Brain organoids: A new tool for modelling of neurodevelopmental disorders
Neurodevelopmental disorders are mostly studied using mice as models. However, the mouse brain lacks similar cell types and structures as those of the human brain. In recent years, emergence of three‐dimensional brain organoids derived from human embryonic stem cells or induced pluripotent stem cell...
Gespeichert in:
Veröffentlicht in: | Journal of cellular and molecular medicine 2024-09, Vol.28 (17), p.e18560-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 17 |
container_start_page | e18560 |
container_title | Journal of cellular and molecular medicine |
container_volume | 28 |
creator | Aili, Yirizhati Maimaitiming, Nuersimanguli Wang, Zengliang Wang, Yongxin |
description | Neurodevelopmental disorders are mostly studied using mice as models. However, the mouse brain lacks similar cell types and structures as those of the human brain. In recent years, emergence of three‐dimensional brain organoids derived from human embryonic stem cells or induced pluripotent stem cells allows for controlled monitoring and evaluation of early neurodevelopmental processes and has opened a window for studying various aspects of human brain development. However, such organoids lack original anatomical structure of the brain during maturation, and neurodevelopmental maturation processes that rely on unique cellular interactions and neural network connections are limited. Consequently, organoids are difficult to be used extensively and effectively while modelling later stages of human brain development and disease progression. To address this problem, several methods and technologies have emerged that aim to enhance the sophisticated regulation of brain organoids developmental processes through bioengineering approaches, which may alleviate some of the current limitations. This review discusses recent advances and application areas of human brain organoid culture methods, aiming to generalize optimization strategies for organoid systems, improve the ability to mimic human brain development, and enhance the application value of organoids. |
doi_str_mv | 10.1111/jcmm.18560 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11388061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102881603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3380-7ae2f133e307eb2379922be4621a7ab3a789af084f0a443dd75390e1de97c4a03</originalsourceid><addsrcrecordid>eNp9kU1PAjEQhhujEUQv_gCziRdjArad_eh6MUj8DMSLnpuyO4slu1tsWQj_3iJI1INz6UzmyZt3-hJyymiP-bqaZlXVYyKK6R5ps0jwbphCuL_tmQDRIkfOTSmFmEF6SFqQ8khEELXJ061Vug6Mnaja6NxdB_2gxmUwN6YMCmODyuRYlrqeBKbwm8b6eYGlmVVYz1UZ5NoZm6N1x-SgUKXDk-3bIW_3d6-Dx-7w5eFp0B92MwBBu4lCXjAABJrgmEOSppyPMYw5U4kag0pEqgoqwoKqMIQ8TyJIKbIc0yQLFYUOudnozppxhXnmbVhVypnVlbIraZSWvze1fpcTs5CMgRDU_0CHXGwVrPlo0M1lpV3mr1Q1msZJYJQLwWIKHj3_g05NY2t_35qCJGI84p663FCZNc5ZLHZuGJXriOQ6IvkVkYfPfvrfod-ZeIBtgKUucfWPlHwejEYb0U9km5vt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3103751252</pqid></control><display><type>article</type><title>Brain organoids: A new tool for modelling of neurodevelopmental disorders</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Aili, Yirizhati ; Maimaitiming, Nuersimanguli ; Wang, Zengliang ; Wang, Yongxin</creator><creatorcontrib>Aili, Yirizhati ; Maimaitiming, Nuersimanguli ; Wang, Zengliang ; Wang, Yongxin</creatorcontrib><description>Neurodevelopmental disorders are mostly studied using mice as models. However, the mouse brain lacks similar cell types and structures as those of the human brain. In recent years, emergence of three‐dimensional brain organoids derived from human embryonic stem cells or induced pluripotent stem cells allows for controlled monitoring and evaluation of early neurodevelopmental processes and has opened a window for studying various aspects of human brain development. However, such organoids lack original anatomical structure of the brain during maturation, and neurodevelopmental maturation processes that rely on unique cellular interactions and neural network connections are limited. Consequently, organoids are difficult to be used extensively and effectively while modelling later stages of human brain development and disease progression. To address this problem, several methods and technologies have emerged that aim to enhance the sophisticated regulation of brain organoids developmental processes through bioengineering approaches, which may alleviate some of the current limitations. This review discusses recent advances and application areas of human brain organoid culture methods, aiming to generalize optimization strategies for organoid systems, improve the ability to mimic human brain development, and enhance the application value of organoids.