Valence Electronic Structure of Interfacial Phenol in Water Droplets
Biochemistry and a large part of atmospheric chemistry occur in aqueous environments or at aqueous interfaces, where (photo)chemical reaction rates can be increased by up to several orders of magnitude. The key to understanding the chemistry and photoresponse of molecules in and “on” water lies in...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2024-09, Vol.128 (35), p.7396-7406 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7406 |
---|---|
container_issue | 35 |
container_start_page | 7396 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 128 |
creator | Heitland, Jonas Lee, Jong Chan Ban, Loren Abma, Grite L. Fortune, William G. Fielding, Helen H. Yoder, Bruce L. Signorell, Ruth |
description | Biochemistry and a large part of atmospheric chemistry occur in aqueous environments or at aqueous interfaces, where (photo)chemical reaction rates can be increased by up to several orders of magnitude. The key to understanding the chemistry and photoresponse of molecules in and “on” water lies in their valence electronic structure, with a sensitive probe being photoelectron spectroscopy. This work reports velocity-map photoelectron imaging of submicrometer-sized aqueous phenol droplets in the valence region after nonresonant (288 nm) and resonance-enhanced (274 nm) two-photon ionization with femtosecond ultraviolet light, complementing previous liquid microjet studies. For nonresonant photoionization, our concentration-dependent study reveals a systematic decrease in the vertical binding energy (VBE) of aqueous phenol from 8.0 ± 0.1 eV at low concentration (0.01 M) to 7.6 ± 0.1 eV at high concentration (0.8 M). We attribute this shift to a systematic lowering of the energy of the lowest cationic state with increasing concentration caused by the phenol dimer and aggregate formation at the droplet surface. Contrary to nonresonant photoionization, no significant concentration dependence of the VBE was observed for resonance-enhanced photoionization. We explain the concentration-independent VBE of ∼8.1 eV observed upon resonant ionization by ultrafast intermediate state relaxation and changes in the accessible Franck–Condon region as a consequence of the lowering of the intermediate state potential energy due to the formation of phenol excimers and excited phenol aggregates. Correcting for the influence of electron transport scattering in the droplets reduced the measured VBEs by 0.1–0.2 eV. |
doi_str_mv | 10.1021/acs.jpca.4c04269 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11382284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097149343</sourcerecordid><originalsourceid>FETCH-LOGICAL-a275t-c1a14f0602e630a9c0c279dcee0485a39b0e6bca0717d13f440e963e2c446b013</originalsourceid><addsrcrecordid>eNp1kMtLAzEQxoMoVqt3T7JHD26dPPaRk0hbHyAo-DqGNM7qSprUZFfwvzfaKnrwNMPM930z_AjZozCiwOiRNnH0sjB6JAwIVso1skULBnnBaLGeeqhlXpRcDsh2jC8AQDkTm2TAJa0ZreUWmdxri85gNrVouuBda7KbLvSm6wNmvskuXIeh0abVNrt-Rudt1rrsQadpNgl-YbGLO2Sj0Tbi7qoOyd3p9HZ8nl9enV2MTy5zzaqiyw3VVDRQAsOSg5YGDKvko0EEUReayxlgOTMaKlo9Ut4IAShLjswIUc7S70NyvMxd9LM5JqPrgrZqEdq5Du_K61b93bj2WT35N0UprxmrRUo4WCUE_9pj7NS8jQat1Q59HxUHWVEhueBJCkupCT7GgM3PHQrqk75K9NUnfbWinyz7v__7MXzjToLDpeDL6vvgEq7_8z4A1IqRXQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3097149343</pqid></control><display><type>article</type><title>Valence Electronic Structure of Interfacial Phenol in Water Droplets</title><source>American Chemical Society Journals</source><creator>Heitland, Jonas ; Lee, Jong Chan ; Ban, Loren ; Abma, Grite L. ; Fortune, William G. ; Fielding, Helen H. ; Yoder, Bruce L. ; Signorell, Ruth</creator><creatorcontrib>Heitland, Jonas ; Lee, Jong Chan ; Ban, Loren ; Abma, Grite L. ; Fortune, William G. ; Fielding, Helen H. ; Yoder, Bruce L. ; Signorell, Ruth</creatorcontrib><description>Biochemistry and a large part of atmospheric chemistry occur in aqueous environments or at aqueous interfaces, where (photo)chemical reaction rates can be increased by up to several orders of magnitude. The key to understanding the chemistry and photoresponse of molecules in and “on” water lies in their valence electronic structure, with a sensitive probe being photoelectron spectroscopy. This work reports velocity-map photoelectron imaging of submicrometer-sized aqueous phenol droplets in the valence region after nonresonant (288 nm) and resonance-enhanced (274 nm) two-photon ionization with femtosecond ultraviolet light, complementing previous liquid microjet studies. For nonresonant photoionization, our concentration-dependent study reveals a systematic decrease in the vertical binding energy (VBE) of aqueous phenol from 8.0 ± 0.1 eV at low concentration (0.01 M) to 7.6 ± 0.1 eV at high concentration (0.8 M). We attribute this shift to a systematic lowering of the energy of the lowest cationic state with increasing concentration caused by the phenol dimer and aggregate formation at the droplet surface. Contrary to nonresonant photoionization, no significant concentration dependence of the VBE was observed for resonance-enhanced photoionization. We explain the concentration-independent VBE of ∼8.1 eV observed upon resonant ionization by ultrafast intermediate state relaxation and changes in the accessible Franck–Condon region as a consequence of the lowering of the intermediate state potential energy due to the formation of phenol excimers and excited phenol aggregates. Correcting for the influence of electron transport scattering in the droplets reduced the measured VBEs by 0.1–0.2 eV.