Spatial Intracranial Pressure Fields Driven by Blast Overpressure in Rats

Free-field blast exposure imparts a complex, dynamic response within brain tissue that can trigger a cascade of lasting neurological deficits. Full body mechanical and physiological factors are known to influence the body’s adaptation to this seemingly instantaneous insult, making it difficult to ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of biomedical engineering 2024-10, Vol.52 (10), p.2641-2654
Hauptverfasser: Norris, Carly, Murphy, Susan F., Talty, Caiti-Erin, VandeVord, Pamela J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2654
container_issue 10
container_start_page 2641
container_title Annals of biomedical engineering
container_volume 52
creator Norris, Carly
Murphy, Susan F.
Talty, Caiti-Erin
VandeVord, Pamela J.
description Free-field blast exposure imparts a complex, dynamic response within brain tissue that can trigger a cascade of lasting neurological deficits. Full body mechanical and physiological factors are known to influence the body’s adaptation to this seemingly instantaneous insult, making it difficult to accurately pinpoint the brain injury mechanisms. This study examined the intracranial pressure (ICP) profile characteristics in a rat model as a function of blast overpressure magnitude and brain location. Metrics such as peak rate of change of pressure, peak pressure, rise time, and ICP frequency response were found to vary spatially throughout the brain, independent of blast magnitude, emphasizing unique spatial pressure fields as a primary biomechanical component to blast injury. This work discusses the ICP characteristics and considerations for finite element models, in vitro models, and translational in vivo models to improve understanding of biomechanics during primary blast exposure.
doi_str_mv 10.1007/s10439-024-03544-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11402848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3065981993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-f6ec97f0451e116efd1ed5bd04e6aeeda217dae1eab16d7d4ee71b4ead33e9c63</originalsourceid><addsrcrecordid>eNp9kclKxEAQhhtRdFxewIMEvHiJdqW39EncHRAUl3PTSVc0kknG7mTAt7fHcT94Kor66q_lJ2Qb6D5Qqg4CUM50SjOeUiY4T9USGYFQLNUyl8tkRKmmqdSSr5H1EJ4pBciZWCVrLM8FSKFHZHw3tX1tm2Tc9t6W3rbz5MZjCIPH5LzGxoXk1NczbJPiNTlubOiT6xn66SdTt8mt7cMmWalsE3DrI26Qh_Oz-5PL9Or6YnxydJWWPJN9WkkstaooF4AAEisH6EThKEdpEZ3NQDmLgLYA6ZTjiAoKjtYxhrqUbIMcLnSnQzFBV-J88cZMfT2x_tV0tja_K239ZB67mQHgNMt5HhX2PhR89zJg6M2kDiU2jW2xG4JhNL4mB61ZRHf_oM_d4Nt4n2Hx-7nKmBCRyhZU6bsQPFZf2wA1c6vMwioTrTLvVhkVm3Z-3vHV8ulNBNgCCLHUPqL_nv2P7Bvhn6Df</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3104872355</pqid></control><display><type>article</type><title>Spatial Intracranial Pressure Fields Driven by Blast Overpressure in Rats</title><source>SpringerLink Journals - AutoHoldings</source><creator>Norris, Carly ; Murphy, Susan F. ; Talty, Caiti-Erin ; VandeVord, Pamela J.</creator><creatorcontrib>Norris, Carly ; Murphy, Susan F. ; Talty, Caiti-Erin ; VandeVord, Pamela J.</creatorcontrib><description>Free-field blast exposure imparts a complex, dynamic response within brain tissue that can trigger a cascade of lasting neurological deficits. Full body mechanical and physiological factors are known to influence the body’s adaptation to this seemingly instantaneous insult, making it difficult to accurately pinpoint the brain injury mechanisms. This study examined the intracranial pressure (ICP) profile characteristics in a rat model as a function of blast overpressure magnitude and brain location. Metrics such as peak rate of change of pressure, peak pressure, rise time, and ICP frequency response were found to vary spatially throughout the brain, independent of blast magnitude, emphasizing unique spatial pressure fields as a primary biomechanical component to blast injury. This work discusses the ICP characteristics and considerations for finite element models, in vitro models, and translational in vivo models to improve understanding of biomechanics during primary blast exposure.