Mapping of temperate upland habitats using high-resolution satellite imagery and machine learning

Upland habitats provide vital ecological services, yet they are highly threatened by natural and anthropogenic stressors. Monitoring these vulnerable habitats is fundamental for conservation and involves determining information about their spatial locations and conditions. Remote sensing has evolved...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental monitoring and assessment 2024-09, Vol.196 (9), p.869, Article 869
Hauptverfasser: Cruz, Charmaine, Perrin, Philip M., Martin, James R., O’Connell, Jerome, McGuinness, Kevin, Connolly, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 869
container_title Environmental monitoring and assessment
container_volume 196
creator Cruz, Charmaine
Perrin, Philip M.
Martin, James R.
O’Connell, Jerome
McGuinness, Kevin
Connolly, John
description Upland habitats provide vital ecological services, yet they are highly threatened by natural and anthropogenic stressors. Monitoring these vulnerable habitats is fundamental for conservation and involves determining information about their spatial locations and conditions. Remote sensing has evolved as a promising tool to map the distribution of upland habitats in space and time. However, the resolutions of most freely available satellite images (e.g., 10-m resolution for Sentinel-2) may not be sufficient for mapping relatively small features, especially in the heterogeneous landscape—in terms of habitat composition—of uplands. Moreover, the use of traditional remote sensing methods, imposing discrete boundaries between habitats, may not accurately represent upland habitats as they often occur in mosaics and merge with each other. In this context, we used high-resolution (2 m) Pleiades satellite imagery and Random Forest (RF) machine learning to map habitats at two Irish upland sites. Specifically, we investigated the impact of varying spatial resolutions on classification accuracy and proposed a complementary approach to traditional methods for mapping complex upland habitats. Results showed that the accuracy generally improved with finer spatial resolution data, with the highest accuracy values (80.34% and 79.64%) achieved for both sites using the 2-m resolution datasets. The probability maps derived from the RF-based fuzzy classification technique can represent complex mosaics and gradual transitions occurring in upland habitats. The presented approach can potentially enhance our understanding of the spatiotemporal dynamics of habitats over large areas.
doi_str_mv 10.1007/s10661-024-12998-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11365857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099805784</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-e5831e479d918aa91f82f5e508e9451b16f05809e552682708ce63b4237397fc3</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EotOBP8ACRWLDxnBtx68VQhVQpCI2sLY8mZuJq8QOdlKp_x5Pp5THgpUX9zvH955DyAsGbxiAflsYKMUo8JYybq2h8IhsmNSCcivtY7IBpjRVQtkzcl7KNQBY3dqn5ExYzqQxdkP8Fz_PIR6a1DcLTjNmv2CzzqOP-2bwu7D4pTRrOSJDOAw0Y0njuoQUm1LRcQyVD5M_YL5tjqLJd0OI2Izoc6yyZ-RJ78eCz-_fLfn-8cO3i0t69fXT54v3V7QTUi0UpREMW233lhnvLesN7yVKMGhbyXZM9SANWJSSK8M1mA6V2LVcaGF134kteXfyndfdhPsO45L96OZcl8u3Lvng_p7EMLhDunGMCSVNjW1LXt875PRjxbK4KZSunugjprU4ATVkkNq0FX31D3qd1hzrfXcUB2lbVil-orqcSsnYP2zDwB0rdKcKXa3Q3VXooIpe_nnHg-RXZxUQJ6DUUay5__77P7Y_Acg2p9Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3099205941</pqid></control><display><type>article</type><title>Mapping of temperate upland habitats using high-resolution satellite imagery and machine learning</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Cruz, Charmaine ; Perrin, Philip M. ; Martin, James R. ; O’Connell, Jerome ; McGuinness, Kevin ; Connolly, John</creator><creatorcontrib>Cruz, Charmaine ; Perrin, Philip M. ; Martin, James R. ; O’Connell, Jerome ; McGuinness, Kevin ; Connolly, John</creatorcontrib><description>Upland habitats provide vital ecological services, yet they are highly threatened by natural and anthropogenic stressors. Monitoring these vulnerable habitats is fundamental for conservation and involves determining information about their spatial locations and conditions. Remote sensing has evolved as a promising tool to map the distribution of upland habitats in space and time. However, the resolutions of most freely available satellite images (e.g., 10-m resolution for Sentinel-2) may not be sufficient for mapping relatively small features, especially in the heterogeneous landscape—in