Potassium Hexamethyldisilazide (KHMDS): Solvent-Dependent Solution Structures

Solution structures of potassium hexamethyldisilazide [KHMDS] and labeled [15N]­KHMDS were examined using a number of analytical methods including 29Si NMR spectroscopy and density functional theory computations. A combination of 15N–29Si couplings, 29Si chemical shifts, and the method of continuous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2024-07, Vol.146 (26), p.17827-17837
Hauptverfasser: Spivey, Jesse A., Collum, David B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17837
container_issue 26
container_start_page 17827
container_title Journal of the American Chemical Society
container_volume 146
creator Spivey, Jesse A.
Collum, David B.
description Solution structures of potassium hexamethyldisilazide [KHMDS] and labeled [15N]­KHMDS were examined using a number of analytical methods including 29Si NMR spectroscopy and density functional theory computations. A combination of 15N–29Si couplings, 29Si chemical shifts, and the method of continuous variations reveals dimers, monomers, and ion pairs. Weakly coordinating monofunctional ligands such as toluene, N,N-dimethylethylamine, and Et3N afford exclusively dimers. 1,3-Dioxolane, THF, dimethoxyethane, hexamethylphosphoramide, and diglyme provide dimers at low ligand concentrations and monomers at high ligand concentrations. N,N,N′,N’-Tetramethylethylenediamine and N,N,N′,N’-tetramethylcyclohexanediamine provide exclusively dimers at all ligand concentrations at ambient temperatures and significant monomer at −80 °C. Studies of 12-crown-4 ran into technical problems. Equimolar 15-crown-5 forms a dimer, whereas excess 15-crown-5 affords a putative ion pair. Whereas equimolar 18-crown-6 also affords a dimer, an excess provides a monomer rather than a solvent-separated ion pair. [2.2.2]­cryptand affords what is believed to be a contact-ion-paired cryptate. Solvation was probed using largely density functional theory (DFT) computations. Thermally corrected energies are consistent with lower aggregates and higher solvates at low temperatures, but the magnitudes of the computed temperature dependencies were substantially larger than the experimentally derived data.
doi_str_mv 10.1021/jacs.4c03418
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11373885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3070839134</sourcerecordid><originalsourceid>FETCH-LOGICAL-a338t-685d6974aea20043b1a836cd2c974c3941502c7a21a40334262015b494a2e5c23</originalsourceid><addsrcrecordid>eNqFkcFPHCEUxkmjqavtzbPZo00c5fGAYbw0zWq7Rk1N1p4Jy6CymRlWmDHVv75s3NqamHji8d6Pjw8-QnaBHgJlcLQwNh1yS5GD-kBGIBgtBDC5QUaUUlaUSuIW2U5pkbecKfhItlBVFDIzIpdXoTcp-aEdT91v07r-7rGpffKNefK1G--fTy9PZl-Ox7PQPLiuL07c0nV1rladofehG8_6ONh-iC59Ips3pknu83rdIb--n15PpsXFzx9nk28XhUFUfSGVqGVVcuMMy55wDkahtDWzuWmx4iAos6VhYDhF5EwyCmLOK26YE5bhDvn6rLsc5q2rbbYTTaOX0bcmPupgvH496fydvg0PGgBLVEpkhf21Qgz3g0u9bn2yrmlM58KQNIJAKaVg8n2UllRhBcgzevCM2hhSiu7mxRJQvUpLr9LS67Qyvvf_M17gv_H8u3p1ahGG2OVffVvrDwdlnNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070839134</pqid></control><display><type>article</type><title>Potassium Hexamethyldisilazide (KHMDS): Solvent-Dependent Solution Structures</title><source>ACS Publications</source><creator>Spivey, Jesse A. ; Collum, David B.</creator><creatorcontrib>Spivey, Jesse A. ; Collum, David B.</creatorcontrib><description>Solution structures of potassium hexamethyldisilazide [KHMDS] and labeled [15N]­KHMDS were examined using a number of analytical methods including 29Si NMR spectroscopy and density functional theory computations. A combination of 15N–29Si couplings, 29Si chemical shifts, and the method of continuous variations reveals dimers, monomers, and ion pairs. Weakly coordinating monofunctional ligands such as toluene, N,N-dimethylethylamine, and Et3N afford exclusively dimers. 