</description><identifier>ISSN: 1582-1838</identifier><identifier>ISSN: 1582-4934</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.18560</identifier><identifier>PMID: 39258535</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Animal models ; Animals ; Brain - cytology ; Brain - growth & development ; Brain - pathology ; brain organoids ; Brain research ; Cell culture ; Developmental stages ; Disease ; Embryo cells ; Embryogenesis ; Genes ; Humans ; Hypothalamus ; induced pluripotent stem cells ; Induced Pluripotent Stem Cells - cytology ; Induced Pluripotent Stem Cells - metabolism ; Maturation ; Models, Biological ; Nervous system ; Neural networks ; Neural stem cells ; Neurobiology ; neurodevelopmental diseases ; Neurodevelopmental disorders ; Neurodevelopmental Disorders - pathology ; Neurosciences ; Organoids ; Pathogenesis ; Pluripotency ; preclinical models ; Review ; Stem cells</subject><ispartof>Journal of cellular and molecular medicine, 2024-09, Vol.28 (17), p.e18560-n/a</ispartof><rights>2024 The Author(s). published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.</rights><rights>2024 The Author(s). Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3380-7ae2f133e307eb2379922be4621a7ab3a789af084f0a443dd75390e1de97c4a03</cites><orcidid>0000-0002-8411-5678</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11388061/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11388061/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39258535$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aili, Yirizhati</creatorcontrib><creatorcontrib>Maimaitiming, Nuersimanguli</creatorcontrib><creatorcontrib>Wang, Zengliang</creatorcontrib><creatorcontrib>Wang, Yongxin</creatorcontrib><title>Brain organoids: A new tool for modelling of neurodevelopmental disorders</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Neurodevelopmental disorders are mostly studied using mice as models. However, the mouse brain lacks similar cell types and structures as those of the human brain. In recent years, emergence of three‐dimensional brain organoids derived from human embryonic stem cells or induced pluripotent stem cells allows for controlled monitoring and evaluation of early neurodevelopmental processes and has opened a window for studying various aspects of human brain development. However, such organoids lack original anatomical structure of the brain during maturation, and neurodevelopmental maturation processes that rely on unique cellular interactions and neural network connections are limited. Consequently, organoids are difficult to be used extensively and effectively while modelling later stages of human brain development and disease progression. To address this problem, several methods and technologies have emerged that aim to enhance the sophisticated regulation of brain organoids developmental processes through bioengineering approaches, which may alleviate some of the current limitations. This review discusses recent advances and application areas of human brain organoid culture methods, aiming to generalize optimization strategies for organoid systems, improve the ability to mimic human brain development, and enhance the application value of organoids.</description><subject>Animal models</subject><subject>Animals</subject><subject>Brain - cytology</subject><subject>Brain - growth & development</subject><subject>Brain - pathology</subject><subject>brain organoids</subject><subject>Brain research</subject><subject>Cell culture</subject><subject>Developmental stages</subject><subject>Disease</subject><subject>Embryo cells</subject><subject>Embryogenesis</subject><subject>Genes</subject><subject>Humans</subject><subject>Hypothalamus</subject><subject>induced pluripotent stem cells</subject><subject>Induced Pluripotent Stem Cells - cytology</subject><subject>Induced Pluripotent Stem Cells - metabolism</subject><subject>Maturation</subject><subject>Models, Biological</subject><subject>Nervous system</subject><subject>Neural networks</subject><subject>Neural stem cells</subject><subject>Neurobiology</subject><subject>neurodevelopmental diseases</subject><subject>Neurodevelopmental disorders</subject><subject>Neurodevelopmental Disorders - pathology</subject><subject>Neurosciences</subject><subject>Organoids</subject><subject>Pathogenesis</subject><subject>Pluripotency</subject><subject>preclinical models</subject><subject>Review</subject><subject>Stem cells</subject><issn>1582-1838</issn><issn>1582-4934</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1PAjEQhhujEUQv_gCziRdjArad_eh6MUj8DMSLnpuyO4slu1tsWQj_3iJI1INz6UzmyZt3-hJyymiP-bqaZlXVYyKK6R5ps0jwbphCuL_tmQDRIkfOTSmFmEF6SFqQ8khEELXJ061Vug6Mnaja6NxdB_2gxmUwN6YMCmODyuRYlrqeBKbwm8b6eYGlmVVYz1UZ5NoZm6N1x-SgUKXDk-3bIW_3d6-Dx-7w5eFp0B92MwBBu4lCXjAABJrgmEOSppyPMYw5U4kag0pEqgoqwoKqMIQ8TyJIKbIc0yQLFYUOudnozppxhXnmbVhVypnVlbIraZSWvze1fpcTs5CMgRDU_0CHXGwVrPlo0M1lpV3mr1Q1msZJYJQLwWIKHj3_g05NY2t_35qCJGI84p663FCZNc5ZLHZuGJXriOQ6IvkVkYfPfvrfod-ZeIBtgKUucfWPlHwejEYb0U9km5vt</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Aili, Yirizhati</creator><creator>Maimaitiming, Nuersimanguli</creator><creator>Wang, Zengliang</creator><creator>Wang, Yongxin</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8411-5678</orcidid></search><sort><creationdate>202409</creationdate><title>Brain organoids: A new tool for modelling of neurodevelopmental disorders</title><author>Aili, Yirizhati ; Maimaitiming, Nuersimanguli ; Wang, Zengliang ; Wang, Yongxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3380-7ae2f133e307eb2379922be4621a7ab3a789af084f0a443dd75390e1de97c4a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Brain - cytology</topic><topic>Brain - growth & development</topic><topic>Brain - pathology</topic><topic>brain organoids</topic><topic>Brain research</topic><topic>Cell culture</topic><topic>Developmental stages</topic><topic>Disease</topic><topic>Embryo cells</topic><topic>Embryogenesis</topic><topic>Genes</topic><topic>Humans</topic><topic>Hypothalamus</topic><topic>induced pluripotent stem cells</topic><topic>Induced Pluripotent Stem Cells - cytology</topic><topic>Induced Pluripotent Stem Cells - metabolism</topic><topic>Maturation</topic><topic>Models, Biological</topic><topic>Nervous system</topic><topic>Neural networks</topic><topic>Neural stem cells</topic><topic>Neurobiology</topic><topic>neurodevelopmental diseases</topic><topic>Neurodevelopmental disorders</topic><topic>Neurodevelopmental Disorders - pathology</topic><topic>Neurosciences</topic><topic>Organoids</topic><topic>Pathogenesis</topic><topic>Pluripotency</topic><topic>preclinical models</topic><topic>Review</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aili, Yirizhati</creatorcontrib><creatorcontrib>Maimaitiming, Nuersimanguli</creatorcontrib><creatorcontrib>Wang, Zengliang</creatorcontrib><creatorcontrib>Wang, Yongxin</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aili, Yirizhati</au><au>Maimaitiming, Nuersimanguli</au><au>Wang, Zengliang</au><au>Wang, Yongxin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain organoids: A new tool for modelling of neurodevelopmental disorders</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2024-09</date><risdate>2024</risdate><volume>28</volume><issue>17</issue><spage>e18560</spage><epage>n/a</epage><pages>e18560-n/a</pages><issn>1582-1838</issn><issn>1582-4934</issn><eissn>1582-4934</eissn><abstract>Neurodevelopmental disorders are mostly studied using mice as models. However, the mouse brain lacks similar cell types and structures as those of the human brain. In recent years, emergence of three‐dimensional brain organoids derived from human embryonic stem cells or induced pluripotent stem cells allows for controlled monitoring and evaluation of early neurodevelopmental processes and has opened a window for studying various aspects of human brain development. However, such organoids lack original anatomical structure of the brain during maturation, and neurodevelopmental maturation processes that rely on unique cellular interactions and neural network connections are limited. Consequently, organoids are difficult to be used extensively and effectively while modelling later stages of human brain development and disease progression. To address this problem, several methods and technologies have emerged that aim to enhance the sophisticated regulation of brain organoids developmental processes through bioengineering approaches, which may alleviate some of the current limitations. This review discusses recent advances and application areas of human brain organoid culture methods, aiming to generalize optimization strategies for organoid systems, improve the ability to mimic human brain development, and enhance the application value of organoids.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>39258535</pmid><doi>10.1111/jcmm.18560</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8411-5678</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1582-1838 |
ispartof | Journal of cellular and molecular medicine, 2024-09, Vol.28 (17), p.e18560-n/a |
issn | 1582-1838 1582-4934 1582-4934 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11388061 |
source | MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animal models Animals Brain - cytology Brain - growth & development Brain - pathology brain organoids Brain research Cell culture Developmental stages Disease Embryo cells Embryogenesis Genes Humans Hypothalamus induced pluripotent stem cells Induced Pluripotent Stem Cells - cytology Induced Pluripotent Stem Cells - metabolism Maturation Models, Biological Nervous system Neural networks Neural stem cells Neurobiology neurodevelopmental diseases Neurodevelopmental disorders Neurodevelopmental Disorders - pathology Neurosciences Organoids Pathogenesis Pluripotency preclinical models Review Stem cells |
title | Brain organoids: A new tool for modelling of neurodevelopmental disorders |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A02%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20organoids:%20A%20new%20tool%20for%20modelling%20of%20neurodevelopmental%20disorders&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Aili,%20Yirizhati&rft.date=2024-09&rft.volume=28&rft.issue=17&rft.spage=e18560&rft.epage=n/a&rft.pages=e18560-n/a&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.18560&rft_dat=%3Cproquest_pubme%3E3102881603%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3103751252&rft_id=info:pmid/39258535&rfr_iscdi=true |