terms of habitat composition—of uplands. Moreover, the use of traditional remote sensing methods, imposing discrete boundaries between habitats, may not accurately represent upland habitats as they often occur in mosaics and merge with each other. In this context, we used high-resolution (2 m) Pleiades satellite imagery and Random Forest (RF) machine learning to map habitats at two Irish upland sites. Specifically, we investigated the impact of varying spatial resolutions on classification accuracy and proposed a complementary approach to traditional methods for mapping complex upland habitats. Results showed that the accuracy generally improved with finer spatial resolution data, with the highest accuracy values (80.34% and 79.64%) achieved for both sites using the 2-m resolution datasets. The probability maps derived from the RF-based fuzzy classification technique can represent complex mosaics and gradual transitions occurring in upland habitats. The presented approach can potentially enhance our understanding of the spatiotemporal dynamics of habitats over large areas.</description><identifier>ISSN: 0167-6369</identifier><identifier>ISSN: 1573-2959</identifier><identifier>EISSN: 1573-2959</identifier><identifier>DOI: 10.1007/s10661-024-12998-0</identifier><identifier>PMID: 39215889</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Accuracy ; Anthropogenic factors ; Atmospheric Protection/Air Quality Control/Air Pollution ; Classification ; Conservation of Natural Resources - methods ; Earth and Environmental Science ; Ecology ; Ecosystem ; Ecotoxicology ; Environment ; Environmental Management ; Environmental Monitoring - methods ; Fuzzy sets ; Habitats ; High resolution ; Human influences ; Image resolution ; Ireland ; Learning algorithms ; Machine Learning ; Machinery condition monitoring ; Mapping ; Monitoring/Environmental Analysis ; Mosaics ; Remote monitoring ; Remote sensing ; Remote Sensing Technology ; Satellite Imagery ; Satellites ; Spatial discrimination ; Spatial distribution ; Spatial resolution</subject><ispartof>Environmental monitoring and assessment, 2024-09, Vol.196 (9), p.869, Article 869</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c356t-e5831e479d918aa91f82f5e508e9451b16f05809e552682708ce63b4237397fc3</cites><orcidid>0000-0002-8597-8432 ; 0000-0003-1336-6477 ; 0000-0002-2897-9711 ; 0000-0002-4782-1549 ; 0000-0001-8620-0246 ; 0000-0001-5863-5779</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10661-024-12998-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10661-024-12998-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39215889$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cruz, Charmaine</creatorcontrib><creatorcontrib>Perrin, Philip M.</creatorcontrib><creatorcontrib>Martin, James R.</creatorcontrib><creatorcontrib>O’Connell, Jerome</creatorcontrib><creatorcontrib>McGuinness, Kevin</creatorcontrib><creatorcontrib>Connolly, John</creatorcontrib><title>Mapping of temperate upland habitats using high-resolution satellite imagery and machine learning</title><title>Environmental monitoring and assessment</title><addtitle>Environ Monit Assess</addtitle><addtitle>Environ Monit Assess</addtitle><description>Upland habitats provide vital ecological services, yet they are highly threatened by natural and anthropogenic stressors. Monitoring these vulnerable habitats is fundamental for conservation and involves determining information about their spatial locations and conditions. Remote sensing has evolved as a promising tool to map the distribution of upland habitats in space and time. However, the resolutions of most freely available satellite images (e.g., 10-m resolution for Sentinel-2) may not be sufficient for mapping relatively small features, especially in the heterogeneous landscape—in terms of habitat composition—of uplands. Moreover, the use of traditional remote sensing methods, imposing discrete boundaries between habitats, may not accurately represent upland habitats as they often occur in mosaics and merge with each other. In this context, we used high-resolution (2 m) Pleiades satellite imagery and Random Forest (RF) machine learning to map habitats at two Irish upland sites. Specifically, we investigated the impact of varying spatial resolutions on classification accuracy and proposed a complementary approach to traditional methods for mapping complex upland habitats. Results showed that the accuracy generally improved with finer spatial resolution data, with the highest accuracy values (80.34% and 79.64%) achieved for both sites using the 2-m resolution datasets. The probability maps derived from the RF-based fuzzy classification technique can represent complex mosaics and gradual transitions occurring in upland habitats. The presented approach can potentially enhance our understanding of the spatiotemporal dynamics of habitats over large areas.