Mitochondrial ATP Synthesis and Proton Transport Synergistically Mitigate Oligodendrocyte Progenitor Cell Dysfunction Following Transient Middle Cerebral Artery Occlusion via the Pbx3/Dguok/Kif21b Signaling Pathway
In the realm of this study, obtaining a comprehensive understanding of ischemic brain injury and its molecular foundations is of paramount importance. Our study delved into single-cell data analysis, with a specific focus on sub-celltypes and differentially expressed genes in the aftermath of ischem...
Gespeichert in:
Veröffentlicht in: | International journal of medical sciences 2024-01, Vol.21 (11), p.2189-2200 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2200 |
---|---|
container_issue | 11 |
container_start_page | 2189 |
container_title | International journal of medical sciences |
container_volume | 21 |
creator | Li, Yehai Zhang, Min Lin, Jinchuan Guo, Hang Zhou, Hao Jin, Yong Yang, Zhao |
description | In the realm of this study, obtaining a comprehensive understanding of ischemic brain injury and its molecular foundations is of paramount importance. Our study delved into single-cell data analysis, with a specific focus on sub-celltypes and differentially expressed genes in the aftermath of ischemic injury. Notably, we observed a significant enrichment of the "ATP METABOLIC PROCESS" and "ATP HYDROLYSIS ACTIVITY" pathways, featuring pivotal genes such as Pbx3, Dguok, and Kif21b. A remarkable finding was the consistent upregulation of genes like Fabp7 and Bcl11a within the MCAO group, highlighting their crucial roles in regulating the pathway of mitochondrial ATP synthesis coupled proton transport. Furthermore, our network analysis unveiled pathways like "Neuron differentiation" and "T cell differentiation" as central in the regulatory processes of sub-celltypes. These findings provide valuable insights into the intricate molecular responses and regulatory mechanisms that govern brain injury. The shared differentially expressed genes among sub-celltypes emphasize their significance in orchestrating responses post-ischemic injury. Our research, viewed from the perspective of a medical researcher, contributes to the evolving understanding of the molecular landscape underlying ischemic brain injury, potentially paving the way for targeted therapeutic strategies and improved patient outcomes. |
doi_str_mv | 10.7150/ijms.100127 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11373547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3101231172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-456b0513f65d09613cd92280d2affb1ab82e2de186092d40a7ff1889895e903c3</originalsourceid><addsrcrecordid>eNpVklFv2yAUha1p09q1e9r7xOOkKQ0X7Ng8TVXabtNaJVKzZ4QBO3QEMsBt_Uf3e4aVruqeAN1zPw7cUxQfAJ_VUOG5udvFM8AYSP2qOIayZDNguH79Yn9UvIvxDmNKaA1viyPKCGVVRY-LPzcmebn1TgUjLDrfrNHt6NJWRxORcAqtg0_eoU0QLu59SFNZh97EZKSwdkQZYHqRNFpZ03ulM8nLMZ9zZ69dxge01NaiizF2g5PJZNyVt9Y_GNcfwEa7lEFKWZ21Qbdh8hKSDiNaSWmHODXdG4GyM7RuH-n8oh_8r_kP0xFo0a3pnbATbi3S9kGMp8WbTtio3z-tJ8XPq8vN8tvsevX1-_L8eiYJpWlWVosWV0C7RaUwWwCVihHSYEVE17Ug2oZoojQ0C8yIKrGouw6ahjWs0gxTSU-KLwfufmh3Wsn8jmyd74PZiTByLwz_v-LMlvf-ngPQmlZlnQmfngjB_x50THxnosz_JZz2Q-QU8mApQE2y9PNBKoOPMeju-R7AfIoCn6LAD1HI6o8vrT1r_82e_gXSR7Xe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101231172</pqid></control><display><type>article</type><title>Mitochondrial ATP Synthesis and Proton Transport Synergistically Mitigate Oligodendrocyte Progenitor Cell Dysfunction Following Transient Middle Cerebral Artery Occlusion via the Pbx3/Dguok/Kif21b Signaling Pathway</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Li, Yehai ; Zhang, Min ; Lin, Jinchuan ; Guo, Hang ; Zhou, Hao ; Jin, Yong ; Yang, Zhao</creator><creatorcontrib>Li, Yehai ; Zhang, Min ; Lin, Jinchuan ; Guo, Hang ; Zhou, Hao ; Jin, Yong ; Yang, Zhao</creatorcontrib><description>In the realm of this study, obtaining a comprehensive understanding of ischemic brain injury and its molecular foundations is of paramount importance. Our study