1,3-Dioxolane, THF, dimethoxyethane, hexamethylphosphoramide, and diglyme provide dimers at low ligand concentrations and monomers at high ligand concentrations. N,N,N′,N’-Tetramethylethylenediamine and N,N,N′,N’-tetramethylcyclohexanediamine provide exclusively dimers at all ligand concentrations at ambient temperatures and significant monomer at −80 °C. Studies of 12-crown-4 ran into technical problems. Equimolar 15-crown-5 forms a dimer, whereas excess 15-crown-5 affords a putative ion pair. Whereas equimolar 18-crown-6 also affords a dimer, an excess provides a monomer rather than a solvent-separated ion pair. [2.2.2]­cryptand affords what is believed to be a contact-ion-paired cryptate. Solvation was probed using largely density functional theory (DFT) computations. Thermally corrected energies are consistent with lower aggregates and higher solvates at low temperatures, but the magnitudes of the computed temperature dependencies were substantially larger than the experimentally derived data.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.4c03418</identifier><identifier>PMID: 38901126</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>density functional theory ; ligands ; nuclear magnetic resonance spectroscopy ; potassium ; solvation ; temperature ; toluene</subject><ispartof>Journal of the American Chemical Society, 2024-07, Vol.146 (26), p.17827-17837</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a338t-685d6974aea20043b1a836cd2c974c3941502c7a21a40334262015b494a2e5c23</cites><orcidid>0000-0001-6065-1655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.4c03418$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.4c03418$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38901126$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spivey, Jesse A.</creatorcontrib><creatorcontrib>Collum, David B.</creatorcontrib><title>Potassium Hexamethyldisilazide (KHMDS): Solvent-Dependent Solution Structures</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Solution structures of potassium hexamethyldisilazide [KHMDS] and labeled [15N]­KHMDS were examined using a number of analytical methods including 29Si NMR spectroscopy and density functional theory computations. A combination of 15N–29Si couplings, 29Si chemical shifts, and the method of continuous variations reveals dimers, monomers, and ion pairs. Weakly coordinating monofunctional ligands such as toluene, N,N-dimethylethylamine, and Et3N afford exclusively dimers. 1,3-Dioxolane, THF, dimethoxyethane, hexamethylphosphoramide, and diglyme provide dimers at low ligand concentrations and monomers at high ligand concentrations. N,N,N′,N’-Tetramethylethylenediamine and N,N,N′,N’-tetramethylcyclohexanediamine provide exclusively dimers at all ligand concentrations at ambient temperatures and significant monomer at −80 °C. Studies of 12-crown-4 ran into technical problems. Equimolar 15-crown-5 forms a dimer, whereas excess 15-crown-5 affords a putative ion pair. Whereas equimolar 18-crown-6 also affords a dimer, an excess provides a monomer rather than a solvent-separated ion pair. [2.2.2]­cryptand affords what is believed to be a contact-ion-paired cryptate. Solvation was probed using largely density functional theory (DFT) computations. Thermally corrected energies are consistent with lower aggregates and higher solvates at low temperatures, but the magnitudes of the computed temperature dependencies were substantially larger than the experimentally derived data.</description><subject>density functional theory</subject><subject>ligands</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>potassium</subject><subject>solvation</subject><subject>temperature</subject><subject>toluene</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkcFPHCEUxkmjqavtzbPZo00c5fGAYbw0zWq7Rk1N1p4Jy6CymRlWmDHVv75s3NqamHji8d6Pjw8-QnaBHgJlcLQwNh1yS5GD-kBGIBgtBDC5QUaUUlaUSuIW2U5pkbecKfhItlBVFDIzIpdXoTcp-aEdT91v07r-7rGpffKNefK1G--fTy9PZl-Ox7PQPLiuL07c0nV1rladofehG8_6ONh-iC59Ips3pknu83rdIb--n15PpsXFzx9nk28XhUFUfSGVqGVVcuMMy55wDkahtDWzuWmx4iAos6VhYDhF5EwyCmLOK26YE5bhDvn6rLsc5q2rbbYTTaOX0bcmPupgvH496fydvg0PGgBLVEpkhf21Qgz3g0u9bn2yrmlM58KQNIJAKaVg8n2UllRhBcgzevCM2hhSiu7mxRJQvUpLr9LS67Qyvvf_M17gv_H8u3p1ahGG2OVffVvrDwdlnNw</recordid><startdate>20240703</startdate><enddate>20240703</enddate><creator>Spivey, Jesse A.