</description><subject>Accuracy</subject><subject>Anthropogenic factors</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Classification</subject><subject>Conservation of Natural Resources - methods</subject><subject>Earth and Environmental Science</subject><subject>Ecology</subject><subject>Ecosystem</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Management</subject><subject>Environmental Monitoring - methods</subject><subject>Fuzzy sets</subject><subject>Habitats</subject><subject>High resolution</subject><subject>Human influences</subject><subject>Image resolution</subject><subject>Ireland</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Machinery condition monitoring</subject><subject>Mapping</subject><subject>Monitoring/Environmental Analysis</subject><subject>Mosaics</subject><subject>Remote monitoring</subject><subject>Remote sensing</subject><subject>Remote Sensing Technology</subject><subject>Satellite Imagery</subject><subject>Satellites</subject><subject>Spatial discrimination</subject><subject>Spatial distribution</subject><subject>Spatial resolution</subject><issn>0167-6369</issn><issn>1573-2959</issn><issn>1573-2959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNp9kUtv1DAUhS0EotOBP8ACRWLDxnBtx68VQhVQpCI2sLY8mZuJq8QOdlKp_x5Pp5THgpUX9zvH955DyAsGbxiAflsYKMUo8JYybq2h8IhsmNSCcivtY7IBpjRVQtkzcl7KNQBY3dqn5ExYzqQxdkP8Fz_PIR6a1DcLTjNmv2CzzqOP-2bwu7D4pTRrOSJDOAw0Y0njuoQUm1LRcQyVD5M_YL5tjqLJd0OI2Izoc6yyZ-RJ78eCz-_fLfn-8cO3i0t69fXT54v3V7QTUi0UpREMW233lhnvLesN7yVKMGhbyXZM9SANWJSSK8M1mA6V2LVcaGF134kteXfyndfdhPsO45L96OZcl8u3Lvng_p7EMLhDunGMCSVNjW1LXt875PRjxbK4KZSunugjprU4ATVkkNq0FX31D3qd1hzrfXcUB2lbVil-orqcSsnYP2zDwB0rdKcKXa3Q3VXooIpe_nnHg-RXZxUQJ6DUUay5__77P7Y_Acg2p9Q</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Cruz, Charmaine</creator><creator>Perrin, Philip M.</creator><creator>Martin, James R.</creator><creator>O’Connell, Jerome</creator><creator>McGuinness, Kevin</creator><creator>Connolly, John</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TG</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H97</scope><scope>K9.</scope><scope>KL.</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8597-8432</orcidid><orcidid>https://orcid.org/0000-0003-1336-6477</orcidid><orcidid>https://orcid.org/0000-0002-2897-9711</orcidid><orcidid>https://orcid.org/0000-0002-4782-1549</orcidid><orcidid>https://orcid.org/0000-0001-8620-0246</orcidid><orcidid>https://orcid.org/0000-0001-5863-5779</orcidid></search><sort><creationdate>20240901</creationdate><title>Mapping of temperate upland habitats using high-resolution satellite imagery and machine learning</title><author>Cruz, Charmaine ; Perrin, Philip M. ; Martin, James R. ; O’Connell, Jerome ; McGuinness, Kevin ; Connolly, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-e5831e479d918aa91f82f5e508e9451b16f05809e552682708ce63b4237397fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Anthropogenic factors</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Classification</topic><topic>Conservation of Natural Resources - methods</topic><topic>Earth and Environmental Science</topic><topic>Ecology</topic><topic>Ecosystem</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Management</topic><topic>Environmental Monitoring - methods</topic><topic>Fuzzy sets</topic><topic>Habitats</topic><topic>High resolution</topic><topic>Human influences</topic><topic>Image resolution</topic><topic>Ireland</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Machinery condition monitoring</topic><topic>Mapping</topic><topic>Monitoring/Environmental Analysis</topic><topic>Mosaics</topic><topic>Remote monitoring</topic><topic>Remote sensing</topic><topic>Remote Sensing Technology</topic><topic>Satellite Imagery</topic><topic>Satellites</topic><topic>Spatial discrimination</topic><topic>Spatial distribution</topic><topic>Spatial resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cruz, Charmaine</creatorcontrib><creatorcontrib>Perrin, Philip M.</creatorcontrib><creatorcontrib>Martin, James R.