delved into single-cell data analysis, with a specific focus on sub-celltypes and differentially expressed genes in the aftermath of ischemic injury. Notably, we observed a significant enrichment of the "ATP METABOLIC PROCESS" and "ATP HYDROLYSIS ACTIVITY" pathways, featuring pivotal genes such as Pbx3, Dguok, and Kif21b. A remarkable finding was the consistent upregulation of genes like Fabp7 and Bcl11a within the MCAO group, highlighting their crucial roles in regulating the pathway of mitochondrial ATP synthesis coupled proton transport. Furthermore, our network analysis unveiled pathways like "Neuron differentiation" and "T cell differentiation" as central in the regulatory processes of sub-celltypes. These findings provide valuable insights into the intricate molecular responses and regulatory mechanisms that govern brain injury. The shared differentially expressed genes among sub-celltypes emphasize their significance in orchestrating responses post-ischemic injury. Our research, viewed from the perspective of a medical researcher, contributes to the evolving understanding of the molecular landscape underlying ischemic brain injury, potentially paving the way for targeted therapeutic strategies and improved patient outcomes.</description><identifier>ISSN: 1449-1907</identifier><identifier>EISSN: 1449-1907</identifier><identifier>DOI: 10.7150/ijms.100127</identifier><identifier>PMID: 39239553</identifier><language>eng</language><publisher>Australia: Ivyspring International Publisher</publisher><subject>Adenosine Triphosphate - biosynthesis ; Adenosine Triphosphate - metabolism ; Animals ; Brain Ischemia - genetics ; Brain Ischemia - metabolism ; Brain Ischemia - pathology ; Homeodomain Proteins - genetics ; Homeodomain Proteins - metabolism ; Humans ; Infarction, Middle Cerebral Artery - metabolism ; Infarction, Middle Cerebral Artery - pathology ; Kinesins - genetics ; Kinesins - metabolism ; Male ; Mitochondria - metabolism ; Oligodendrocyte Precursor Cells - metabolism ; Proto-Oncogene Proteins ; Rats ; Research Paper ; Signal Transduction - genetics</subject><ispartof>International journal of medical sciences, 2024-01, Vol.21 (11), p.2189-2200</ispartof><rights>The author(s).</rights><rights>The author(s) 2024</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373547/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373547/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39239553$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yehai</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Lin, Jinchuan</creatorcontrib><creatorcontrib>Guo, Hang</creatorcontrib><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Jin, Yong</creatorcontrib><creatorcontrib>Yang, Zhao</creatorcontrib><title>Mitochondrial ATP Synthesis and Proton Transport Synergistically Mitigate Oligodendrocyte Progenitor Cell Dysfunction Following Transient Middle Cerebral Artery Occlusion via the Pbx3/Dguok/Kif21b Signaling Pathway</title><title>International journal of medical sciences</title><addtitle>Int J Med Sci</addtitle><description>In the realm of this study, obtaining a comprehensive understanding of ischemic brain injury and its molecular foundations is of paramount importance. Our study delved into single-cell data analysis, with a specific focus on sub-celltypes and differentially expressed genes in the aftermath of ischemic injury. Notably, we observed a significant enrichment of the "ATP METABOLIC PROCESS" and "ATP HYDROLYSIS ACTIVITY" pathways, featuring pivotal genes such as Pbx3, Dguok, and Kif21b. A remarkable finding was the consistent upregulation of genes like Fabp7 and Bcl11a within the MCAO group, highlighting their crucial roles in regulating the pathway of mitochondrial ATP synthesis coupled proton transport. Furthermore, our network analysis unveiled pathways like "Neuron differentiation" and "T cell differentiation" as central in the regulatory processes of sub-celltypes. These findings provide valuable insights into the intricate molecular responses and regulatory mechanisms that govern brain injury. The shared differentially expressed genes among sub-celltypes emphasize their significance in orchestrating responses post-ischemic injury. Our research, viewed from the perspective of a medical researcher, contributes to the evolving understanding of the molecular landscape underlying ischemic brain injury, potentially paving the way for targeted therapeutic strategies and improved patient outcomes.