Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation

Summary Eucalyptus are of tremendous economic importance being the most planted hardwoods worldwide for pulp and paper, timber and bioenergy. The recent release of the Eucalyptus grandis genome sequence pointed out many new candidate genes potentially involved in secondary growth, wood formation or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant biotechnology journal 2016-06, Vol.14 (6), p.1381-1393
Hauptverfasser: Plasencia, Anna, Soler, Marçal, Dupas, Annabelle, Ladouce, Nathalie, Silva‐Martins, Guilherme, Martinez, Yves, Lapierre, Catherine, Franche, Claudine, Truchet, Isabelle, Grima‐Pettenati, Jacqueline
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1393
container_issue 6
container_start_page 1381
container_title Plant biotechnology journal
container_volume 14
creator Plasencia, Anna
Soler, Marçal
Dupas, Annabelle
Ladouce, Nathalie
Silva‐Martins, Guilherme
Martinez, Yves
Lapierre, Catherine
Franche, Claudine
Truchet, Isabelle
Grima‐Pettenati, Jacqueline
description Summary Eucalyptus are of tremendous economic importance being the most planted hardwoods worldwide for pulp and paper, timber and bioenergy. The recent release of the Eucalyptus grandis genome sequence pointed out many new candidate genes potentially involved in secondary growth, wood formation or lineage‐specific biosynthetic pathways. Their functional characterization is, however, hindered by the tedious, time‐consuming and inefficient transformation systems available hitherto for eucalypts. To overcome this limitation, we developed a fast, reliable and efficient protocol to obtain and easily detect co‐transformed E. grandis hairy roots using fluorescent markers, with an average efficiency of 62%. We set up conditions both to cultivate excised roots in vitro and to harden composite plants and verified that hairy root morphology and vascular system anatomy were similar to wild‐type ones. We further demonstrated that co‐transformed hairy roots are suitable for medium‐throughput functional studies enabling, for instance, protein subcellular localization, gene expression patterns through RT‐qPCR and promoter expression, as well as the modulation of endogenous gene expression. Down‐regulation of the Eucalyptus cinnamoyl‐CoA reductase1 (EgCCR1) gene, encoding a key enzyme in lignin biosynthesis, led to transgenic roots with reduced lignin levels and thinner cell walls. This gene was used as a proof of concept to demonstrate that the function of genes involved in secondary cell wall biosynthesis and wood formation can be elucidated in transgenic hairy roots using histochemical, transcriptomic and biochemical approaches. The method described here is timely because it will accelerate gene mining of the genome for both basic research and industry purposes.
doi_str_mv 10.1111/pbi.12502
format Article
fullrecord <record><control><sourceid>gale_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11388834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A733184893</galeid><sourcerecordid>A733184893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6162-bcf401581e99646f298d3aa47f7d53564f1d0e09ed8ab0c905a5fc283a6b41d13</originalsourceid><addsrcrecordid>eNqNkt9vFCEQxzdGY2v1wX_AkPhik96VX8vCkzmbaptcog_6TDh2uKPZgxN2t95z_3G5Xj21iYmQwACf-Q4DU1WvCZ6S0s43Cz8ltMb0SXVMuGgmjajp04PN-VH1IucbjCkRtXheHVFRN6q04-rucrCm2276IaOV8WmLUox9PkMGOZP7MwTOeesh9MiEFo2Qsul9B6iPsSsDgh-bLiZAbgi29zHcY2UzQc67ZXRoCQEy8mGM3QhtMdBtjC1yMa3NzuVl9cyZLsOrh_mk-vbx8uvF1WT--dP1xWw-sYIIOllYxzGpJQGlBBeOKtkyY3jjmrZmteCOtBiwglaaBbYK16Z2lkpmxIKTlrCT6v1edzMs1tDaklQynd4kvzZpq6Px-u-T4Fd6GUdNCJNSMl4UTvcKq0d-V7O53u2V-zEisBh30d49REvx-wC512ufLXSdCRCHrEmjsKKSM_ofqFSYSSzrgr59hN7EIYXybJpShTEXmKhCTffU0nSgfXCx5GNLb2HtbQzgyhfqWcMYkVwq9jsxm2LOCdwhO4L1rsZ0qTF9X2OFffPnMx7IX0VVgPM9cFuibP-tpL98uN5L_gRqCtus</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290046019</pqid></control><display><type>article</type><title>Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation</title><source>Wiley Online Library Open Access</source><creator>Plasencia, Anna ; Soler, Marçal ; Dupas, Annabelle ; Ladouce, Nathalie ; Silva‐Martins, Guilherme ; Martinez, Yves ; Lapierre, Catherine ; Franche, Claudine ; Truchet, Isabelle ; Grima‐Pettenati, Jacqueline</creator><creatorcontrib>Plasencia, Anna ; Soler, Marçal ; Dupas, Annabelle ; Ladouce, Nathalie ; Silva‐Martins, Guilherme ; Martinez, Yves ; Lapierre, Catherine ; Franche, Claudine ; Truchet, Isabelle ; Grima‐Pettenati, Jacqueline</creatorcontrib><description>Summary Eucalyptus are of tremendous economic importance being the most planted hardwoods worldwide for pulp and paper, timber and bioenergy. The recent release of the Eucalyptus grandis genome sequence pointed out many new candidate genes potentially involved in secondary growth, wood formation or lineage‐specific biosynthetic pathways. Their functional characterization is, however, hindered by the tedious, time‐consuming and inefficient transformation systems available hitherto for eucalypts. To overcome this limitation, we developed a fast, reliable and efficient protocol to obtain and easily detect co‐transformed E. grandis hairy roots using fluorescent markers, with an average efficiency of 62%. We set up conditions both to cultivate excised roots in vitro and to harden composite plants and verified that hairy root morphology and vascular system anatomy were similar to wild‐type ones. We further demonstrated that co‐transformed hairy roots are suitable for medium‐throughput functional studies enabling, for instance, protein subcellular localization, gene expression patterns through RT‐qPCR and promoter expression, as well as the modulation of endogenous gene expression. Down‐regulation of the Eucalyptus cinnamoyl‐CoA reductase1 (EgCCR1) gene, encoding a key enzyme in lignin biosynthesis, led to transgenic roots with reduced lignin levels and thinner cell walls. This gene was used as a proof of concept to demonstrate that the function of genes involved in secondary cell wall biosynthesis and wood formation can be elucidated in transgenic hairy roots using histochemical, transcriptomic and biochemical approaches. The method described here is timely because it will accelerate gene mining of the genome for both basic research and industry purposes.</description><identifier>ISSN: 1467-7644</identifier><identifier>ISSN: 1467-7652</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.12502</identifier><identifier>PMID: 26579999</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject><![CDATA[Agrobacterium rhizogenes ; Biomass ; Biosynthesis ; Cell Wall - chemistry ; Cell Wall - genetics ; Cell Wall - metabolism ; Cell walls ; Cellulose ; Cloning ; Deoxyribonucleic acid ; DNA ; Economic importance ; Ethanol ; Eucalyptus ; Eucalyptus - genetics ; Eucalyptus - growth & development ; Eucalyptus - metabolism ; Eucalyptus grandis ; Flowers & plants ; Fluorescent indicators ; Gene expression ; Gene Expression Profiling - methods ; Gene Expression Regulation, Plant ; Gene Silencing ; Genes ; Genetic engineering ; Genetic research ; Genetic transformation ; Genome, Plant ; Genomes ; Genomics ; Hairy root ; hairy roots ; Hardwoods ; Life Sciences ; Lignin ; Lignin - genetics ; Lignin - metabolism ; Localization ; Metabolites ; Morphology ; Nucleotide sequence ; Physiological aspects ; Plants, Genetically Modified - growth & development ; Plants, Genetically Modified - metabolism ; Pulp ; Pulp & paper industry ; Renewable energy ; Roots ; secondary cell wall ; Timber ; Tissue Culture Techniques ; Wood ; Wood - genetics ; Wood - growth & development ; Wood - metabolism ; xylem ; Xylem - genetics ; Xylem - growth & development ; Xylem - metabolism]]></subject><ispartof>Plant biotechnology journal, 2016-06, Vol.14 (6), p.1381-1393</ispartof><rights>2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley &amp; Sons Ltd</rights><rights>2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley &amp; Sons Ltd.</rights><rights>COPYRIGHT 2016 John Wiley &amp; Sons, Inc.</rights><rights>2016. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6162-bcf401581e99646f298d3aa47f7d53564f1d0e09ed8ab0c905a5fc283a6b41d13</citedby><cites>FETCH-LOGICAL-c6162-bcf401581e99646f298d3aa47f7d53564f1d0e09ed8ab0c905a5fc283a6b41d13</cites><orcidid>0000-0003-4272-9767</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.12502$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.12502$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,860,881,1411,11542,27903,27904,45553,45554,46030,46454</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpbi.12502$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26579999$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01531606$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Plasencia, Anna</creatorcontrib><creatorcontrib>Soler, Marçal</creatorcontrib><creatorcontrib>Dupas, Annabelle</creatorcontrib><creatorcontrib>Ladouce, Nathalie</creatorcontrib><creatorcontrib>Silva‐Martins, Guilherme</creatorcontrib><creatorcontrib>Martinez, Yves</creatorcontrib><creatorcontrib>Lapierre, Catherine</creatorcontrib><creatorcontrib>Franche, Claudine</creatorcontrib><creatorcontrib>Truchet, Isabelle</creatorcontrib><creatorcontrib>Grima‐Pettenati, Jacqueline</creatorcontrib><title>Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary Eucalyptus are of tremendous economic importance being the most planted hardwoods worldwide for pulp and paper, timber and bioenergy. The recent release of the Eucalyptus grandis genome sequence pointed out many new candidate genes potentially involved in secondary growth, wood formation or lineage‐specific biosynthetic pathways. Their functional characterization is, however, hindered by the tedious, time‐consuming and inefficient transformation systems available hitherto for eucalypts. To overcome this limitation, we developed a fast, reliable and efficient protocol to obtain and easily detect co‐transformed E. grandis hairy roots using fluorescent markers, with an average efficiency of 62%. We set up conditions both to cultivate excised roots in vitro and to harden composite plants and verified that hairy root morphology and vascular system anatomy were similar to wild‐type ones. We further demonstrated that co‐transformed hairy roots are suitable for medium‐throughput functional studies enabling, for instance, protein subcellular localization, gene expression patterns through RT‐qPCR and promoter expression, as well as the modulation of endogenous gene expression. Down‐regulation of the Eucalyptus cinnamoyl‐CoA reductase1 (EgCCR1) gene, encoding a key enzyme in lignin biosynthesis, led to transgenic roots with reduced lignin levels and thinner cell walls. This gene was used as a proof of concept to demonstrate that the function of genes involved in secondary cell wall biosynthesis and wood formation can be elucidated in transgenic hairy roots using histochemical, transcriptomic and biochemical approaches. The method described here is timely because it will accelerate gene mining of the genome for both basic research and industry purposes.</description><subject>Agrobacterium rhizogenes</subject><subject>Biomass</subject><subject>Biosynthesis</subject><subject>Cell Wall - chemistry</subject><subject>Cell Wall - genetics</subject><subject>Cell Wall - metabolism</subject><subject>Cell walls</subject><subject>Cellulose</subject><subject>Cloning</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Economic importance</subject><subject>Ethanol</subject><subject>Eucalyptus</subject><subject>Eucalyptus - genetics</subject><subject>Eucalyptus - growth &amp; development</subject><subject>Eucalyptus - metabolism</subject><subject>Eucalyptus grandis</subject><subject>Flowers &amp; plants</subject><subject>Fluorescent indicators</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene Silencing</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Genetic research</subject><subject>Genetic transformation</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Hairy root</subject><subject>hairy roots</subject><subject>Hardwoods</subject><subject>Life Sciences</subject><subject>Lignin</subject><subject>Lignin - genetics</subject><subject>Lignin - metabolism</subject><subject>Localization</subject><subject>Metabolites</subject><subject>Morphology</subject><subject>Nucleotide sequence</subject><subject>Physiological aspects</subject><subject>Plants, Genetically Modified - growth &amp; development</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Pulp</subject><subject>Pulp &amp; paper industry</subject><subject>Renewable energy</subject><subject>Roots</subject><subject>secondary cell wall</subject><subject>Timber</subject><subject>Tissue Culture Techniques</subject><subject>Wood</subject><subject>Wood - genetics</subject><subject>Wood - growth &amp; development</subject><subject>Wood - metabolism</subject><subject>xylem</subject><subject>Xylem - genetics</subject><subject>Xylem - growth &amp; development</subject><subject>Xylem - metabolism</subject><issn>1467-7644</issn><issn>1467-7652</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkt9vFCEQxzdGY2v1wX_AkPhik96VX8vCkzmbaptcog_6TDh2uKPZgxN2t95z_3G5Xj21iYmQwACf-Q4DU1WvCZ6S0s43Cz8ltMb0SXVMuGgmjajp04PN-VH1IucbjCkRtXheHVFRN6q04-rucrCm2276IaOV8WmLUox9PkMGOZP7MwTOeesh9MiEFo2Qsul9B6iPsSsDgh-bLiZAbgi29zHcY2UzQc67ZXRoCQEy8mGM3QhtMdBtjC1yMa3NzuVl9cyZLsOrh_mk-vbx8uvF1WT--dP1xWw-sYIIOllYxzGpJQGlBBeOKtkyY3jjmrZmteCOtBiwglaaBbYK16Z2lkpmxIKTlrCT6v1edzMs1tDaklQynd4kvzZpq6Px-u-T4Fd6GUdNCJNSMl4UTvcKq0d-V7O53u2V-zEisBh30d49REvx-wC512ufLXSdCRCHrEmjsKKSM_ofqFSYSSzrgr59hN7EIYXybJpShTEXmKhCTffU0nSgfXCx5GNLb2HtbQzgyhfqWcMYkVwq9jsxm2LOCdwhO4L1rsZ0qTF9X2OFffPnMx7IX0VVgPM9cFuibP-tpL98uN5L_gRqCtus</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Plasencia, Anna</creator><creator>Soler, Marçal</creator><creator>Dupas, Annabelle</creator><creator>Ladouce, Nathalie</creator><creator>Silva‐Martins, Guilherme</creator><creator>Martinez, Yves</creator><creator>Lapierre, Catherine</creator><creator>Franche, Claudine</creator><creator>Truchet, Isabelle</creator><creator>Grima‐Pettenati, Jacqueline</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4272-9767</orcidid></search><sort><creationdate>201606</creationdate><title>Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation</title><author>Plasencia, Anna ; Soler, Marçal ; Dupas, Annabelle ; Ladouce, Nathalie ; Silva‐Martins, Guilherme ; Martinez, Yves ; Lapierre, Catherine ; Franche, Claudine ; Truchet, Isabelle ; Grima‐Pettenati, Jacqueline</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6162-bcf401581e99646f298d3aa47f7d53564f1d0e09ed8ab0c905a5fc283a6b41d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Agrobacterium rhizogenes</topic><topic>Biomass</topic><topic>Biosynthesis</topic><topic>Cell Wall - chemistry</topic><topic>Cell Wall - genetics</topic><topic>Cell Wall - metabolism</topic><topic>Cell walls</topic><topic>Cellulose</topic><topic>Cloning</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Economic importance</topic><topic>Ethanol</topic><topic>Eucalyptus</topic><topic>Eucalyptus - genetics</topic><topic>Eucalyptus - growth &amp; development</topic><topic>Eucalyptus - metabolism</topic><topic>Eucalyptus grandis</topic><topic>Flowers &amp; plants</topic><topic>Fluorescent indicators</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene Silencing</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Genetic research</topic><topic>Genetic transformation</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Hairy root</topic><topic>hairy roots</topic><topic>Hardwoods</topic><topic>Life Sciences</topic><topic>Lignin</topic><topic>Lignin - genetics</topic><topic>Lignin - metabolism</topic><topic>Localization</topic><topic>Metabolites</topic><topic>Morphology</topic><topic>Nucleotide sequence</topic><topic>Physiological aspects</topic><topic>Plants, Genetically Modified - growth &amp; development</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Pulp</topic><topic>Pulp &amp; paper industry</topic><topic>Renewable energy</topic><topic>Roots</topic><topic>secondary cell wall</topic><topic>Timber</topic><topic>Tissue Culture Techniques</topic><topic>Wood</topic><topic>Wood - genetics</topic><topic>Wood - growth &amp; development</topic><topic>Wood - metabolism</topic><topic>xylem</topic><topic>Xylem - genetics</topic><topic>Xylem - growth &amp; development</topic><topic>Xylem - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plasencia, Anna</creatorcontrib><creatorcontrib>Soler, Marçal</creatorcontrib><creatorcontrib>Dupas, Annabelle</creatorcontrib><creatorcontrib>Ladouce, Nathalie</creatorcontrib><creatorcontrib>Silva‐Martins, Guilherme</creatorcontrib><creatorcontrib>Martinez, Yves</creatorcontrib><creatorcontrib>Lapierre, Catherine</creatorcontrib><creatorcontrib>Franche, Claudine</creatorcontrib><creatorcontrib>Truchet, Isabelle</creatorcontrib><creatorcontrib>Grima‐Pettenati, Jacqueline</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Plasencia, Anna</au><au>Soler, Marçal</au><au>Dupas, Annabelle</au><au>Ladouce, Nathalie</au><au>Silva‐Martins, Guilherme</au><au>Martinez, Yves</au><au>Lapierre, Catherine</au><au>Franche, Claudine</au><au>Truchet, Isabelle</au><au>Grima‐Pettenati, Jacqueline</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2016-06</date><risdate>2016</risdate><volume>14</volume><issue>6</issue><spage>1381</spage><epage>1393</epage><pages>1381-1393</pages><issn>1467-7644</issn><issn>1467-7652</issn><eissn>1467-7652</eissn><abstract>Summary