Zinc oxide nanoparticles intercalated with porous carbon as a separator coating for improving the stability of lithium metal anodes

Metal lithium negative electrodes are considered the “holy grail” of lithium battery negative electrodes due to their ultra-high energy density and low overpotential. However, the arbitrary growth of lithium dendrites during the cycling process hindered its industrialization process. We prepared por...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science progress (1916) 2024-07, Vol.107 (3), p.368504241276773
Hauptverfasser: Li, Lei, Hu, Chunhong, Li, Juanjuan, Shen, Anwei, Tan, Shijiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 368504241276773
container_title Science progress (1916)
container_volume 107
creator Li, Lei
Hu, Chunhong
Li, Juanjuan
Shen, Anwei
Tan, Shijiang
description Metal lithium negative electrodes are considered the “holy grail” of lithium battery negative electrodes due to their ultra-high energy density and low overpotential. However, the arbitrary growth of lithium dendrites during the cycling process hindered its industrialization process. We prepared porous carbon doped with zinc oxide nanoparticles (ZNC-MOF-5) by high-temperature carbonization of MOF-5, and coated ZNC-MOF-5 on the surface of commercial membranes (ZNC-MOF-5@PP). Used to improve the cycling stability of metal lithium negative electrodes. Zinc oxide nanoparticles in ZNC-MOF-5 have good lithium affinity and can promote Li+ deposition. The porous structure with a high specific surface area endows the electrode with high lithium loading capacity, reduces local current density, and obtains a dendrite-free metal lithium negative electrode. The electrochemical cycling performance of Li/Cu batteries indicates that, ZNC-MOF-5@PP. The separator can prevent the growth of dendrites and improve cycling stability, proving that ZNC-MOF-5 can effectively guide the deposition of Li and solve dendrite problems.
doi_str_mv 10.1177/00368504241276773
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11367698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_00368504241276773</sage_id><sourcerecordid>3099803891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-a97b86fdcd4f6d27bf7ca82dc6d31507d312d1491ef05d45e4fa8a49821030bf3</originalsourceid><addsrcrecordid>eNp1kctu1TAQhi0EoofCA7BBltiwSfElsZMVQhU3qRIb2LCxJr6c4yqxg-20dM2L4-iUchMbj0fzzT8e_wg9peSMUilfEsJF35GWtZRJISW_h3aMtLKRVPD7aLfVmw04QY9yviSEdlT0D9EJHxhlpJM79P2LDxrHb95YHCDEBVLxerIZ-1Bs0jBBsQZf-3LAS0xxzVhDGmPAkDHgbGsDlJiwjlB82GNX735eUrzasnKwOBcY_eTLDY4O13jw64xnW2DCdaCx-TF64GDK9sltPEWf3775dP6-ufj47sP564tG83YoDQxy7IUz2rROGCZHJzX0zGhhOO2IrCcztB2odaQzbWdbBz20Q88o4WR0_BS9Ouou6zhbo20oCSa1JD9DulERvPqzEvxB7eOVopQLKYa-Kry4VUjx62pzUbPP2k4TBFu_RnEyDD3h_UAr-vwv9DKuKdT9FKe02kCI2ATpkdIp5pysu3sNJWrzWP3jce159vsadx0_Ta3A2RHIsLe_xv5f8QdjB7ID</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3111680068</pqid></control><display><type>article</type><title>Zinc oxide nanoparticles intercalated with porous carbon as a separator coating for improving the stability of lithium metal anodes</title><source>DOAJ Directory of Open Access Journals</source><source>Sage Journals GOLD Open Access 2024</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Li, Lei ; Hu, Chunhong ; Li, Juanjuan ; Shen, Anwei ; Tan, Shijiang</creator><creatorcontrib>Li, Lei ; Hu, Chunhong ; Li, Juanjuan ; Shen, Anwei ; Tan, Shijiang</creatorcontrib><description>Metal lithium negative electrodes are considered the “holy grail” of lithium battery negative electrodes due to their ultra-high energy density and low overpotential. However, the arbitrary growth of lithium dendrites during the cycling process hindered its industrialization process. We prepared porous carbon doped with zinc oxide nanoparticles (ZNC-MOF-5) by high-temperature carbonization of MOF-5, and coated ZNC-MOF-5 on the surface of commercial membranes (ZNC-MOF-5@PP). Used to improve the cycling stability of metal lithium negative electrodes. Zinc oxide nanoparticles in ZNC-MOF-5 have good lithium affinity and can promote Li+ deposition. The porous structure with a high specific surface area endows the electrode with high lithium loading capacity, reduces local current density, and obtains a dendrite-free metal lithium negative electrode. The electrochemical cycling performance of Li/Cu batteries indicates that, ZNC-MOF-5@PP. The separator can prevent the growth of dendrites and improve cycling stability, proving that ZNC-MOF-5 can effectively guide the deposition of Li and solve dendrite problems.