</description><subject>Adenosine Triphosphate - biosynthesis</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Brain Ischemia - genetics</subject><subject>Brain Ischemia - metabolism</subject><subject>Brain Ischemia - pathology</subject><subject>Homeodomain Proteins - genetics</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Humans</subject><subject>Infarction, Middle Cerebral Artery - metabolism</subject><subject>Infarction, Middle Cerebral Artery - pathology</subject><subject>Kinesins - genetics</subject><subject>Kinesins - metabolism</subject><subject>Male</subject><subject>Mitochondria - metabolism</subject><subject>Oligodendrocyte Precursor Cells - metabolism</subject><subject>Proto-Oncogene Proteins</subject><subject>Rats</subject><subject>Research Paper</subject><subject>Signal Transduction - genetics</subject><issn>1449-1907</issn><issn>1449-1907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVklFv2yAUha1p09q1e9r7xOOkKQ0X7Ng8TVXabtNaJVKzZ4QBO3QEMsBt_Uf3e4aVruqeAN1zPw7cUxQfAJ_VUOG5udvFM8AYSP2qOIayZDNguH79Yn9UvIvxDmNKaA1viyPKCGVVRY-LPzcmebn1TgUjLDrfrNHt6NJWRxORcAqtg0_eoU0QLu59SFNZh97EZKSwdkQZYHqRNFpZ03ulM8nLMZ9zZ69dxge01NaiizF2g5PJZNyVt9Y_GNcfwEa7lEFKWZ21Qbdh8hKSDiNaSWmHODXdG4GyM7RuH-n8oh_8r_kP0xFo0a3pnbATbi3S9kGMp8WbTtio3z-tJ8XPq8vN8tvsevX1-_L8eiYJpWlWVosWV0C7RaUwWwCVihHSYEVE17Ug2oZoojQ0C8yIKrGouw6ahjWs0gxTSU-KLwfufmh3Wsn8jmyd74PZiTByLwz_v-LMlvf-ngPQmlZlnQmfngjB_x50THxnosz_JZz2Q-QU8mApQE2y9PNBKoOPMeju-R7AfIoCn6LAD1HI6o8vrT1r_82e_gXSR7Xe</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Li, Yehai</creator><creator>Zhang, Min</creator><creator>Lin, Jinchuan</creator><creator>Guo, Hang</creator><creator>Zhou, Hao</creator><creator>Jin, Yong</creator><creator>Yang, Zhao</creator><general>Ivyspring International Publisher</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240101</creationdate><title>Mitochondrial ATP Synthesis and Proton Transport Synergistically Mitigate Oligodendrocyte Progenitor Cell Dysfunction Following Transient Middle Cerebral Artery Occlusion via the Pbx3/Dguok/Kif21b Signaling Pathway</title><author>Li, Yehai ; Zhang, Min ; Lin, Jinchuan ; Guo, Hang ; Zhou, Hao ; Jin, Yong ; Yang, Zhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-456b0513f65d09613cd92280d2affb1ab82e2de186092d40a7ff1889895e903c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adenosine Triphosphate - biosynthesis</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Brain Ischemia - genetics</topic><topic>Brain Ischemia - metabolism</topic><topic>Brain Ischemia - pathology</topic><topic>Homeodomain Proteins - genetics</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Humans</topic><topic>Infarction, Middle Cerebral Artery - metabolism</topic><topic>Infarction, Middle Cerebral Artery - pathology</topic><topic>Kinesins - genetics</topic><topic>Kinesins - metabolism</topic><topic>Male</topic><topic>Mitochondria - metabolism</topic><topic>Oligodendrocyte Precursor Cells - metabolism</topic><topic>Proto-Oncogene Proteins</topic><topic>Rats</topic><topic>Research Paper</topic><topic>Signal Transduction - genetics</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Yehai</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Lin, Jinchuan</creatorcontrib><creatorcontrib>Guo, Hang</creatorcontrib><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Jin, Yong</creatorcontrib><creatorcontrib>Yang, Zhao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of