Valence Electronic Structure of Interfacial Phenol in Water Droplets

Biochemistry and a large part of atmospheric chemistry occur in aqueous environments or at aqueous interfaces, where (photo)­chemical reaction rates can be increased by up to several orders of magnitude. The key to understanding the chemistry and photoresponse of molecules in and “on” water lies in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2024-09, Vol.128 (35), p.7396-7406
Hauptverfasser: Heitland, Jonas, Lee, Jong Chan, Ban, Loren, Abma, Grite L., Fortune, William G., Fielding, Helen H., Yoder, Bruce L., Signorell, Ruth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7406
container_issue 35
container_start_page 7396
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 128
creator Heitland, Jonas
Lee, Jong Chan
Ban, Loren
Abma, Grite L.
Fortune, William G.
Fielding, Helen H.
Yoder, Bruce L.
Signorell, Ruth
description Biochemistry and a large part of atmospheric chemistry occur in aqueous environments or at aqueous interfaces, where (photo)­chemical reaction rates can be increased by up to several orders of magnitude. The key to understanding the chemistry and photoresponse of molecules in and “on” water lies in their valence electronic structure, with a sensitive probe being photoelectron spectroscopy. This work reports velocity-map photoelectron imaging of submicrometer-sized aqueous phenol droplets in the valence region after nonresonant (288 nm) and resonance-enhanced (274 nm) two-photon ionization with femtosecond ultraviolet light, complementing previous liquid microjet studies. For nonresonant photoionization, our concentration-dependent study reveals a systematic decrease in the vertical binding energy (VBE) of aqueous phenol from 8.0 ± 0.1 eV at low concentration (0.01 M) to 7.6 ± 0.1 eV at high concentration (0.8 M). We attribute this shift to a systematic lowering of the energy of the lowest cationic state with increasing concentration caused by the phenol dimer and aggregate formation at the droplet surface. Contrary to nonresonant photoionization, no significant concentration dependence of the VBE was observed for resonance-enhanced photoionization. We explain the concentration-independent VBE of ∼8.1 eV observed upon resonant ionization by ultrafast intermediate state relaxation and changes in the accessible Franck–Condon region as a consequence of the lowering of the intermediate state potential energy due to the formation of phenol excimers and excited phenol aggregates. Correcting for the influence of electron transport scattering in the droplets reduced the measured VBEs by 0.1–0.2 eV.
doi_str_mv 10.1021/acs.jpca.4c04269
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11382284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097149343</sourcerecordid><originalsourceid>FETCH-LOGICAL-a275t-c1a14f0602e630a9c0c279dcee0485a39b0e6bca0717d13f440e963e2c446b013</originalsourceid><addsrcrecordid>eNp1kMtLAzEQxoMoVqt3T7JHD26dPPaRk0hbHyAo-DqGNM7qSprUZFfwvzfaKnrwNMPM930z_AjZozCiwOiRNnH0sjB6JAwIVso1skULBnnBaLGeeqhlXpRcDsh2jC8AQDkTm2TAJa0ZreUWmdxri85gNrVouuBda7KbLvSm6wNmvskuXIeh0abVNrt-Rudt1rrsQadpNgl-YbGLO2Sj0Tbi7qoOyd3p9HZ8nl9enV2MTy5zzaqiyw3VVDRQAsOSg5YGDKvko0EEUReayxlgOTMaKlo9Ut4IAShLjswIUc7S70NyvMxd9LM5JqPrgrZqEdq5Du_K61b93bj2WT35N0UprxmrRUo4WCUE_9pj7NS8jQat1Q59HxUHWVEhueBJCkupCT7GgM3PHQrqk75K9NUnfbWinyz7v__7MXzjToLDpeDL6vvgEq7_8z4A1IqRXQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097149343</pqid></control><display><type>article</type><title>Valence Electronic Structure of Interfacial Phenol in Water Droplets</title><source>American Chemical Society Journals</source><creator>Heitland, Jonas ; Lee, Jong Chan ; Ban, Loren ; Abma, Grite L. ; Fortune, William G. ; Fielding, Helen H. ; Yoder, Bruce L. ; Signorell, Ruth</creator><creatorcontrib>Heitland, Jonas ; Lee, Jong Chan ; Ban, Loren ; Abma, Grite L. ; Fortune, William G. ; Fielding, Helen H. ; Yoder, Bruce L. ; Signorell, Ruth</creatorcontrib><description>Biochemistry and a large part of atmospheric chemistry occur in aqueous environments or at aqueous interfaces, where (photo)­chemical reaction rates can be increased by up to several orders of magnitude. The key to understanding the chemistry and photoresponse of molecules in and “on” water lies in their valence electronic structure, with a sensitive probe being photoelectron spectroscopy. This work reports velocity-map photoelectron imaging of submicrometer-sized aqueous phenol droplets in the valence region after nonresonant (288 nm) and resonance-enhanced (274 nm) two-photon ionization with femtosecond ultraviolet light, complementing previous liquid microjet studies. For nonresonant photoionization, our concentration-dependent study reveals a systematic decrease in the vertical binding energy (VBE) of aqueous phenol from 8.0 ± 0.1 eV at low concentration (0.01 M) to 7.6 ± 0.1 eV at high concentration (0.8 M). We attribute this shift to a systematic lowering of the energy of the lowest cationic state with increasing concentration caused by the phenol dimer and aggregate formation at the droplet surface. Contrary to nonresonant photoionization, no significant concentration dependence of the VBE was observed for resonance-enhanced photoionization. We explain the concentration-independent VBE of ∼8.1 eV observed upon resonant ionization by ultrafast intermediate state relaxation and changes in the accessible Franck–Condon region as a consequence of the lowering of the intermediate state potential energy due to the formation of phenol excimers and excited phenol aggregates. Correcting for the influence of electron transport scattering in the droplets reduced the measured VBEs by 0.1–0.2 eV.</description><identifier>ISSN: 1089-5639</identifier><identifier>ISSN: 1520-5215</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.4c04269</identifier><identifier>PMID: 39182189</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2024-09, Vol.128 (35), p.7396-7406</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a275t-c1a14f0602e630a9c0c279dcee0485a39b0e6bca0717d13f440e963e2c446b013</cites><orcidid>0000-0001-6249-4382 ; 0000-0003-1111-9261 ; 0000-0001-5491-1350 ; 0000-0001-5726-1373 ; 0000-0002-9312-2984 ; 0000-0003-1572-0070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.4c04269$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.4c04269$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39182189$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heitland, Jonas</creatorcontrib><creatorcontrib>Lee, Jong Chan</creatorcontrib><creatorcontrib>Ban, Loren</creatorcontrib><creatorcontrib>Abma, Grite L.</creatorcontrib><creatorcontrib>Fortune, William G.</creatorcontrib><creatorcontrib>Fielding, Helen H.</creatorcontrib><creatorcontrib>Yoder, Bruce L.</creatorcontrib><creatorcontrib>Signorell, Ruth</creatorcontrib><title>Valence Electronic Structure of Interfacial Phenol in Water Droplets</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Biochemistry and a large part of atmospheric chemistry occur in aqueous environments or at aqueous interfaces, where (photo)­chemical reaction rates can be increased by up to several orders of magnitude. The key to understanding the chemistry and photoresponse of molecules in and “on” water lies in their valence electronic structure, with a sensitive probe being photoelectron spectroscopy. This work reports velocity-map photoelectron imaging of submicrometer-sized aqueous phenol droplets in the valence region after nonresonant (288 nm) and resonance-enhanced (274 nm) two-photon ionization with femtosecond ultraviolet light, complementing previous liquid microjet studies. For nonresonant photoionization, our concentration-dependent study reveals a systematic decrease in the vertical binding energy (VBE) of aqueous phenol from 8.0 ± 0.1 eV at low concentration (0.01 M) to 7.6 ± 0.1 eV at high concentration (0.8 M). We attribute this shift to a systematic lowering of the energy of the lowest cationic state with increasing concentration caused by the phenol dimer and aggregate formation at the droplet surface. Contrary to nonresonant photoionization, no significant concentration dependence of the VBE was observed for resonance-enhanced photoionization. We explain the concentration-independent VBE of ∼8.1 eV observed upon resonant ionization by ultrafast intermediate state relaxation and changes in the accessible Franck–Condon region as a consequence of the lowering of the intermediate state potential energy due to the formation of phenol excimers and excited phenol aggregates. Correcting for the influence of electron transport scattering in the droplets reduced the measured VBEs by 0.1–0.2 eV.</description><subject>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters</subject><issn>1089-5639</issn><issn>1520-5215</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMtLAzEQxoMoVqt3T7JHD26dPPaRk0hbHyAo-DqGNM7qSprUZFfwvzfaKnrwNMPM930z_AjZozCiwOiRNnH0sjB6JAwIVso1skULBnnBaLGeeqhlXpRcDsh2jC8AQDkTm2TAJa0ZreUWmdxri85gNrVouuBda7KbLvSm6wNmvskuXIeh0abVNrt-Rudt1rrsQadpNgl-YbGLO2Sj0Tbi7qoOyd3p9HZ8nl9enV2MTy5zzaqiyw3VVDRQAsOSg5YGDKvko0EEUReayxlgOTMaKlo9Ut4IAShLjswIUc7S70NyvMxd9LM5JqPrgrZqEdq5Du_K61b93bj2WT35N0UprxmrRUo4WCUE_9pj7NS8jQat1Q59HxUHWVEhueBJCkupCT7GgM3PHQrqk75K9NUnfbWinyz7v__7MXzjToLDpeDL6vvgEq7_8z4A1IqRXQ</recordid><startdate>20240905</startdate><enddate>20240905</enddate><creator>Heitland, Jonas</creator><creator>Lee, Jong Chan</creator><creator>Ban, Loren</creator><creator>Abma, Grite L.</creator><creator>Fortune, William G.</creator><creator>Fielding, Helen H.</creator><creator>Yoder, Bruce L.