeqOSqBc1gJZU1clq5pGtBVrqOw0v8gu77zbqRmx1Wijh0FtvRnB75UDo45vrOnV2u0UYwUtqlokw7t7g3e3E4aoRhN0yhBSRFNQnMq6kGXBeULf3KFrGFAZ27mk1DOuVoJKyqtlMVOvT1B6a27VIbQ4AaXV4mi0s9iZND-yvj96kJiIv-MaphDU9fevx-zbA7ZHGGIf3DBFk37_pFR7F4LH7iE4RtXcSjW3Us2tTOyrw6QfyP815H8Bi4Dd9w</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Suartz, Caio Vinícius</creator><creator>Martinez, Lucas Motta</creator><creator>Cordeiro, Maurício Dener</creator><creator>Flores, Hunter Ausley</creator><creator>Kodama, Sarah</creator><creator>Cardili, Leonardo</creator><creator>Mota, José Maurício</creator><creator>Coelho, Fernando Morbeck Almeida</creator><creator>de Bessa Junior, José</creator><creator>Camargo, Cristina Pires</creator><creator>Teoh, Jeremy Yuen-Chun</creator><creator>Shariat, Shahrokh F</creator><creator>Toren, Paul</creator><creator>Nahas, William Carlos</creator><creator>Ribeiro-Filho, Leopoldo Alves</creator><general>Canadian Urological Association</general><general>Canadian Medical Association</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1364-5508</orcidid></search><sort><creationdate>20240901</creationdate><title>Artificial intelligence for predicting response to neoadjuvant chemotherapy for bladder cancer A comprehensive systematic review and meta-analysis</title><author>Suartz, Caio Vinícius ; Martinez, Lucas Motta ; Cordeiro, Maurício Dener ; Flores, Hunter Ausley ; Kodama, Sarah ; Cardili, Leonardo ; Mota, José Maurício ; Coelho, Fernando Morbeck Almeida ; de Bessa Junior, José ; Camargo, Cristina Pires ; Teoh, Jeremy Yuen-Chun ; Shariat, Shahrokh F ; Toren, Paul ; Nahas, William Carlos ; Ribeiro-Filho, Leopoldo Alves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-efd7b3e6455d363bb58172052fa1188e8987f09a03978e1b76516bb8d61b09fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adjuvant treatment</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Bladder cancer</topic><topic>Cancer</topic><topic>Care and treatment</topic><topic>Complications and side effects</topic><topic>CT imaging</topic><topic>Data mining</topic><topic>Drug therapy, Combination</topic><topic>Health aspects</topic><topic>Information management</topic><topic>Machine learning</topic><topic>Measurement</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Neoadjuvant therapy</topic><topic>Patient outcomes</topic><topic>Radiation</topic><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suartz, Caio Vinícius</creatorcontrib><creatorcontrib>Martinez, Lucas Motta</creatorcontrib><creatorcontrib>Cordeiro, Maurício Dener</creatorcontrib><creatorcontrib>Flores, Hunter Ausley</creatorcontrib><creatorcontrib>Kodama, Sarah</creatorcontrib><creatorcontrib>Cardili, Leonardo</creatorcontrib><creatorcontrib>Mota, José Maurício</creatorcontrib><creatorcontrib>Coelho, Fernando Morbeck Almeida</creatorcontrib><creatorcontrib>de Bessa Junior, José</creatorcontrib><creatorcontrib>Camargo, Cristina Pires</creatorcontrib><creatorcontrib>Teoh, Jeremy Yuen-Chun</creatorcontrib><creatorcontrib>Shariat, Shahrokh F</creatorcontrib><creatorcontrib>Toren, Paul</creatorcontrib><creatorcontrib>Nahas, William Carlos</creatorcontrib><creatorcontrib>Ribeiro-Filho, Leopoldo Alves</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Canadian Urological Association journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suartz, Caio Vinícius</au><au>Martinez, Lucas Motta</au><au>Cordeiro, Maurício Dener</au><au>Flores, Hunter Ausley</au><au>Kodama, Sarah</au><au>Cardili, Leonardo</au><au>Mota, José Maurício</au><au>Coelho, Fernando Morbeck Almeida</au><au>de Bessa Junior, José</au><au>Camargo, Cristina Pires</au><au>Teoh, Jeremy Yuen-Chun</au><au>Shariat, Shahrokh F</au><au>Toren, Paul</au><au>Nahas, William Carlos</au><au>Ribeiro-Filho, Leopoldo