Mitochondrial ATP Synthesis and Proton Transport Synergistically Mitigate Oligodendrocyte Progenitor Cell Dysfunction Following Transient Middle Cerebral Artery Occlusion via the Pbx3/Dguok/Kif21b Signaling Pathway

In the realm of this study, obtaining a comprehensive understanding of ischemic brain injury and its molecular foundations is of paramount importance. Our study delved into single-cell data analysis, with a specific focus on sub-celltypes and differentially expressed genes in the aftermath of ischem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of medical sciences 2024-01, Vol.21 (11), p.2189-2200
Hauptverfasser: Li, Yehai, Zhang, Min, Lin, Jinchuan, Guo, Hang, Zhou, Hao, Jin, Yong, Yang, Zhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2200
container_issue 11
container_start_page 2189
container_title International journal of medical sciences
container_volume 21
creator Li, Yehai
Zhang, Min
Lin, Jinchuan
Guo, Hang
Zhou, Hao
Jin, Yong
Yang, Zhao
description In the realm of this study, obtaining a comprehensive understanding of ischemic brain injury and its molecular foundations is of paramount importance. Our study delved into single-cell data analysis, with a specific focus on sub-celltypes and differentially expressed genes in the aftermath of ischemic injury. Notably, we observed a significant enrichment of the "ATP METABOLIC PROCESS" and "ATP HYDROLYSIS ACTIVITY" pathways, featuring pivotal genes such as Pbx3, Dguok, and Kif21b. A remarkable finding was the consistent upregulation of genes like Fabp7 and Bcl11a within the MCAO group, highlighting their crucial roles in regulating the pathway of mitochondrial ATP synthesis coupled proton transport. Furthermore, our network analysis unveiled pathways like "Neuron differentiation" and "T cell differentiation" as central in the regulatory processes of sub-celltypes. These findings provide valuable insights into the intricate molecular responses and regulatory mechanisms that govern brain injury. The shared differentially expressed genes among sub-celltypes emphasize their significance in orchestrating responses post-ischemic injury. Our research, viewed from the perspective of a medical researcher, contributes to the evolving understanding of the molecular landscape underlying ischemic brain injury, potentially paving the way for targeted therapeutic strategies and improved patient outcomes.
doi_str_mv 10.7150/ijms.100127
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11373547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3101231172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c233t-456b0513f65d09613cd92280d2affb1ab82e2de186092d40a7ff1889895e903c3</originalsourceid><addsrcrecordid>eNpVklFv2yAUha1p09q1e9r7xOOkKQ0X7Ng8TVXabtNaJVKzZ4QBO3QEMsBt_Uf3e4aVruqeAN1zPw7cUxQfAJ_VUOG5udvFM8AYSP2qOIayZDNguH79Yn9UvIvxDmNKaA1viyPKCGVVRY-LPzcmebn1TgUjLDrfrNHt6NJWRxORcAqtg0_eoU0QLu59SFNZh97EZKSwdkQZYHqRNFpZ03ulM8nLMZ9zZ69dxge01NaiizF2g5PJZNyVt9Y_GNcfwEa7lEFKWZ21Qbdh8hKSDiNaSWmHODXdG4GyM7RuH-n8oh_8r_kP0xFo0a3pnbATbi3S9kGMp8WbTtio3z-tJ8XPq8vN8tvsevX1-_L8eiYJpWlWVosWV0C7RaUwWwCVihHSYEVE17Ug2oZoojQ0C8yIKrGouw6ahjWs0gxTSU-KLwfufmh3Wsn8jmyd74PZiTByLwz_v-LMlvf-ngPQmlZlnQmfngjB_x50THxnosz_JZz2Q-QU8mApQE2y9PNBKoOPMeju-R7AfIoCn6LAD1HI6o8vrT1r_82e_gXSR7Xe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3101231172</pqid></control><display><type>article</type><title>Mitochondrial ATP Synthesis and Proton Transport Synergistically Mitigate Oligodendrocyte Progenitor Cell Dysfunction Following Transient Middle Cerebral Artery Occlusion via the Pbx3/Dguok/Kif21b Signaling Pathway</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Li, Yehai ; Zhang, Min ; Lin, Jinchuan ; Guo, Hang ; Zhou, Hao ; Jin, Yong ; Yang, Zhao</creator><creatorcontrib>Li, Yehai ; Zhang, Min ; Lin, Jinchuan ; Guo, Hang ; Zhou, Hao ; Jin, Yong ; Yang, Zhao</creatorcontrib><description>In the realm of this study, obtaining a comprehensive understanding of ischemic brain injury and its molecular foundations is of