Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation
Summary Eucalyptus are of tremendous economic importance being the most planted hardwoods worldwide for pulp and paper, timber and bioenergy. The recent release of the Eucalyptus grandis genome sequence pointed out many new candidate genes potentially involved in secondary growth, wood formation or...
Gespeichert in:
Veröffentlicht in: | Plant biotechnology journal 2016-06, Vol.14 (6), p.1381-1393 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1393 |
---|---|
container_issue | 6 |
container_start_page | 1381 |
container_title | Plant biotechnology journal |
container_volume | 14 |
creator | Plasencia, Anna Soler, Marçal Dupas, Annabelle Ladouce, Nathalie Silva‐Martins, Guilherme Martinez, Yves Lapierre, Catherine Franche, Claudine Truchet, Isabelle Grima‐Pettenati, Jacqueline |
description | Summary
Eucalyptus are of tremendous economic importance being the most planted hardwoods worldwide for pulp and paper, timber and bioenergy. The recent release of the Eucalyptus grandis genome sequence pointed out many new candidate genes potentially involved in secondary growth, wood formation or lineage‐specific biosynthetic pathways. Their functional characterization is, however, hindered by the tedious, time‐consuming and inefficient transformation systems available hitherto for eucalypts. To overcome this limitation, we developed a fast, reliable and efficient protocol to obtain and easily detect co‐transformed E. grandis hairy roots using fluorescent markers, with an average efficiency of 62%. We set up conditions both to cultivate excised roots in vitro and to harden composite plants and verified that hairy root morphology and vascular system anatomy were similar to wild‐type ones. We further demonstrated that co‐transformed hairy roots are suitable for medium‐throughput functional studies enabling, for instance, protein subcellular localization, gene expression patterns through RT‐qPCR and promoter expression, as well as the modulation of endogenous gene expression. Down‐regulation of the Eucalyptus cinnamoyl‐CoA reductase1 (EgCCR1) gene, encoding a key enzyme in lignin biosynthesis, led to transgenic roots with reduced lignin levels and thinner cell walls. This gene was used as a proof of concept to demonstrate that the function of genes involved in secondary cell wall biosynthesis and wood formation can be elucidated in transgenic hairy roots using histochemical, transcriptomic and biochemical approaches. The method described here is timely because it will accelerate gene mining of the genome for both basic research and industry purposes. |
doi_str_mv | 10.1111/pbi.12502 |
format | Article |
fullrecord | <record><control><sourceid>gale_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11388834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A733184893</galeid><sourcerecordid>A733184893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6162-bcf401581e99646f298d3aa47f7d53564f1d0e09ed8ab0c905a5fc283a6b41d13</originalsourceid><addsrcrecordid>eNqNkt9vFCEQxzdGY2v1wX_AkPhik96VX8vCkzmbaptcog_6TDh2uKPZgxN2t95z_3G5Xj21iYmQwACf-Q4DU1WvCZ6S0s43Cz8ltMb0SXVMuGgmjajp04PN-VH1IucbjCkRtXheHVFRN6q04-rucrCm2276IaOV8WmLUox9PkMGOZP7MwTOeesh9MiEFo2Qsul9B6iPsSsDgh-bLiZAbgi29zHcY2UzQc67ZXRoCQEy8mGM3QhtMdBtjC1yMa3NzuVl9cyZLsOrh_mk-vbx8uvF1WT--dP1xWw-sYIIOllYxzGpJQGlBBeOKtkyY3jjmrZmteCOtBiwglaaBbYK16Z2lkpmxIKTlrCT6v1edzMs1tDaklQynd4kvzZpq6Px-u-T4Fd6GUdNCJNSMl4UTvcKq0d-V7O53u2V-zEisBh30d49REvx-wC512ufLXSdCRCHrEmjsKKSM_ofqFSYSSzrgr59hN7EIYXybJpShTEXmKhCTffU0nSgfXCx5GNLb2HtbQzgyhfqWcMYkVwq9jsxm2LOCdwhO4L1rsZ0qTF9X2OFffPnMx7IX0VVgPM9cFuibP-tpL98uN5L_gRqCtus</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290046019</pqid></control><display><type>article</type><title>Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation</title><source>Wiley Online Library Open Access</source><creator>Plasencia, Anna ; Soler, Marçal ; Dupas, Annabelle ; Ladouce, Nathalie ; Silva‐Martins, Guilherme ; Martinez, Yves ; Lapierre, Catherine ; Franche, Claudine ; Truchet, Isabelle ; Grima‐Pettenati, Jacqueline</creator><creatorcontrib>Plasencia, Anna ; Soler, Marçal ; Dupas, Annabelle ; Ladouce, Nathalie ; Silva‐Martins, Guilherme ; Martinez, Yves ; Lapierre, Catherine ; Franche, Claudine ; Truchet, Isabelle ; Grima‐Pettenati, Jacqueline</creatorcontrib><description>Summary