</description><identifier>ISSN: 1089-5639</identifier><identifier>ISSN: 1520-5215</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/acs.jpca.4c04269</identifier><identifier>PMID: 39182189</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2024-09, Vol.128 (35), p.7396-7406</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><rights>2024 The Authors. Published by American Chemical Society 2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a275t-c1a14f0602e630a9c0c279dcee0485a39b0e6bca0717d13f440e963e2c446b013</cites><orcidid>0000-0001-6249-4382 ; 0000-0003-1111-9261 ; 0000-0001-5491-1350 ; 0000-0001-5726-1373 ; 0000-0002-9312-2984 ; 0000-0003-1572-0070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpca.4c04269$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpca.4c04269$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39182189$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heitland, Jonas</creatorcontrib><creatorcontrib>Lee, Jong Chan</creatorcontrib><creatorcontrib>Ban, Loren</creatorcontrib><creatorcontrib>Abma, Grite L.</creatorcontrib><creatorcontrib>Fortune, William G.</creatorcontrib><creatorcontrib>Fielding, Helen H.</creatorcontrib><creatorcontrib>Yoder, Bruce L.</creatorcontrib><creatorcontrib>Signorell, Ruth</creatorcontrib><title>Valence Electronic Structure of Interfacial Phenol in Water Droplets</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Biochemistry and a large part of atmospheric chemistry occur in aqueous environments or at aqueous interfaces, where (photo)chemical reaction rates can be increased by up to several orders of magnitude. The key to understanding the chemistry and photoresponse of molecules in and “on” water lies in their valence electronic structure, with a sensitive probe being photoelectron spectroscopy. This work reports velocity-map photoelectron imaging of submicrometer-sized aqueous phenol droplets in the valence region after nonresonant (288 nm) and resonance-enhanced (274 nm) two-photon ionization with femtosecond ultraviolet light, complementing previous liquid microjet studies. For nonresonant photoionization, our concentration-dependent study reveals a systematic decrease in the vertical binding energy (VBE) of aqueous phenol from 8.0 ± 0.1 eV at low concentration (0.01 M) to 7.6 ± 0.1 eV at high concentration (0.8 M). We attribute this shift to a systematic lowering of the energy of the lowest cationic state with increasing concentration caused by the phenol dimer and aggregate formation at the droplet surface. Contrary to nonresonant photoionization, no significant concentration dependence of the VBE was observed for resonance-enhanced photoionization. We explain the concentration-independent VBE of ∼8.1 eV observed upon resonant ionization by ultrafast intermediate state relaxation and changes in the accessible Franck–Condon region as a consequence of the lowering of the intermediate state potential energy due to the formation of phenol excimers and excited phenol aggregates. Correcting for the influence of electron transport scattering in the droplets reduced the measured VBEs by 0.1–0.2 eV.</description><subject>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters</subject><issn>1089-5639</issn><issn>1520-5215</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMtLAzEQxoMoVqt3T7JHD26dPPaRk0hbHyAo-DqGNM7qSprUZFfwvzfaKnrwNMPM930z_AjZozCiwOiRNnH0sjB6JAwIVso1skULBnnBaLGeeqhlXpRcDsh2jC8AQDkTm2TAJa0ZreUWmdxri85gNrVouuBda7KbLvSm6wNmvskuXIeh0abVNrt-Rudt1rrsQadpNgl-YbGLO2Sj0Tbi7qoOyd3p9HZ8nl9enV2MTy5zzaqiyw3VVDRQAsOSg5YGDKvko0EEUReayxlgOTMaKlo9Ut4IAShLjswIUc7S70NyvMxd9LM5JqPrgrZqEdq5Du_K61b93bj2WT35N0UprxmrRUo4WCUE_9pj7NS8jQat1Q59HxUHWVEhueBJCkupCT7GgM3PHQrqk75K9NUnfbWinyz7v__7MXzjToLDpeDL6vvgEq7_8z4A1IqRXQ</recordid><startdate>20240905</startdate><enddate>20240905</enddate><creator>Heitland, Jonas</creator><creator>Lee, Jong Chan</creator><creator>Ban, Loren</creator><creator>Abma, Grite L.</creator><creator>Fortune, William G.</creator><creator>Fielding, Helen H.</creator><creator>Yoder, Bruce L.