Eucalyptus are of tremendous economic importance being the most planted hardwoods worldwide for pulp and paper, timber and bioenergy. The recent release of the Eucalyptus grandis genome sequence pointed out many new candidate genes potentially involved in secondary growth, wood formation or lineage‐specific biosynthetic pathways. Their functional characterization is, however, hindered by the tedious, time‐consuming and inefficient transformation systems available hitherto for eucalypts. To overcome this limitation, we developed a fast, reliable and efficient protocol to obtain and easily detect co‐transformed E. grandis hairy roots using fluorescent markers, with an average efficiency of 62%. We set up conditions both to cultivate excised roots in vitro and to harden composite plants and verified that hairy root morphology and vascular system anatomy were similar to wild‐type ones. We further demonstrated that co‐transformed hairy roots are suitable for medium‐throughput functional studies enabling, for instance, protein subcellular localization, gene expression patterns through RT‐qPCR and promoter expression, as well as the modulation of endogenous gene expression. Down‐regulation of the Eucalyptus cinnamoyl‐CoA reductase1 (EgCCR1) gene, encoding a key enzyme in lignin biosynthesis, led to transgenic roots with reduced lignin levels and thinner cell walls. This gene was used as a proof of concept to demonstrate that the function of genes involved in secondary cell wall biosynthesis and wood formation can be elucidated in transgenic hairy roots using histochemical, transcriptomic and biochemical approaches. The method described here is timely because it will accelerate gene mining of the genome for both basic research and industry purposes.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>26579999</pmid><doi>10.1111/pbi.12502</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4272-9767</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1467-7644
ispartof Plant biotechnology journal, 2016-06, Vol.14 (6), p.1381-1393
issn 1467-7644
1467-7652
1467-7652
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11388834
source Wiley Online Library Open Access
subjects Agrobacterium rhizogenes
Biomass
Biosynthesis
Cell Wall - chemistry
Cell Wall - genetics
Cell Wall - metabolism
Cell walls
Cellulose
Cloning
Deoxyribonucleic acid
DNA
Economic importance
Ethanol
Eucalyptus
Eucalyptus - genetics
Eucalyptus - growth & development
Eucalyptus - metabolism
Eucalyptus grandis
Flowers & plants
Fluorescent indicators
Gene expression
Gene Expression Profiling - methods
Gene Expression Regulation, Plant
Gene Silencing
Genes
Genetic engineering
Genetic research
Genetic transformation
Genome, Plant
Genomes
Genomics
Hairy root
hairy roots
Hardwoods
Life Sciences
Lignin
Lignin - genetics
Lignin - metabolism
Localization
Metabolites
Morphology
Nucleotide sequence
Physiological aspects
Plants, Genetically Modified - growth & development
Plants, Genetically Modified - metabolism
Pulp
Pulp & paper industry
Renewable energy
Roots
secondary cell wall
Timber
Tissue Culture Techniques
Wood
Wood - genetics
Wood - growth & development
Wood - metabolism
xylem
Xylem - genetics
Xylem - growth & development
Xylem - metabolism
title Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A35%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eucalyptus%20hairy%20roots,%20a%20fast,%20efficient%20and%20versatile%20tool%20to%20explore%20function%20and%20expression%20of%20genes%20involved%20in%20wood%20formation&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Plasencia,%20Anna&rft.date=2016-06&rft.volume=14&rft.issue=6&rft.spage=1381&rft.epage=1393&rft.pages=1381-1393&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.12502&rft_dat=%3Cgale_24P%3EA733184893%3C/gale_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2290046019&rft_id=info:pmid/26579999&rft_galeid=A733184893&rfr_iscdi=true