</description><identifier>ISSN: 0090-6964</identifier><identifier>ISSN: 1573-9686</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-024-03544-7</identifier><identifier>PMID: 38851659</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Biochemistry ; Biological and Medical Physics ; Biomechanics ; Biomedical and Life Sciences ; Biomedical engineering ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Brain ; Brain injury ; Classical Mechanics ; Dynamic response ; Engineering ; Finite element method ; Frequency dependence ; Frequency response ; Head injuries ; Intracranial pressure ; Ketamine ; Mathematical models ; Mechanical properties ; Neurological diseases ; Overpressure ; Peak pressure ; Physiological effects ; Physiological factors ; Pressure ; S.I. : Concussions II ; Sensors ; Traumatic brain injury</subject><ispartof>Annals of biomedical engineering, 2024-10, Vol.52 (10), p.2641-2654</ispartof><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024</rights><rights>2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.</rights><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c426t-f6ec97f0451e116efd1ed5bd04e6aeeda217dae1eab16d7d4ee71b4ead33e9c63</cites><orcidid>0000-0003-3422-2704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10439-024-03544-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10439-024-03544-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,778,782,883,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38851659$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Norris, Carly</creatorcontrib><creatorcontrib>Murphy, Susan F.</creatorcontrib><creatorcontrib>Talty, Caiti-Erin</creatorcontrib><creatorcontrib>VandeVord, Pamela J.</creatorcontrib><title>Spatial Intracranial Pressure Fields Driven by Blast Overpressure in Rats</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>Free-field blast exposure imparts a complex, dynamic response within brain tissue that can trigger a cascade of lasting neurological deficits. Full body mechanical and physiological factors are known to influence the body’s adaptation to this seemingly instantaneous insult, making it difficult to accurately pinpoint the brain injury mechanisms. This study examined the intracranial pressure (ICP) profile characteristics in a rat model as a function of blast overpressure magnitude and brain location. Metrics such as peak rate of change of pressure, peak pressure, rise time, and ICP frequency response were found to vary spatially throughout the brain, independent of blast magnitude, emphasizing unique spatial pressure fields as a primary biomechanical component to blast injury. This work discusses the ICP characteristics and considerations for finite element models, in vitro models, and translational in vivo models to improve understanding of biomechanics during primary blast exposure.</description><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomechanics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical engineering</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Brain</subject><subject>Brain injury</subject><subject>Classical Mechanics</subject><subject>Dynamic response</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Frequency dependence</subject><subject>Frequency response</subject><subject>Head injuries</subject><subject>Intracranial pressure</subject><subject>Ketamine</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Neurological diseases</subject><subject>Overpressure</subject><subject>Peak pressure</subject><subject>Physiological effects</subject><subject>Physiological factors</subject><subject>Pressure</subject><subject>S.I. : Concussions II</subject><subject>Sensors</subject><subject>Traumatic brain injury</subject><issn>0090-6964</issn><issn>1573-9686</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kclKxEAQhhtRdFxewIMEvHiJdqW39EncHRAUl3PTSVc0kknG7mTAt7fHcT94Kor66q_lJ2Qb6D5Qqg4CUM50SjOeUiY4T9USGYFQLNUyl8tkRKmmqdSSr5H1EJ4pBciZWCVrLM8FSKFHZHw3tX1tm2Tc9t6W3rbz5MZjCIPH5LzGxoXk1NczbJPiNTlubOiT6xn66SdTt8mt7cMmWalsE3DrI26Qh_Oz-5PL9Or6YnxydJWWPJN9WkkstaooF4AAEisH6EThKEdpEZ3NQDmLgLYA6ZTjiAoKjtYxhrqUbIMcLnSnQzFBV-J88cZMfT2x_tV0tja_K239ZB67mQHgNMt5HhX2PhR89zJg6M2kDiU2jW2xG4JhNL4mB61ZRHf_oM_d4Nt4n2Hx-7nKmBCRyhZU6bsQPFZf2wA1c6vMwioTrTLvVhkVm3Z-3vHV8ulNBNgCCLHUPqL_nv2P7Bvhn6Df</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Norris, Carly</creator><creator>Murphy, Susan F.</creator><creator>Talty, Caiti-Erin</creator><creator>VandeVord, Pamela J.