Eucalyptus are of tremendous economic importance being the most planted hardwoods worldwide for pulp and paper, timber and bioenergy. The recent release of the Eucalyptus grandis genome sequence pointed out many new candidate genes potentially involved in secondary growth, wood formation or lineage‐specific biosynthetic pathways. Their functional characterization is, however, hindered by the tedious, time‐consuming and inefficient transformation systems available hitherto for eucalypts. To overcome this limitation, we developed a fast, reliable and efficient protocol to obtain and easily detect co‐transformed E. grandis hairy roots using fluorescent markers, with an average efficiency of 62%. We set up conditions both to cultivate excised roots in vitro and to harden composite plants and verified that hairy root morphology and vascular system anatomy were similar to wild‐type ones. We further demonstrated that co‐transformed hairy roots are suitable for medium‐throughput functional studies enabling, for instance, protein subcellular localization, gene expression patterns through RT‐qPCR and promoter expression, as well as the modulation of endogenous gene expression. Down‐regulation of the Eucalyptus cinnamoyl‐CoA reductase1 (EgCCR1) gene, encoding a key enzyme in lignin biosynthesis, led to transgenic roots with reduced lignin levels and thinner cell walls. This gene was used as a proof of concept to demonstrate that the function of genes involved in secondary cell wall biosynthesis and wood formation can be elucidated in transgenic hairy roots using histochemical, transcriptomic and biochemical approaches. The method described here is timely because it will accelerate gene mining of the genome for both basic research and industry purposes.</description><identifier>ISSN: 1467-7644</identifier><identifier>ISSN: 1467-7652</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.12502</identifier><identifier>PMID: 26579999</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject><![CDATA[Agrobacterium rhizogenes ; Biomass ; Biosynthesis ; Cell Wall - chemistry ; Cell Wall - genetics ; Cell Wall - metabolism ; Cell walls ; Cellulose ; Cloning ; Deoxyribonucleic acid ; DNA ; Economic importance ; Ethanol ; Eucalyptus ; Eucalyptus - genetics ; Eucalyptus - growth & development ; Eucalyptus - metabolism ; Eucalyptus grandis ; Flowers & plants ; Fluorescent indicators ; Gene expression ; Gene Expression Profiling - methods ; Gene Expression Regulation, Plant ; Gene Silencing ; Genes ; Genetic engineering ; Genetic research ; Genetic transformation ; Genome, Plant ; Genomes ; Genomics ; Hairy root ; hairy roots ; Hardwoods ; Life Sciences ; Lignin ; Lignin - genetics ; Lignin - metabolism ; Localization ; Metabolites ; Morphology ; Nucleotide sequence ; Physiological aspects ; Plants, Genetically Modified - growth & development ; Plants, Genetically Modified - metabolism ; Pulp ; Pulp & paper industry ; Renewable energy ; Roots ; secondary cell wall ; Timber ; Tissue Culture Techniques ; Wood ; Wood - genetics ; Wood - growth & development ; Wood - metabolism ; xylem ; Xylem - genetics ; Xylem - growth & development ; Xylem - metabolism]]></subject><ispartof>Plant biotechnology journal, 2016-06, Vol.14 (6), p.1381-1393</ispartof><rights>2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd</rights><rights>2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>COPYRIGHT 2016 John Wiley & Sons, Inc.</rights><rights>2016. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6162-bcf401581e99646f298d3aa47f7d53564f1d0e09ed8ab0c905a5fc283a6b41d13</citedby><cites>FETCH-LOGICAL-c6162-bcf401581e99646f298d3aa47f7d53564f1d0e09ed8ab0c905a5fc283a6b41d13</cites><orcidid>0000-0003-4272-9767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.12502$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.12502$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,860,881,1411,11542,27903,27904,45553,45554,46030,46454</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.12502$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26579999$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01531606$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Plasencia, Anna</creatorcontrib><creatorcontrib>Soler, Marçal</creatorcontrib><creatorcontrib>Dupas, Annabelle</creatorcontrib><creatorcontrib>Ladouce, Nathalie</creatorcontrib><creatorcontrib>Silva‐Martins, Guilherme</creatorcontrib><creatorcontrib>Martinez, Yves</creatorcontrib><creatorcontrib>Lapierre, Catherine</creatorcontrib><creatorcontrib>Franche, Claudine</creatorcontrib><creatorcontrib>Truchet, Isabelle</creatorcontrib><creatorcontrib>Grima‐Pettenati, Jacqueline</creatorcontrib><title>Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary
Eucalyptus are of tremendous economic importance being the most planted hardwoods worldwide for pulp and paper, timber and bioenergy. The recent release of the Eucalyptus grandis genome sequence pointed out many new candidate genes potentially involved in secondary growth, wood formation or lineage‐specific biosynthetic pathways. Their functional characterization is, however, hindered by the tedious, time‐consuming and inefficient transformation systems available hitherto for eucalypts. To overcome this limitation, we developed a fast, reliable and efficient protocol to obtain and easily detect co‐transformed E. grandis hairy roots using fluorescent markers, with an average efficiency of 62%. We set up conditions both to cultivate excised roots in vitro and to harden composite plants and verified that hairy root morphology and vascular system anatomy were similar to wild‐type ones. We further demonstrated that co‐transformed hairy roots are suitable for medium‐throughput functional studies enabling, for instance, protein subcellular localization, gene expression patterns through RT‐qPCR and promoter expression, as well as the modulation of endogenous gene expression. Down‐regulation of the Eucalyptus cinnamoyl‐CoA reductase1 (EgCCR1) gene, encoding a key enzyme in lignin biosynthesis, led to transgenic roots with reduced lignin levels and thinner cell walls. This gene was used as a proof of concept to demonstrate that the function of genes involved in secondary cell wall biosynthesis and wood formation can be elucidated in transgenic hairy roots using histochemical, transcriptomic and biochemical approaches. The method described here is timely because it will accelerate gene mining of the genome for both basic research and industry purposes.</description><subject>Agrobacterium rhizogenes</subject><subject>Biomass</subject><subject>Biosynthesis</subject><subject>Cell Wall - chemistry</subject><subject>Cell Wall - genetics</subject><subject>Cell Wall - metabolism</subject><subject>Cell walls</subject><subject>Cellulose</subject><subject>Cloning</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Economic importance</subject><subject>Ethanol</subject><subject>Eucalyptus</subject><subject>Eucalyptus - genetics</subject><subject>Eucalyptus - growth & development</subject><subject>Eucalyptus - metabolism</subject><subject>Eucalyptus grandis</subject><subject>Flowers & plants</subject><subject>Fluorescent indicators</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene Silencing</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Genetic research</subject><subject>Genetic transformation</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Hairy root</subject><subject>hairy roots</subject><subject>Hardwoods</subject><subject>Life Sciences</subject><subject>Lignin</subject><subject>Lignin - genetics</subject><subject>Lignin - metabolism</subject><subject>Localization</subject><subject>Metabolites</subject><subject>Morphology</subject><subject>Nucleotide sequence</subject><subject>Physiological aspects</subject><subject>Plants, Genetically Modified - growth & development</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Pulp</subject><subject>Pulp & paper industry</subject><subject>Renewable energy</subject><subject>Roots</subject><subject>secondary cell wall</subject><subject>Timber</subject><subject>Tissue Culture Techniques</subject><subject>Wood</subject><subject>Wood - genetics</subject><subject>Wood - growth & development</subject><subject>Wood - metabolism</subject><subject>xylem</subject><subject>Xylem - genetics</subject><subject>Xylem - growth & development</subject><subject>Xylem - metabolism</subject><issn>1467-7644</issn><issn>1467-7652</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkt9vFCEQxzdGY2v1wX_AkPhik96VX8vCkzmbaptcog_6TDh2uKPZgxN2t95z_3G5Xj21iYmQwACf-Q4DU1WvCZ6S0s43Cz8ltMb0SXVMuGgmjajp04PN-VH1IucbjCkRtXheHVFRN6q04-rucrCm2276IaOV8WmLUox9PkMGOZP7MwTOeesh9MiEFo2Qsul9B6iPsSsDgh-bLiZAbgi29zHcY2UzQc67ZXRoCQEy8mGM3QhtMdBtjC1yMa3NzuVl9cyZLsOrh_mk-vbx8uvF1WT--dP1xWw-sYIIOllYxzGpJQGlBBeOKtkyY3jjmrZmteCOtBiwglaaBbYK16Z2lkpmxIKTlrCT6v1edzMs1tDaklQynd4kvzZpq6Px-u-T4Fd6GUdNCJNSMl4UTvcKq0d-V7O53u2V-zEisBh30d49REvx-wC512ufLXSdCRCHrEmjsKKSM_ofqFSYSSzrgr59hN7EIYXybJpShTEXmKhCTffU0nSgfXCx5GNLb2HtbQzgyhfqWcMYkVwq9jsxm2LOCdwhO4L1rsZ0qTF9X2OFffPnMx7IX0VVgPM9cFuibP-tpL98uN5L_gRqCtus</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Plasencia, Anna</creator><creator>Soler, Marçal</creator><creator>Dupas, Annabelle</creator><creator>Ladouce, Nathalie</creator><creator>Silva‐Martins, Guilherme</creator><creator>Martinez, Yves</creator><creator>Lapierre, Catherine</creator><creator>Franche, Claudine</creator><creator>Truchet, Isabelle</creator><creator>Grima‐Pettenati, Jacqueline</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4272-9767</orcidid></search><sort><creationdate>201606</creationdate><title>Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation</title><author>Plasencia, Anna ; Soler, Marçal ; Dupas, Annabelle ; Ladouce, Nathalie ; Silva‐Martins, Guilherme ; Martinez, Yves ; Lapierre, Catherine ; Franche, Claudine ; Truchet, Isabelle ; Grima‐Pettenati, Jacqueline</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6162-bcf401581e99646f298d3aa47f7d53564f1d0e09ed8ab0c905a5fc283a6b41d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Agrobacterium rhizogenes</topic><topic>Biomass</topic><topic>Biosynthesis</topic><topic>Cell Wall - chemistry</topic><topic>Cell Wall - genetics</topic><topic>Cell Wall - metabolism</topic><topic>Cell walls</topic><topic>Cellulose</topic><topic>Cloning</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Economic importance</topic><topic>Ethanol</topic><topic>Eucalyptus</topic><topic>Eucalyptus - genetics</topic><topic>Eucalyptus - growth & development</topic><topic>Eucalyptus - metabolism</topic><topic>Eucalyptus grandis</topic><topic>Flowers & plants</topic><topic>Fluorescent indicators</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene Silencing</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Genetic research</topic><topic>Genetic transformation</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Hairy root</topic><topic>hairy roots</topic><topic>Hardwoods</topic><topic>Life Sciences</topic><topic>Lignin</topic><topic>Lignin - genetics</topic><topic>Lignin - metabolism</topic><topic>Localization</topic><topic>Metabolites</topic><topic>Morphology</topic><topic>Nucleotide sequence</topic><topic>Physiological aspects</topic><topic>Plants, Genetically Modified - growth & development</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Pulp</topic><topic>Pulp & paper industry</topic><topic>Renewable energy</topic><topic>Roots</topic><topic>secondary cell wall</topic><topic>Timber</topic><topic>Tissue Culture Techniques</topic><topic>Wood</topic><topic>Wood - genetics</topic><topic>Wood - growth & development</topic><topic>Wood - metabolism</topic><topic>xylem</topic><topic>Xylem - genetics</topic><topic>Xylem - growth & development</topic><topic>Xylem - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plasencia, Anna</creatorcontrib><creatorcontrib>Soler, Marçal</creatorcontrib><creatorcontrib>Dupas, Annabelle</creatorcontrib><creatorcontrib>Ladouce, Nathalie</creatorcontrib><creatorcontrib>Silva‐Martins, Guilherme</creatorcontrib><creatorcontrib>Martinez, Yves</creatorcontrib><creatorcontrib>Lapierre, Catherine</creatorcontrib><creatorcontrib>Franche, Claudine</creatorcontrib><creatorcontrib>Truchet, Isabelle</creatorcontrib><creatorcontrib>Grima‐Pettenati, Jacqueline</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Plasencia, Anna</au><au>Soler, Marçal</au><au>Dupas, Annabelle</au><au>Ladouce, Nathalie</au><au>Silva‐Martins, Guilherme</au><au>Martinez, Yves</au><au>Lapierre, Catherine</au><au>Franche, Claudine</au><au>Truchet, Isabelle</au><au>Grima‐Pettenati, Jacqueline</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2016-06</date><risdate>2016</risdate><volume>14</volume><issue>6</issue><spage>1381</spage><epage>1393</epage><pages>1381-1393</pages><issn>1467-7644</issn><issn>1467-7652</issn><eissn>1467-7652</eissn><abstract>Summary