</creator><creator>Collum, David B.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6065-1655</orcidid></search><sort><creationdate>20240703</creationdate><title>Potassium Hexamethyldisilazide (KHMDS): Solvent-Dependent Solution Structures</title><author>Spivey, Jesse A. ; Collum, David B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a338t-685d6974aea20043b1a836cd2c974c3941502c7a21a40334262015b494a2e5c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>density functional theory</topic><topic>ligands</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>potassium</topic><topic>solvation</topic><topic>temperature</topic><topic>toluene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spivey, Jesse A.</creatorcontrib><creatorcontrib>Collum, David B.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spivey, Jesse A.</au><au>Collum, David B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Potassium Hexamethyldisilazide (KHMDS): Solvent-Dependent Solution Structures</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2024-07-03</date><risdate>2024</risdate><volume>146</volume><issue>26</issue><spage>17827</spage><epage>17837</epage><pages>17827-17837</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>Solution structures of potassium hexamethyldisilazide [KHMDS] and labeled [15N]­KHMDS were examined using a number of analytical methods including 29Si NMR spectroscopy and density functional theory computations. A combination of 15N–29Si couplings, 29Si chemical shifts, and the method of continuous variations reveals dimers, monomers, and ion pairs. Weakly coordinating monofunctional ligands such as toluene, N,N-dimethylethylamine, and Et3N afford exclusively dimers. 1,3-Dioxolane, THF, dimethoxyethane, hexamethylphosphoramide, and diglyme provide dimers at low ligand concentrations and monomers at high ligand concentrations. N,N,N′,N’-Tetramethylethylenediamine and N,N,N′,N’-tetramethylcyclohexanediamine provide exclusively dimers at all ligand concentrations at ambient temperatures and significant monomer at −80 °C. Studies of 12-crown-4 ran into technical problems. Equimolar 15-crown-5 forms a dimer, whereas excess 15-crown-5 affords a putative ion pair. Whereas equimolar 18-crown-6 also affords a dimer, an excess provides a monomer rather than a solvent-separated ion pair. [2.2.2]­cryptand affords what is believed to be a contact-ion-paired cryptate. Solvation was probed using largely density functional theory (DFT) computations. Thermally corrected energies are consistent with lower aggregates and higher solvates at low temperatures, but the magnitudes of the computed temperature dependencies were substantially larger than the experimentally derived data.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38901126</pmid><doi>10.1021/jacs.4c03418</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6065-1655</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2024-07, Vol.146 (26), p.17827-17837
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11373885
source ACS Publications
subjects density functional theory
ligands
nuclear magnetic resonance spectroscopy
potassium
solvation
temperature
toluene
title Potassium Hexamethyldisilazide (KHMDS): Solvent-Dependent Solution Structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A24%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Potassium%20Hexamethyldisilazide%20(KHMDS):%20Solvent-Dependent%20Solution%20Structures&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Spivey,%20Jesse%20A.&rft.date=2024-07-03&rft.volume=146&rft.issue=26&rft.spage=17827&rft.epage=17837&rft.pages=17827-17837&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.4c03418&rft_dat=%3Cproquest_pubme%3E3070839134%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3070839134&rft_id=info:pmid/38901126&rfr_iscdi=true