</creatorcontrib><creatorcontrib>O’Connell, Jerome</creatorcontrib><creatorcontrib>McGuinness, Kevin</creatorcontrib><creatorcontrib>Connolly, John</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Environmental monitoring and assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cruz, Charmaine</au><au>Perrin, Philip M.</au><au>Martin, James R.</au><au>O’Connell, Jerome</au><au>McGuinness, Kevin</au><au>Connolly, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping of temperate upland habitats using high-resolution satellite imagery and machine learning</atitle><jtitle>Environmental monitoring and assessment</jtitle><stitle>Environ Monit Assess</stitle><addtitle>Environ Monit Assess</addtitle><date>2024-09-01</date><risdate>2024</risdate><volume>196</volume><issue>9</issue><spage>869</spage><pages>869-</pages><artnum>869</artnum><issn>0167-6369</issn><issn>1573-2959</issn><eissn>1573-2959</eissn><abstract>Upland habitats provide vital ecological services, yet they are highly threatened by natural and anthropogenic stressors. Monitoring these vulnerable habitats is fundamental for conservation and involves determining information about their spatial locations and conditions. Remote sensing has evolved as a promising tool to map the distribution of upland habitats in space and time. However, the resolutions of most freely available satellite images (e.g., 10-m resolution for Sentinel-2) may not be sufficient for mapping relatively small features, especially in the heterogeneous landscape—in terms of habitat composition—of uplands. Moreover, the use of traditional remote sensing methods, imposing discrete boundaries between habitats, may not accurately represent upland habitats as they often occur in mosaics and merge with each other. In this context, we used high-resolution (2 m) Pleiades satellite imagery and Random Forest (RF) machine learning to map habitats at two Irish upland sites. Specifically, we investigated the impact of varying spatial resolutions on classification accuracy and proposed a complementary approach to traditional methods for mapping complex upland habitats. Results showed that the accuracy generally improved with finer spatial resolution data, with the highest accuracy values (80.34% and 79.64%) achieved for both sites using the 2-m resolution datasets. The probability maps derived from the RF-based fuzzy classification technique can represent complex mosaics and gradual transitions occurring in upland habitats. The presented approach can potentially enhance our understanding of the spatiotemporal dynamics of habitats over large areas.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>39215889</pmid><doi>10.1007/s10661-024-12998-0</doi><orcidid>https://orcid.org/0000-0002-8597-8432</orcidid><orcidid>https://orcid.org/0000-0003-1336-6477</orcidid><orcidid>https://orcid.org/0000-0002-2897-9711</orcidid><orcidid>https://orcid.org/0000-0002-4782-1549</orcidid><orcidid>https://orcid.org/0000-0001-8620-0246</orcidid><orcidid>https://orcid.org/0000-0001-5863-5779</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-6369
ispartof Environmental monitoring and assessment, 2024-09, Vol.196 (9), p.869, Article 869
issn 0167-6369
1573-2959
1573-2959
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11365857
source MEDLINE; SpringerNature Journals
subjects Accuracy
Anthropogenic factors
Atmospheric Protection/Air Quality Control/Air Pollution
Classification
Conservation of Natural Resources - methods
Earth and Environmental Science
Ecology
Ecosystem
Ecotoxicology
Environment
Environmental Management
Environmental Monitoring - methods
Fuzzy sets
Habitats
High resolution
Human influences
Image resolution
Ireland
Learning algorithms
Machine Learning
Machinery condition monitoring
Mapping
Monitoring/Environmental Analysis
Mosaics
Remote monitoring
Remote sensing
Remote Sensing Technology
Satellite Imagery
Satellites
Spatial discrimination
Spatial distribution
Spatial resolution
title Mapping of temperate upland habitats using high-resolution satellite imagery and machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T21%3A52%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20of%20temperate%20upland%20habitats%20using%20high-resolution%20satellite%20imagery%20and%20machine%20learning&rft.jtitle=Environmental%20monitoring%20and%20assessment&rft.au=Cruz,%20Charmaine&rft.date=2024-09-01&rft.volume=196&rft.issue=9&rft.spage=869&rft.pages=869-&rft.artnum=869&rft.issn=0167-6369&rft.eissn=1573-2959&rft_id=info:doi/10.1007/s10661-024-12998-0&rft_dat=%3Cproquest_pubme%3E3099805784%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3099205941&rft_id=info:pmid/39215889&rfr_iscdi=true