paramount importance. Our study delved into single-cell data analysis, with a specific focus on sub-celltypes and differentially expressed genes in the aftermath of ischemic injury. Notably, we observed a significant enrichment of the "ATP METABOLIC PROCESS" and "ATP HYDROLYSIS ACTIVITY" pathways, featuring pivotal genes such as Pbx3, Dguok, and Kif21b. A remarkable finding was the consistent upregulation of genes like Fabp7 and Bcl11a within the MCAO group, highlighting their crucial roles in regulating the pathway of mitochondrial ATP synthesis coupled proton transport. Furthermore, our network analysis unveiled pathways like "Neuron differentiation" and "T cell differentiation" as central in the regulatory processes of sub-celltypes. These findings provide valuable insights into the intricate molecular responses and regulatory mechanisms that govern brain injury. The shared differentially expressed genes among sub-celltypes emphasize their significance in orchestrating responses post-ischemic injury. Our research, viewed from the perspective of a medical researcher, contributes to the evolving understanding of the molecular landscape underlying ischemic brain injury, potentially paving the way for targeted therapeutic strategies and improved patient outcomes.</description><identifier>ISSN: 1449-1907</identifier><identifier>EISSN: 1449-1907</identifier><identifier>DOI: 10.7150/ijms.100127</identifier><identifier>PMID: 39239553</identifier><language>eng</language><publisher>Australia: Ivyspring International Publisher</publisher><subject>Adenosine Triphosphate - biosynthesis ; Adenosine Triphosphate - metabolism ; Animals ; Brain Ischemia - genetics ; Brain Ischemia - metabolism ; Brain Ischemia - pathology ; Homeodomain Proteins - genetics ; Homeodomain Proteins - metabolism ; Humans ; Infarction, Middle Cerebral Artery - metabolism ; Infarction, Middle Cerebral Artery - pathology ; Kinesins - genetics ; Kinesins - metabolism ; Male ; Mitochondria - metabolism ; Oligodendrocyte Precursor Cells - metabolism ; Proto-Oncogene Proteins ; Rats ; Research Paper ; Signal Transduction - genetics</subject><ispartof>International journal of medical sciences, 2024-01, Vol.21 (11), p.2189-2200</ispartof><rights>The author(s).</rights><rights>The author(s) 2024</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373547/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373547/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39239553$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yehai</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Lin, Jinchuan</creatorcontrib><creatorcontrib>Guo, Hang</creatorcontrib><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Jin, Yong</creatorcontrib><creatorcontrib>Yang, Zhao</creatorcontrib><title>Mitochondrial ATP Synthesis and Proton Transport Synergistically Mitigate Oligodendrocyte Progenitor Cell Dysfunction Following Transient Middle Cerebral Artery Occlusion via the Pbx3/Dguok/Kif21b Signaling Pathway</title><title>International journal of medical sciences</title><addtitle>Int J Med Sci</addtitle><description>In the realm of this study, obtaining a comprehensive understanding of ischemic brain injury and its molecular foundations is of paramount importance. Our study delved into single-cell data analysis, with a specific focus on sub-celltypes and differentially expressed genes in the aftermath of ischemic injury. Notably, we observed a significant enrichment of the "ATP METABOLIC PROCESS" and "ATP HYDROLYSIS ACTIVITY" pathways, featuring pivotal genes such as Pbx3, Dguok, and Kif21b. A remarkable finding was the consistent upregulation of genes like Fabp7 and Bcl11a within the MCAO group, highlighting their crucial roles in regulating the pathway of mitochondrial ATP synthesis coupled proton transport. Furthermore, our network analysis unveiled pathways like "Neuron differentiation" and "T cell differentiation" as central in the regulatory processes of sub-celltypes. These findings provide valuable insights into the intricate molecular responses and regulatory mechanisms that govern brain injury. The shared differentially expressed genes among sub-celltypes emphasize their significance in orchestrating responses post-ischemic injury. Our research, viewed from the perspective of a medical researcher, contributes to the evolving understanding of the molecular landscape underlying ischemic brain injury, potentially paving the way for targeted therapeutic strategies and improved patient outcomes.