</creator><creator>Signorell, Ruth</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6249-4382</orcidid><orcidid>https://orcid.org/0000-0003-1111-9261</orcidid><orcidid>https://orcid.org/0000-0001-5491-1350</orcidid><orcidid>https://orcid.org/0000-0001-5726-1373</orcidid><orcidid>https://orcid.org/0000-0002-9312-2984</orcidid><orcidid>https://orcid.org/0000-0003-1572-0070</orcidid></search><sort><creationdate>20240905</creationdate><title>Valence Electronic Structure of Interfacial Phenol in Water Droplets</title><author>Heitland, Jonas ; Lee, Jong Chan ; Ban, Loren ; Abma, Grite L. ; Fortune, William G. ; Fielding, Helen H. ; Yoder, Bruce L. ; Signorell, Ruth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a275t-c1a14f0602e630a9c0c279dcee0485a39b0e6bca0717d13f440e963e2c446b013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heitland, Jonas</creatorcontrib><creatorcontrib>Lee, Jong Chan</creatorcontrib><creatorcontrib>Ban, Loren</creatorcontrib><creatorcontrib>Abma, Grite L.</creatorcontrib><creatorcontrib>Fortune, William G.</creatorcontrib><creatorcontrib>Fielding, Helen H.</creatorcontrib><creatorcontrib>Yoder, Bruce L.</creatorcontrib><creatorcontrib>Signorell, Ruth</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heitland, Jonas</au><au>Lee, Jong Chan</au><au>Ban, Loren</au><au>Abma, Grite L.</au><au>Fortune, William G.</au><au>Fielding, Helen H.</au><au>Yoder, Bruce L.</au><au>Signorell, Ruth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Valence Electronic Structure of Interfacial Phenol in Water Droplets</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2024-09-05</date><risdate>2024</risdate><volume>128</volume><issue>35</issue><spage>7396</spage><epage>7406</epage><pages>7396-7406</pages><issn>1089-5639</issn><issn>1520-5215</issn><eissn>1520-5215</eissn><abstract>Biochemistry and a large part of atmospheric chemistry occur in aqueous environments or at aqueous interfaces, where (photo)­chemical reaction rates can be increased by up to several orders of magnitude. The key to understanding the chemistry and photoresponse of molecules in and “on” water lies in their valence electronic structure, with a sensitive probe being photoelectron spectroscopy. This work reports velocity-map photoelectron imaging of submicrometer-sized aqueous phenol droplets in the valence region after nonresonant (288 nm) and resonance-enhanced (274 nm) two-photon ionization with femtosecond ultraviolet light, complementing previous liquid microjet studies. For nonresonant photoionization, our concentration-dependent study reveals a systematic decrease in the vertical binding energy (VBE) of aqueous phenol from 8.0 ± 0.1 eV at low concentration (0.01 M) to 7.6 ± 0.1 eV at high concentration (0.8 M). We attribute this shift to a systematic lowering of the energy of the lowest cationic state with increasing concentration caused by the phenol dimer and aggregate formation at the droplet surface. Contrary to nonresonant photoionization, no significant concentration dependence of the VBE was observed for resonance-enhanced photoionization. We explain the concentration-independent VBE of ∼8.1 eV observed upon resonant ionization by ultrafast intermediate state relaxation and changes in the accessible Franck–Condon region as a consequence of the lowering of the intermediate state potential energy due to the formation of phenol excimers and excited phenol aggregates. Correcting for the influence of electron transport scattering in the droplets reduced the measured VBEs by 0.1–0.2 eV.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39182189</pmid><doi>10.1021/acs.jpca.4c04269</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6249-4382</orcidid><orcidid>https://orcid.org/0000-0003-1111-9261</orcidid><orcidid>https://orcid.org/0000-0001-5491-1350</orcidid><orcidid>https://orcid.org/0000-0001-5726-1373</orcidid><orcidid>https://orcid.org/0000-0002-9312-2984</orcidid><orcidid>https://orcid.org/0000-0003-1572-0070</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2024-09, Vol.128 (35), p.7396-7406
issn 1089-5639
1520-5215
1520-5215
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11382284
source American Chemical Society Journals
subjects A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters
title Valence Electronic Structure of Interfacial Phenol in Water Droplets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A41%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Valence%20Electronic%20Structure%20of%20Interfacial%20Phenol%20in%20Water%20Droplets&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Heitland,%20Jonas&rft.date=2024-09-05&rft.volume=128&rft.issue=35&rft.spage=7396&rft.epage=7406&rft.pages=7396-7406&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.4c04269&rft_dat=%3Cproquest_pubme%3E3097149343%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097149343&rft_id=info:pmid/39182189&rfr_iscdi=true