</description><identifier>ISSN: 0036-8504</identifier><identifier>ISSN: 2047-7163</identifier><identifier>EISSN: 2047-7163</identifier><identifier>DOI: 10.1177/00368504241276773</identifier><identifier>PMID: 39212057</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Carbon ; Carbon cycle ; Chemistry ; Copper ; Cycles ; Dendrites ; Deposition ; Electrochemistry ; Electrodes ; High temperature ; Lithium ; Lithium batteries ; Local current ; Metal-organic frameworks ; Metals ; Nanoparticles ; Separators ; Stability ; Ultrahigh temperature ; Zinc coatings ; Zinc oxide ; Zinc oxides</subject><ispartof>Science progress (1916), 2024-07, Vol.107 (3), p.368504241276773</ispartof><rights>The Author(s) 2024</rights><rights>2024. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License ( https://creativecommons.org/licenses/by-nc/4.0/ ) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page ( https://us.sagepub.com/en-us/nam/open-access-at-sage ). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024 SAGE Publications</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c349t-a97b86fdcd4f6d27bf7ca82dc6d31507d312d1491ef05d45e4fa8a49821030bf3</cites><orcidid>0009-0000-6345-9183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367698/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367698/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,21965,27852,27923,27924,44944,45332,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39212057$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Hu, Chunhong</creatorcontrib><creatorcontrib>Li, Juanjuan</creatorcontrib><creatorcontrib>Shen, Anwei</creatorcontrib><creatorcontrib>Tan, Shijiang</creatorcontrib><title>Zinc oxide nanoparticles intercalated with porous carbon as a separator coating for improving the stability of lithium metal anodes</title><title>Science progress (1916)</title><addtitle>Sci Prog</addtitle><description>Metal lithium negative electrodes are considered the “holy grail” of lithium battery negative electrodes due to their ultra-high energy density and low overpotential. However, the arbitrary growth of lithium dendrites during the cycling process hindered its industrialization process. We prepared porous carbon doped with zinc oxide nanoparticles (ZNC-MOF-5) by high-temperature carbonization of MOF-5, and coated ZNC-MOF-5 on the surface of commercial membranes (ZNC-MOF-5@PP). Used to improve the cycling stability of metal lithium negative electrodes. Zinc oxide nanoparticles in ZNC-MOF-5 have good lithium affinity and can promote Li+ deposition. The porous structure with a high specific surface area endows the electrode with high lithium loading capacity, reduces local current density, and obtains a dendrite-free metal lithium negative electrode. The electrochemical cycling performance of Li/Cu batteries indicates that, ZNC-MOF-5@PP. The separator can prevent the growth of dendrites and improve cycling stability, proving that ZNC-MOF-5 can effectively guide the deposition of Li and solve dendrite problems.</description><subject>Carbon</subject><subject>Carbon cycle</subject><subject>Chemistry</subject><subject>Copper</subject><subject>Cycles</subject><subject>Dendrites</subject><subject>Deposition</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>High temperature</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Local current</subject><subject>Metal-organic frameworks</subject><subject>Metals</subject><subject>Nanoparticles</subject><subject>Separators</subject><subject>Stability</subject><subject>Ultrahigh temperature</subject><subject>Zinc coatings</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>0036-8504</issn><issn>2047-7163</issn><issn>2047-7163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><recordid>eNp1kctu1TAQhi0EoofCA7BBltiwSfElsZMVQhU3qRIb2LCxJr6c4yqxg-20dM2L4-iUchMbj0fzzT8e_wg9peSMUilfEsJF35GWtZRJISW_h3aMtLKRVPD7aLfVmw04QY9yviSEdlT0D9EJHxhlpJM79P2LDxrHb95YHCDEBVLxerIZ-1Bs0jBBsQZf-3LAS0xxzVhDGmPAkDHgbGsDlJiwjlB82GNX735eUrzasnKwOBcY_eTLDY4O13jw64xnW2DCdaCx-TF64GDK9sltPEWf3775dP6-ufj47sP564tG83YoDQxy7IUz2rROGCZHJzX0zGhhOO2IrCcztB2odaQzbWdbBz20Q88o4WR0_BS9Ouou6zhbo20oCSa1JD9DulERvPqzEvxB7eOVopQLKYa-Kry4VUjx62pzUbPP2k4TBFu_RnEyDD3h_UAr-vwv9DKuKdT9FKe02kCI2ATpkdIp5pysu3sNJWrzWP3jce159vsadx0_Ta3A2RHIsLe_xv5f8QdjB7ID</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Li, Lei</creator><creator>Hu, Chunhong</creator><creator>Li, Juanjuan</creator><creator>Shen, Anwei</creator><creator>Tan, Shijiang</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AFRWT</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0009-0000-6345-9183</orcidid></search><sort><creationdate>20240701</creationdate><title>Zinc