</description><subject>Adenosine Triphosphate - biosynthesis</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Brain Ischemia - genetics</subject><subject>Brain Ischemia - metabolism</subject><subject>Brain Ischemia - pathology</subject><subject>Homeodomain Proteins - genetics</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Humans</subject><subject>Infarction, Middle Cerebral Artery - metabolism</subject><subject>Infarction, Middle Cerebral Artery - pathology</subject><subject>Kinesins - genetics</subject><subject>Kinesins - metabolism</subject><subject>Male</subject><subject>Mitochondria - metabolism</subject><subject>Oligodendrocyte Precursor Cells - metabolism</subject><subject>Proto-Oncogene Proteins</subject><subject>Rats</subject><subject>Research Paper</subject><subject>Signal Transduction - genetics</subject><issn>1449-1907</issn><issn>1449-1907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVklFv2yAUha1p09q1e9r7xOOkKQ0X7Ng8TVXabtNaJVKzZ4QBO3QEMsBt_Uf3e4aVruqeAN1zPw7cUxQfAJ_VUOG5udvFM8AYSP2qOIayZDNguH79Yn9UvIvxDmNKaA1viyPKCGVVRY-LPzcmebn1TgUjLDrfrNHt6NJWRxORcAqtg0_eoU0QLu59SFNZh97EZKSwdkQZYHqRNFpZ03ulM8nLMZ9zZ69dxge01NaiizF2g5PJZNyVt9Y_GNcfwEa7lEFKWZ21Qbdh8hKSDiNaSWmHODXdG4GyM7RuH-n8oh_8r_kP0xFo0a3pnbATbi3S9kGMp8WbTtio3z-tJ8XPq8vN8tvsevX1-_L8eiYJpWlWVosWV0C7RaUwWwCVihHSYEVE17Ug2oZoojQ0C8yIKrGouw6ahjWs0gxTSU-KLwfufmh3Wsn8jmyd74PZiTByLwz_v-LMlvf-ngPQmlZlnQmfngjB_x50THxnosz_JZz2Q-QU8mApQE2y9PNBKoOPMeju-R7AfIoCn6LAD1HI6o8vrT1r_82e_gXSR7Xe</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Li, Yehai</creator><creator>Zhang, Min</creator><creator>Lin, Jinchuan</creator><creator>Guo, Hang</creator><creator>Zhou, Hao</creator><creator>Jin, Yong</creator><creator>Yang, Zhao</creator><general>Ivyspring International Publisher</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20240101</creationdate><title>Mitochondrial ATP Synthesis and Proton Transport Synergistically Mitigate Oligodendrocyte Progenitor Cell Dysfunction Following Transient Middle Cerebral Artery Occlusion via the Pbx3/Dguok/Kif21b Signaling Pathway</title><author>Li, Yehai ; Zhang, Min ; Lin, Jinchuan ; Guo, Hang ; Zhou, Hao ; Jin, Yong ; Yang, Zhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c233t-456b0513f65d09613cd92280d2affb1ab82e2de186092d40a7ff1889895e903c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adenosine Triphosphate - biosynthesis</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Brain Ischemia - genetics</topic><topic>Brain Ischemia - metabolism</topic><topic>Brain Ischemia - pathology</topic><topic>Homeodomain Proteins - genetics</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Humans</topic><topic>Infarction, Middle Cerebral Artery - metabolism</topic><topic>Infarction, Middle Cerebral Artery - pathology</topic><topic>Kinesins - genetics</topic><topic>Kinesins - metabolism</topic><topic>Male</topic><topic>Mitochondria - metabolism</topic><topic>Oligodendrocyte Precursor Cells - metabolism</topic><topic>Proto-Oncogene Proteins</topic><topic>Rats</topic><topic>Research Paper</topic><topic>Signal Transduction - genetics</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Yehai</creatorcontrib><creatorcontrib>Zhang, Min</creatorcontrib><creatorcontrib>Lin, Jinchuan</creatorcontrib><creatorcontrib>Guo, Hang</creatorcontrib><creatorcontrib>Zhou, Hao</creatorcontrib><creatorcontrib>Jin, Yong</creatorcontrib><creatorcontrib>Yang, Zhao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of