</creator><creator>Signorell, Ruth</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6249-4382</orcidid><orcidid>https://orcid.org/0000-0003-1111-9261</orcidid><orcidid>https://orcid.org/0000-0001-5491-1350</orcidid><orcidid>https://orcid.org/0000-0001-5726-1373</orcidid><orcidid>https://orcid.org/0000-0002-9312-2984</orcidid><orcidid>https://orcid.org/0000-0003-1572-0070</orcidid></search><sort><creationdate>20240905</creationdate><title>Valence Electronic Structure of Interfacial Phenol in Water Droplets</title><author>Heitland, Jonas ; Lee, Jong Chan ; Ban, Loren ; Abma, Grite L. ; Fortune, William G. ; Fielding, Helen H. ; Yoder, Bruce L. ; Signorell, Ruth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a275t-c1a14f0602e630a9c0c279dcee0485a39b0e6bca0717d13f440e963e2c446b013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heitland, Jonas</creatorcontrib><creatorcontrib>Lee, Jong Chan</creatorcontrib><creatorcontrib>Ban, Loren</creatorcontrib><creatorcontrib>Abma, Grite L.</creatorcontrib><creatorcontrib>Fortune, William G.</creatorcontrib><creatorcontrib>Fielding, Helen H.</creatorcontrib><creatorcontrib>Yoder, Bruce L.</creatorcontrib><creatorcontrib>Signorell, Ruth</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heitland, Jonas</au><au>Lee, Jong Chan</au><au>Ban, Loren</au><au>Abma, Grite L.</au><au>Fortune, William G.</au><au>Fielding, Helen H.</au><au>Yoder, Bruce L.</au><au>Signorell, Ruth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Valence Electronic Structure of Interfacial Phenol in Water Droplets</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2024-09-05</date><risdate>2024</risdate><volume>128</volume><issue>35</issue><spage>7396</spage><epage>7406</epage><pages>7396-7406</pages><issn>1089-5639</issn><issn>1520-5215</issn><eissn>1520-5215</eissn><abstract>Biochemistry and a large part of atmospheric chemistry occur in aqueous environments or at aqueous interfaces, where (photo)chemical reaction rates can be increased by up to several orders of magnitude. The key to understanding the chemistry and photoresponse of molecules in and “on” water lies in their valence electronic structure, with a sensitive probe being photoelectron spectroscopy. This work reports velocity-map photoelectron imaging of submicrometer-sized aqueous phenol droplets in the valence region after nonresonant (288 nm) and resonance-enhanced (274 nm) two-photon ionization with femtosecond ultraviolet light, complementing previous liquid microjet studies. For nonresonant photoionization, our concentration-dependent study reveals a systematic decrease in the vertical binding energy (VBE) of aqueous phenol from 8.0 ± 0.1 eV at low concentration (0.01 M) to 7.6 ± 0.1 eV at high concentration (0.8 M). We attribute this shift to a systematic lowering of the energy of the lowest cationic state with increasing concentration caused by the phenol dimer and aggregate formation at the droplet surface. Contrary to nonresonant photoionization, no significant concentration dependence of the VBE was observed for resonance-enhanced photoionization. We explain the concentration-independent VBE of ∼8.1 eV observed upon resonant ionization by ultrafast intermediate state relaxation and changes in the accessible Franck–Condon region as a consequence of the lowering of the intermediate state potential energy due to the formation of phenol excimers and excited phenol aggregates. Correcting for the influence of electron transport scattering in the droplets reduced the measured VBEs by 0.1–0.2 eV.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>39182189</pmid><doi>10.1021/acs.jpca.4c04269</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6249-4382</orcidid><orcidid>https://orcid.org/0000-0003-1111-9261</orcidid><orcidid>https://orcid.org/0000-0001-5491-1350</orcidid><orcidid>https://orcid.org/0000-0001-5726-1373</orcidid><orcidid>https://orcid.org/0000-0002-9312-2984</orcidid><orcidid>https://orcid.org/0000-0003-1572-0070</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2024-09, Vol.128 (35), p.7396-7406 |
issn | 1089-5639 1520-5215 1520-5215 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11382284 |
source | American Chemical Society Journals |
subjects | A: Structure, Spectroscopy, and Reactivity of Molecules and Clusters |
title | Valence Electronic Structure of Interfacial Phenol in Water Droplets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A41%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Valence%20Electronic%20Structure%20of%20Interfacial%20Phenol%20in%20Water%20Droplets&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Heitland,%20Jonas&rft.date=2024-09-05&rft.volume=128&rft.issue=35&rft.spage=7396&rft.epage=7406&rft.pages=7396-7406&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/acs.jpca.4c04269&rft_dat=%3Cproquest_pubme%3E3097149343%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097149343&rft_id=info:pmid/39182189&rfr_iscdi=true |