oxide nanoparticles intercalated with porous carbon as a separator coating for improving the stability of lithium metal anodes</title><author>Li, Lei ; Hu, Chunhong ; Li, Juanjuan ; Shen, Anwei ; Tan, Shijiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-a97b86fdcd4f6d27bf7ca82dc6d31507d312d1491ef05d45e4fa8a49821030bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon</topic><topic>Carbon cycle</topic><topic>Chemistry</topic><topic>Copper</topic><topic>Cycles</topic><topic>Dendrites</topic><topic>Deposition</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>High temperature</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Local current</topic><topic>Metal-organic frameworks</topic><topic>Metals</topic><topic>Nanoparticles</topic><topic>Separators</topic><topic>Stability</topic><topic>Ultrahigh temperature</topic><topic>Zinc coatings</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Hu, Chunhong</creatorcontrib><creatorcontrib>Li, Juanjuan</creatorcontrib><creatorcontrib>Shen, Anwei</creatorcontrib><creatorcontrib>Tan, Shijiang</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science progress (1916)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Lei</au><au>Hu, Chunhong</au><au>Li, Juanjuan</au><au>Shen, Anwei</au><au>Tan, Shijiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zinc oxide nanoparticles intercalated with porous carbon as a separator coating for improving the stability of lithium metal anodes</atitle><jtitle>Science progress (1916)</jtitle><addtitle>Sci Prog</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>107</volume><issue>3</issue><spage>368504241276773</spage><pages>368504241276773-</pages><issn>0036-8504</issn><issn>2047-7163</issn><eissn>2047-7163</eissn><abstract>Metal lithium negative electrodes are considered the “holy grail” of lithium battery negative electrodes due to their ultra-high energy density and low overpotential. However, the arbitrary growth of lithium dendrites during the cycling process hindered its industrialization process. We prepared porous carbon doped with zinc oxide nanoparticles (ZNC-MOF-5) by high-temperature carbonization of MOF-5, and coated ZNC-MOF-5 on the surface of commercial membranes (ZNC-MOF-5@PP). Used to improve the cycling stability of metal lithium negative electrodes. Zinc oxide nanoparticles in ZNC-MOF-5 have good lithium affinity and can promote Li+ deposition. The porous structure with a high specific surface area endows the electrode with high lithium loading capacity, reduces local current density, and obtains a dendrite-free metal lithium negative electrode. The electrochemical cycling performance of Li/Cu batteries indicates that, ZNC-MOF-5@PP. The separator can prevent the growth of dendrites and improve cycling stability, proving that ZNC-MOF-5 can effectively guide the deposition of Li and solve dendrite problems.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>39212057</pmid><doi>10.1177/00368504241276773</doi><orcidid>https://orcid.org/0009-0000-6345-9183</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8504
ispartof Science progress (1916), 2024-07, Vol.107 (3), p.368504241276773
issn 0036-8504
2047-7163
2047-7163
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11367698
source DOAJ Directory of Open Access Journals; Sage Journals GOLD Open Access 2024; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Carbon
Carbon cycle
Chemistry
Copper
Cycles
Dendrites
Deposition
Electrochemistry
Electrodes
High temperature
Lithium
Lithium batteries
Local current
Metal-organic frameworks
Metals
Nanoparticles
Separators
Stability
Ultrahigh temperature
Zinc coatings
Zinc oxide
Zinc oxides
title Zinc oxide nanoparticles intercalated with porous carbon as a separator coating for improving the stability of lithium metal anodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A27%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zinc%20oxide%20nanoparticles%20intercalated%20with%20porous%20carbon%20as%20a%20separator%20coating%20for%20improving%20the%20stability%20of%20lithium%20metal%20anodes&rft.jtitle=Science%20progress%20(1916)&rft.au=Li,%20Lei&rft.date=2024-07-01&rft.volume=107&rft.issue=3&rft.spage=368504241276773&rft.pages=368504241276773-&rft.issn=0036-8504&rft.eissn=2047-7163&rft_id=info:doi/10.1177/00368504241276773&rft_dat=%3Cproquest_pubme%3E3099803891%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3111680068&rft_id=info:pmid/39212057&rft_sage_id=10.1177_00368504241276773&rfr_iscdi=true