medical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yehai</au><au>Zhang, Min</au><au>Lin, Jinchuan</au><au>Guo, Hang</au><au>Zhou, Hao</au><au>Jin, Yong</au><au>Yang, Zhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mitochondrial ATP Synthesis and Proton Transport Synergistically Mitigate Oligodendrocyte Progenitor Cell Dysfunction Following Transient Middle Cerebral Artery Occlusion via the Pbx3/Dguok/Kif21b Signaling Pathway</atitle><jtitle>International journal of medical sciences</jtitle><addtitle>Int J Med Sci</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>21</volume><issue>11</issue><spage>2189</spage><epage>2200</epage><pages>2189-2200</pages><issn>1449-1907</issn><eissn>1449-1907</eissn><abstract>In the realm of this study, obtaining a comprehensive understanding of ischemic brain injury and its molecular foundations is of paramount importance. Our study delved into single-cell data analysis, with a specific focus on sub-celltypes and differentially expressed genes in the aftermath of ischemic injury. Notably, we observed a significant enrichment of the "ATP METABOLIC PROCESS" and "ATP HYDROLYSIS ACTIVITY" pathways, featuring pivotal genes such as Pbx3, Dguok, and Kif21b. A remarkable finding was the consistent upregulation of genes like Fabp7 and Bcl11a within the MCAO group, highlighting their crucial roles in regulating the pathway of mitochondrial ATP synthesis coupled proton transport. Furthermore, our network analysis unveiled pathways like "Neuron differentiation" and "T cell differentiation" as central in the regulatory processes of sub-celltypes. These findings provide valuable insights into the intricate molecular responses and regulatory mechanisms that govern brain injury. The shared differentially expressed genes among sub-celltypes emphasize their significance in orchestrating responses post-ischemic injury. Our research, viewed from the perspective of a medical researcher, contributes to the evolving understanding of the molecular landscape underlying ischemic brain injury, potentially paving the way for targeted therapeutic strategies and improved patient outcomes.</abstract><cop>Australia</cop><pub>Ivyspring International Publisher</pub><pmid>39239553</pmid><doi>10.7150/ijms.100127</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1449-1907
ispartof International journal of medical sciences, 2024-01, Vol.21 (11), p.2189-2200
issn 1449-1907
1449-1907
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11373547
source MEDLINE; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adenosine Triphosphate - biosynthesis
Adenosine Triphosphate - metabolism
Animals
Brain Ischemia - genetics
Brain Ischemia - metabolism
Brain Ischemia - pathology
Homeodomain Proteins - genetics
Homeodomain Proteins - metabolism
Humans
Infarction, Middle Cerebral Artery - metabolism
Infarction, Middle Cerebral Artery - pathology
Kinesins - genetics
Kinesins - metabolism
Male
Mitochondria - metabolism
Oligodendrocyte Precursor Cells - metabolism
Proto-Oncogene Proteins
Rats
Research Paper
Signal Transduction - genetics
title Mitochondrial ATP Synthesis and Proton Transport Synergistically Mitigate Oligodendrocyte Progenitor Cell Dysfunction Following Transient Middle Cerebral Artery Occlusion via the Pbx3/Dguok/Kif21b Signaling Pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A25%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mitochondrial%20ATP%20Synthesis%20and%20Proton%20Transport%20Synergistically%20Mitigate%20Oligodendrocyte%20Progenitor%20Cell%20Dysfunction%20Following%20Transient%20Middle%20Cerebral%20Artery%20Occlusion%20via%20the%20Pbx3/Dguok/Kif21b%20Signaling%20Pathway&rft.jtitle=International%20journal%20of%20medical%20sciences&rft.au=Li,%20Yehai&rft.date=2024-01-01&rft.volume=21&rft.issue=11&rft.spage=2189&rft.epage=2200&rft.pages=2189-2200&rft.issn=1449-1907&rft.eissn=1449-1907&rft_id=info:doi/10.7150/ijms.100127&rft_dat=%3Cproquest_pubme%3E3101231172%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3101231172&rft_id=info:pmid/39239553&rfr_iscdi=true