Spatial Intracranial Pressure Fields Driven by Blast Overpressure in Rats
Free-field blast exposure imparts a complex, dynamic response within brain tissue that can trigger a cascade of lasting neurological deficits. Full body mechanical and physiological factors are known to influence the body’s adaptation to this seemingly instantaneous insult, making it difficult to ac...
Gespeichert in:
Veröffentlicht in: | Annals of biomedical engineering 2024-10, Vol.52 (10), p.2641-2654 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2654 |
---|---|
container_issue | 10 |
container_start_page | 2641 |
container_title | Annals of biomedical engineering |
container_volume | 52 |
creator | Norris, Carly Murphy, Susan F. Talty, Caiti-Erin VandeVord, Pamela J. |
description | Free-field blast exposure imparts a complex, dynamic response within brain tissue that can trigger a cascade of lasting neurological deficits. Full body mechanical and physiological factors are known to influence the body’s adaptation to this seemingly instantaneous insult, making it difficult to accurately pinpoint the brain injury mechanisms. This study examined the intracranial pressure (ICP) profile characteristics in a rat model as a function of blast overpressure magnitude and brain location. Metrics such as peak rate of change of pressure, peak pressure, rise time, and ICP frequency response were found to vary spatially throughout the brain, independent of blast magnitude, emphasizing unique spatial pressure fields as a primary biomechanical component to blast injury. This work discusses the ICP characteristics and considerations for finite element models, in vitro models, and translational in vivo models to improve understanding of biomechanics during primary blast exposure. |
doi_str_mv | 10.1007/s10439-024-03544-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11402848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3065981993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-f6ec97f0451e116efd1ed5bd04e6aeeda217dae1eab16d7d4ee71b4ead33e9c63</originalsourceid><addsrcrecordid>eNp9kclKxEAQhhtRdFxewIMEvHiJdqW39EncHRAUl3PTSVc0kknG7mTAt7fHcT94Kor66q_lJ2Qb6D5Qqg4CUM50SjOeUiY4T9USGYFQLNUyl8tkRKmmqdSSr5H1EJ4pBciZWCVrLM8FSKFHZHw3tX1tm2Tc9t6W3rbz5MZjCIPH5LzGxoXk1NczbJPiNTlubOiT6xn66SdTt8mt7cMmWalsE3DrI26Qh_Oz-5PL9Or6YnxydJWWPJN9WkkstaooF4AAEisH6EThKEdpEZ3NQDmLgLYA6ZTjiAoKjtYxhrqUbIMcLnSnQzFBV-J88cZMfT2x_tV0tja_K239ZB67mQHgNMt5HhX2PhR89zJg6M2kDiU2jW2xG4JhNL4mB61ZRHf_oM_d4Nt4n2Hx-7nKmBCRyhZU6bsQPFZf2wA1c6vMwioTrTLvVhkVm3Z-3vHV8ulNBNgCCLHUPqL_nv2P7Bvhn6Df</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104872355</pqid></control><display><type>article</type><title>Spatial Intracranial Pressure Fields Driven by Blast Overpressure in Rats</title><source>SpringerLink Journals - AutoHoldings</source><creator>Norris, Carly ; Murphy, Susan F. ; Talty, Caiti-Erin ; VandeVord, Pamela J.</creator><creatorcontrib>Norris, Carly ; Murphy, Susan F. ; Talty, Caiti-Erin ; VandeVord, Pamela J.</creatorcontrib><description>Free-field blast exposure imparts a complex, dynamic response within brain tissue that can trigger a cascade of lasting neurological deficits. Full body mechanical and physiological factors are known to influence the body’s adaptation to this seemingly instantaneous insult, making it difficult to accurately pinpoint the brain injury mechanisms. This study examined the intracranial pressure (ICP) profile characteristics in a rat model as a function of blast overpressure magnitude and brain location. Metrics such as peak rate of change of pressure, peak pressure, rise time, and ICP frequency response were found to vary spatially throughout the brain, independent of blast magnitude, emphasizing unique spatial pressure fields as a primary biomechanical component to blast injury. This work discusses the ICP characteristics and considerations for finite element models, in vitro models, and translational in vivo models to improve understanding of biomechanics during primary blast exposure.