medical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yehai</au><au>Zhang, Min</au><au>Lin, Jinchuan</au><au>Guo, Hang</au><au>Zhou, Hao</au><au>Jin, Yong</au><au>Yang, Zhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial ATP Synthesis and Proton Transport Synergistically Mitigate Oligodendrocyte Progenitor Cell Dysfunction Following Transient Middle Cerebral Artery Occlusion via the Pbx3/Dguok/Kif21b Signaling Pathway</atitle><jtitle>International journal of medical sciences</jtitle><addtitle>Int J Med Sci</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>21</volume><issue>11</issue><spage>2189</spage><epage>2200</epage><pages>2189-2200</pages><issn>1449-1907</issn><eissn>1449-1907</eissn><abstract>In the realm of this study, obtaining a comprehensive understanding of ischemic brain injury and its molecular foundations is of paramount importance. Our study delved into single-cell data analysis, with a specific focus on sub-celltypes and differentially expressed genes in the aftermath of ischemic injury. Notably, we observed a significant enrichment of the "ATP METABOLIC PROCESS" and "ATP HYDROLYSIS ACTIVITY" pathways, featuring pivotal genes such as Pbx3, Dguok, and Kif21b. A remarkable finding was the consistent upregulation of genes like Fabp7 and Bcl11a within the MCAO group, highlighting their crucial roles in regulating the pathway of mitochondrial ATP synthesis coupled proton transport. Furthermore, our network analysis unveiled pathways like "Neuron differentiation" and "T cell differentiation" as central in the regulatory processes of sub-celltypes. These findings provide valuable insights into the intricate molecular responses and regulatory mechanisms that govern brain injury. The shared differentially expressed genes among sub-celltypes emphasize their significance in orchestrating responses post-ischemic injury. Our research, viewed from the perspective of a medical researcher, contributes to the evolving understanding of the molecular landscape underlying ischemic brain injury, potentially paving the way for targeted therapeutic strategies and improved patient outcomes.</abstract><cop>Australia</cop><pub>Ivyspring International Publisher</pub><pmid>39239553</pmid><doi>10.7150/ijms.100127</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1449-1907 |
ispartof | International journal of medical sciences, 2024-01, Vol.21 (11), p.2189-2200 |
issn | 1449-1907 1449-1907 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11373547 |
source | MEDLINE; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Adenosine Triphosphate - biosynthesis Adenosine Triphosphate - metabolism Animals Brain Ischemia - genetics Brain Ischemia - metabolism Brain Ischemia - pathology Homeodomain Proteins - genetics Homeodomain Proteins - metabolism Humans Infarction, Middle Cerebral Artery - metabolism Infarction, Middle Cerebral Artery - pathology Kinesins - genetics Kinesins - metabolism Male Mitochondria - metabolism Oligodendrocyte Precursor Cells - metabolism Proto-Oncogene Proteins Rats Research Paper Signal Transduction - genetics |
title | Mitochondrial ATP Synthesis and Proton Transport Synergistically Mitigate Oligodendrocyte Progenitor Cell Dysfunction Following Transient Middle Cerebral Artery Occlusion via the Pbx3/Dguok/Kif21b Signaling Pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A25%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20ATP%20Synthesis%20and%20Proton%20Transport%20Synergistically%20Mitigate%20Oligodendrocyte%20Progenitor%20Cell%20Dysfunction%20Following%20Transient%20Middle%20Cerebral%20Artery%20Occlusion%20via%20the%20Pbx3/Dguok/Kif21b%20Signaling%20Pathway&rft.jtitle=International%20journal%20of%20medical%20sciences&rft.au=Li,%20Yehai&rft.date=2024-01-01&rft.volume=21&rft.issue=11&rft.spage=2189&rft.epage=2200&rft.pages=2189-2200&rft.issn=1449-1907&rft.eissn=1449-1907&rft_id=info:doi/10.7150/ijms.100127&rft_dat=%3Cproquest_pubme%3E3101231172%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3101231172&rft_id=info:pmid/39239553&rfr_iscdi=true |