Alves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence for predicting response to neoadjuvant chemotherapy for bladder cancer A comprehensive systematic review and meta-analysis</atitle><jtitle>Canadian Urological Association journal</jtitle><addtitle>Can Urol Assoc J</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>18</volume><issue>9</issue><spage>E276</spage><epage>E284</epage><pages>E276-E284</pages><issn>1911-6470</issn><eissn>1920-1214</eissn><abstract>Neoadjuvant cisplatin-based combination chemotherapy (NAC) followed by radical cystectomy is the standard of care for cisplatin-fit patients harboring muscle-invasive bladder cancer (MIBC). Prediction of response to NAC is essential for clinical decision-making regarding alternatives in case of non-response, and bladder-sparing in case of complete response. This research aimed to assess the performance of machine learning in predicting therapeutic response following NAC treatment in patients with MIBC. A systematic review adhering to the PRISMA guidelines was conducted until July 2023. The study integrated articles relating to artificial intelligence and NAC response in MIBC from various databases. The quality of articles was evaluated using the Quality Assessment Tool for Diagnostic Accuracy Studies 2 (QUADAS-2). A meta-analysis was subsequently performed on selected studies to determine the sensitivity and specificity of machine learning algorithms in predicting NAC response. Of 655 articles identified, 12 studies comprising 1523 patients were included, and four studies were eligible for meta-analysis. The sensitivity and specificity of the studies were 0.62 (95% confidence interval [CI] 0.50-0.72) and 0.82 (95% CI 0.72-0.89), respectively, with a heterogeneity score (I ) of 38.5%. The machine learning algorithms used computed tomography, genetic, and anatomopathologic data as input and exhibited promising potential for predicting NAC response. Machine-learning algorithms, especially those using computed tomography, genetic, and pathologic data, demonstrate significant potential for predicting NAC response in MIBC. Standardization of methodologic data analysis and response criteria are needed as validation studies.</abstract><cop>Canada</cop><pub>Canadian Urological Association</pub><pmid>39190175</pmid><doi>10.5489/cuaj.8681</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1364-5508</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1911-6470
ispartof Canadian Urological Association journal, 2024-09, Vol.18 (9), p.E276-E284
issn 1911-6470
1920-1214
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11404678
source EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adjuvant treatment
Algorithms
Artificial intelligence
Bladder cancer
Cancer
Care and treatment
Complications and side effects
CT imaging
Data mining
Drug therapy, Combination
Health aspects
Information management
Machine learning
Measurement
Medical research
Medicine, Experimental
Neoadjuvant therapy
Patient outcomes
Radiation
Review
title Artificial intelligence for predicting response to neoadjuvant chemotherapy for bladder cancer A comprehensive systematic review and meta-analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20for%20predicting%20response%20to%20neoadjuvant%20chemotherapy%20for%20bladder%20cancer%20A%20comprehensive%20systematic%20review%20and%20meta-analysis&rft.jtitle=Canadian%20Urological%20Association%20journal&rft.au=Suartz,%20Caio%20Vin%C3%ADcius&rft.date=2024-09-01&rft.volume=18&rft.issue=9&rft.spage=E276&rft.epage=E284&rft.pages=E276-E284&rft.issn=1911-6470&rft.eissn=1920-1214&rft_id=info:doi/10.5489/cuaj.8681&rft_dat=%3Cgale_pubme%3EA809036243%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097495433&rft_id=info:pmid/39190175&rft_galeid=A809036243&rfr_iscdi=true