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3422-2704</orcidid></search><sort><creationdate>20241001</creationdate><title>Spatial Intracranial Pressure Fields Driven by Blast Overpressure in Rats</title><author>Norris, Carly ; Murphy, Susan F. ; Talty, Caiti-Erin ; VandeVord, Pamela J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-f6ec97f0451e116efd1ed5bd04e6aeeda217dae1eab16d7d4ee71b4ead33e9c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomechanics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical engineering</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Brain</topic><topic>Brain injury</topic><topic>Classical Mechanics</topic><topic>Dynamic response</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Frequency dependence</topic><topic>Frequency response</topic><topic>Head injuries</topic><topic>Intracranial pressure</topic><topic>Ketamine</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Neurological diseases</topic><topic>Overpressure</topic><topic>Peak pressure</topic><topic>Physiological effects</topic><topic>Physiological factors</topic><topic>Pressure</topic><topic>S.I. : Concussions II</topic><topic>Sensors</topic><topic>Traumatic brain injury</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Norris, Carly</creatorcontrib><creatorcontrib>Murphy, Susan F.</creatorcontrib><creatorcontrib>Talty, Caiti-Erin</creatorcontrib><creatorcontrib>VandeVord, Pamela J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Norris, Carly</au><au>Murphy, Susan F.</au><au>Talty, Caiti-Erin</au><au>VandeVord, Pamela J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Intracranial Pressure Fields Driven by Blast Overpressure in Rats</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>52</volume><issue>10</issue><spage>2641</spage><epage>2654</epage><pages>2641-2654</pages><issn>0090-6964</issn><issn>1573-9686</issn><eissn>1573-9686</eissn><abstract>Free-field blast exposure imparts a complex, dynamic response within brain tissue that can trigger a cascade of lasting neurological deficits. Full body mechanical and physiological factors are known to influence the body’s adaptation to this seemingly instantaneous insult, making it difficult to accurately pinpoint the brain injury mechanisms. This study examined the intracranial pressure (ICP) profile characteristics in a rat model as a function of blast overpressure magnitude and brain location. Metrics such as peak rate of change of pressure, peak pressure, rise time, and ICP frequency response were found to vary spatially throughout the brain, independent of blast magnitude, emphasizing unique spatial pressure fields as a primary biomechanical component to blast injury. This work discusses the ICP characteristics and considerations for finite element models, in vitro models, and translational in vivo models to improve understanding of biomechanics during primary blast exposure.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>38851659</pmid><doi>10.1007/s10439-024-03544-7</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3422-2704</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-6964
ispartof Annals of biomedical engineering, 2024-10, Vol.52 (10), p.2641-2654
issn 0090-6964
1573-9686
1573-9686
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11402848
source SpringerLink Journals - AutoHoldings
subjects Biochemistry
Biological and Medical Physics
Biomechanics
Biomedical and Life Sciences
Biomedical engineering
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Brain
Brain injury
Classical Mechanics
Dynamic response
Engineering
Finite element method
Frequency dependence
Frequency response
Head injuries
Intracranial pressure
Ketamine
Mathematical models
Mechanical properties
Neurological diseases
Overpressure
Peak pressure
Physiological effects
Physiological factors
Pressure
S.I. : Concussions II
Sensors
Traumatic brain injury
title Spatial Intracranial Pressure Fields Driven by Blast Overpressure in Rats
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A23%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Intracranial%20Pressure%20Fields%20Driven%20by%20Blast%20Overpressure%20in%20Rats&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Norris,%20Carly&rft.date=2024-10-01&rft.volume=52&rft.issue=10&rft.spage=2641&rft.epage=2654&rft.pages=2641-2654&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-024-03544-7&rft_dat=%3Cproquest_pubme%3E3065981993%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3104872355&rft_id=info:pmid/38851659&rfr_iscdi=true