</description><identifier>ISSN: 0090-6964</identifier><identifier>ISSN: 1573-9686</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-024-03544-7</identifier><identifier>PMID: 38851659</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Biochemistry ; Biological and Medical Physics ; Biomechanics ; Biomedical and Life Sciences ; Biomedical engineering ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Brain ; Brain injury ; Classical Mechanics ; Dynamic response ; Engineering ; Finite element method ; Frequency dependence ; Frequency response ; Head injuries ; Intracranial pressure ; Ketamine ; Mathematical models ; Mechanical properties ; Neurological diseases ; Overpressure ; Peak pressure ; Physiological effects ; Physiological factors ; Pressure ; S.I. : Concussions II ; Sensors ; Traumatic brain injury</subject><ispartof>Annals of biomedical engineering, 2024-10, Vol.52 (10), p.2641-2654</ispartof><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024</rights><rights>2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.</rights><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c426t-f6ec97f0451e116efd1ed5bd04e6aeeda217dae1eab16d7d4ee71b4ead33e9c63</cites><orcidid>0000-0003-3422-2704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10439-024-03544-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10439-024-03544-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38851659$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Norris, Carly</creatorcontrib><creatorcontrib>Murphy, Susan F.</creatorcontrib><creatorcontrib>Talty, Caiti-Erin</creatorcontrib><creatorcontrib>VandeVord, Pamela J.</creatorcontrib><title>Spatial Intracranial Pressure Fields Driven by Blast Overpressure in Rats</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>Free-field blast exposure imparts a complex, dynamic response within brain tissue that can trigger a cascade of lasting neurological deficits. Full body mechanical and physiological factors are known to influence the body’s adaptation to this seemingly instantaneous insult, making it difficult to accurately pinpoint the brain injury mechanisms. This study examined the intracranial pressure (ICP) profile characteristics in a rat model as a function of blast overpressure magnitude and brain location. Metrics such as peak rate of change of pressure, peak pressure, rise time, and ICP frequency response were found to vary spatially throughout the brain, independent of blast magnitude, emphasizing unique spatial pressure fields as a primary biomechanical component to blast injury. This work discusses the ICP characteristics and considerations for finite element models, in vitro models, and translational in vivo models to improve understanding of biomechanics during primary blast exposure.</description><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomechanics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical engineering</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Brain</subject><subject>Brain injury</subject><subject>Classical Mechanics</subject><subject>Dynamic response</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Frequency dependence</subject><subject>Frequency response</subject><subject>Head injuries</subject><subject>Intracranial pressure</subject><subject>Ketamine</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Neurological diseases</subject><subject>Overpressure</subject><subject>Peak pressure</subject><subject>Physiological effects</subject><subject>Physiological factors</subject><subject>Pressure</subject><subject>S.I. : Concussions II</subject><subject>Sensors</subject><subject>Traumatic brain injury</subject><issn>0090-6964</issn><issn>1573-9686</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kclKxEAQhhtRdFxewIMEvHiJdqW39EncHRAUl3PTSVc0kknG7mTAt7fHcT94Kor66q_lJ2Qb6D5Qqg4CUM50SjOeUiY4T9USGYFQLNUyl8tkRKmmqdSSr5H1EJ4pBciZWCVrLM8FSKFHZHw3tX1tm2Tc9t6W3rbz5MZjCIPH5LzGxoXk1NczbJPiNTlubOiT6xn66SdTt8mt7cMmWalsE3DrI26Qh_Oz-5PL9Or6YnxydJWWPJN9WkkstaooF4AAEisH6EThKEdpEZ3NQDmLgLYA6ZTjiAoKjtYxhrqUbIMcLnSnQzFBV-J88cZMfT2x_tV0tja_K239ZB67mQHgNMt5HhX2PhR89zJg6M2kDiU2jW2xG4JhNL4mB61ZRHf_oM_d4Nt4n2Hx-7nKmBCRyhZU6bsQPFZf2wA1c6vMwioTrTLvVhkVm3Z-3vHV8ulNBNgCCLHUPqL_nv2P7Bvhn6Df</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Norris, Carly</creator><creator>Murphy, Susan F.</creator><creator>Talty, Caiti-Erin</creator><creator>VandeVord, Pamela J.