Eucalyptus are of tremendous economic importance being the most planted hardwoods worldwide for pulp and paper, timber and bioenergy. The recent release of the Eucalyptus grandis genome sequence pointed out many new candidate genes potentially involved in secondary growth, wood formation or lineage‐specific biosynthetic pathways. Their functional characterization is, however, hindered by the tedious, time‐consuming and inefficient transformation systems available hitherto for eucalypts. To overcome this limitation, we developed a fast, reliable and efficient protocol to obtain and easily detect co‐transformed E. grandis hairy roots using fluorescent markers, with an average efficiency of 62%. We set up conditions both to cultivate excised roots in vitro and to harden composite plants and verified that hairy root morphology and vascular system anatomy were similar to wild‐type ones. We further demonstrated that co‐transformed hairy roots are suitable for medium‐throughput functional studies enabling, for instance, protein subcellular localization, gene expression patterns through RT‐qPCR and promoter expression, as well as the modulation of endogenous gene expression. Down‐regulation of the Eucalyptus cinnamoyl‐CoA reductase1 (EgCCR1) gene, encoding a key enzyme in lignin biosynthesis, led to transgenic roots with reduced lignin levels and thinner cell walls. This gene was used as a proof of concept to demonstrate that the function of genes involved in secondary cell wall biosynthesis and wood formation can be elucidated in transgenic hairy roots using histochemical, transcriptomic and biochemical approaches. The method described here is timely because it will accelerate gene mining of the genome for both basic research and industry purposes.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>26579999</pmid><doi>10.1111/pbi.12502</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4272-9767</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1467-7644 |
ispartof | Plant biotechnology journal, 2016-06, Vol.14 (6), p.1381-1393 |
issn | 1467-7644 1467-7652 1467-7652 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11388834 |
source | Wiley Online Library Open Access |
subjects | Agrobacterium rhizogenes Biomass Biosynthesis Cell Wall - chemistry Cell Wall - genetics Cell Wall - metabolism Cell walls Cellulose Cloning Deoxyribonucleic acid DNA Economic importance Ethanol Eucalyptus Eucalyptus - genetics Eucalyptus - growth & development Eucalyptus - metabolism Eucalyptus grandis Flowers & plants Fluorescent indicators Gene expression Gene Expression Profiling - methods Gene Expression Regulation, Plant Gene Silencing Genes Genetic engineering Genetic research Genetic transformation Genome, Plant Genomes Genomics Hairy root hairy roots Hardwoods Life Sciences Lignin Lignin - genetics Lignin - metabolism Localization Metabolites Morphology Nucleotide sequence Physiological aspects Plants, Genetically Modified - growth & development Plants, Genetically Modified - metabolism Pulp Pulp & paper industry Renewable energy Roots secondary cell wall Timber Tissue Culture Techniques Wood Wood - genetics Wood - growth & development Wood - metabolism xylem Xylem - genetics Xylem - growth & development Xylem - metabolism |
title | Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A35%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eucalyptus%20hairy%20roots,%20a%20fast,%20efficient%20and%20versatile%20tool%20to%20explore%20function%20and%20expression%20of%20genes%20involved%20in%20wood%20formation&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Plasencia,%20Anna&rft.date=2016-06&rft.volume=14&rft.issue=6&rft.spage=1381&rft.epage=1393&rft.pages=1381-1393&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.12502&rft_dat=%3Cgale_24P%3EA733184893%3C/gale_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2290046019&rft_id=info:pmid/26579999&rft_galeid=A733184893&rfr_iscdi=true |