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3422-2704</orcidid></search><sort><creationdate>20241001</creationdate><title>Spatial Intracranial Pressure Fields Driven by Blast Overpressure in Rats</title><author>Norris, Carly ; Murphy, Susan F. ; Talty, Caiti-Erin ; VandeVord, Pamela J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-f6ec97f0451e116efd1ed5bd04e6aeeda217dae1eab16d7d4ee71b4ead33e9c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomechanics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical engineering</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Brain</topic><topic>Brain injury</topic><topic>Classical Mechanics</topic><topic>Dynamic response</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Frequency dependence</topic><topic>Frequency response</topic><topic>Head injuries</topic><topic>Intracranial pressure</topic><topic>Ketamine</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Neurological diseases</topic><topic>Overpressure</topic><topic>Peak pressure</topic><topic>Physiological effects</topic><topic>Physiological factors</topic><topic>Pressure</topic><topic>S.I. : Concussions II</topic><topic>Sensors</topic><topic>Traumatic brain injury</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Norris, Carly</creatorcontrib><creatorcontrib>Murphy, Susan F.</creatorcontrib><creatorcontrib>Talty, Caiti-Erin</creatorcontrib><creatorcontrib>VandeVord, Pamela J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Norris, Carly</au><au>Murphy, Susan F.</au><au>Talty, Caiti-Erin</au><au>VandeVord, Pamela J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Intracranial Pressure Fields Driven by Blast Overpressure in Rats</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>52</volume><issue>10</issue><spage>2641</spage><epage>2654</epage><pages>2641-2654</pages><issn>0090-6964</issn><issn>1573-9686</issn><eissn>1573-9686</eissn><abstract>Free-field blast exposure imparts a complex, dynamic response within brain tissue that can trigger a cascade of lasting neurological deficits. Full body mechanical and physiological factors are known to influence the body’s adaptation to this seemingly instantaneous insult, making it difficult to accurately pinpoint the brain injury mechanisms. This study examined the intracranial pressure (ICP) profile characteristics in a rat model as a function of blast overpressure magnitude and brain location. Metrics such as peak rate of change of pressure, peak pressure, rise time, and ICP frequency response were found to vary spatially throughout the brain, independent of blast magnitude, emphasizing unique spatial pressure fields as a primary biomechanical component to blast injury. This work discusses the ICP characteristics and considerations for finite element models, in vitro models, and translational in vivo models to improve understanding of biomechanics during primary blast exposure.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>38851659</pmid><doi>10.1007/s10439-024-03544-7</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3422-2704</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0090-6964 |
ispartof | Annals of biomedical engineering, 2024-10, Vol.52 (10), p.2641-2654 |
issn | 0090-6964 1573-9686 1573-9686 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11402848 |
source | SpringerLink Journals - AutoHoldings |
subjects | Biochemistry Biological and Medical Physics Biomechanics Biomedical and Life Sciences Biomedical engineering Biomedical Engineering and Bioengineering Biomedicine Biophysics Brain Brain injury Classical Mechanics Dynamic response Engineering Finite element method Frequency dependence Frequency response Head injuries Intracranial pressure Ketamine Mathematical models Mechanical properties Neurological diseases Overpressure Peak pressure Physiological effects Physiological factors Pressure S.I. : Concussions II Sensors Traumatic brain injury |
title | Spatial Intracranial Pressure Fields Driven by Blast Overpressure in Rats |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A23%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Intracranial%20Pressure%20Fields%20Driven%20by%20Blast%20Overpressure%20in%20Rats&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Norris,%20Carly&rft.date=2024-10-01&rft.volume=52&rft.issue=10&rft.spage=2641&rft.epage=2654&rft.pages=2641-2654&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-024-03544-7&rft_dat=%3Cproquest_pubme%3E3065981993%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104872355&rft_id=info:pmid/38851659&rfr_iscdi=true |