Enhancing Energy Storage Performance of 0.85Bi0.5Na0.5TiO3-0.15LaFeO3 Lead-Free Ferroelectric Ceramics via Buried Sintering

Bismuth sodium titanate (Bi0.5Na0.5TiO3, BNT) ceramics are expected to replace traditional lead-based materials because of their excellent ferroelectric and piezoelectric characteristics, and they are widely used in the industrial, military, and medical fields. However, BNT ceramics have a low break...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-08, Vol.17 (16), p.4019
Hauptverfasser: Zhang, Yixiao, Jia, Yuchen, Yang, Jian, Feng, Zixuan, Sun, Shuohan, Zhu, Xiaolong, Wang, Haotian, Yan, Shiguang, Zheng, Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page 4019
container_title Materials
container_volume 17
creator Zhang, Yixiao
Jia, Yuchen
Yang, Jian
Feng, Zixuan
Sun, Shuohan
Zhu, Xiaolong
Wang, Haotian
Yan, Shiguang
Zheng, Ming
description Bismuth sodium titanate (Bi0.5Na0.5TiO3, BNT) ceramics are expected to replace traditional lead-based materials because of their excellent ferroelectric and piezoelectric characteristics, and they are widely used in the industrial, military, and medical fields. However, BNT ceramics have a low breakdown field strength, which leads to unsatisfactory energy storage performance. In this work, 0.85Bi0.5Na0.5TiO3-0.15LaFeO3 ceramics are prepared by the traditional high-temperature solid-phase reaction method, and their energy storage performance is greatly enhanced by improving the process of buried sintering. The results show that the buried sintering method can inhibit the formation of oxygen vacancy, reduce the volatilization of Bi2O3, and greatly improve the breakdown field strength of the ceramics so that the energy storage performance can be significantly enhanced. The breakdown field strength increases from 210 kV/cm to 310 kV/cm, and the energy storage density increases from 1.759 J/cm3 to 4.923 J/cm3. In addition, the energy storage density and energy storage efficiency of these ceramics have good frequency stability and temperature stability. In this study, the excellent energy storage performance of the ceramics prepared by the buried sintering method provides an effective idea for the design of lead-free ferroelectric ceramics with high energy storage performance and greatly expands its application field.
doi_str_mv 10.3390/ma17164019
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11356668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099794469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-212c00fc6ac8b63bcc7649c0610aafb3b92b03d60b0fc361ed15fe38255268f53</originalsourceid><addsrcrecordid>eNpdkd9LHDEQx5dioaK-9C8I9EWEvWY2l-zmSfS4s8LRK2ifQzY7e0Z2E53sCuI_34jSX_MwMzAfvvOrKD4DXwih-dfRQg1qyUF_KA5Ba1WCXi4P_so_FScp3fNsQkBT6cPiZR3ubHA-7Nk6IO2f2c0Uye6R_UDqI425iCz2jC8aeen5Qn632d36nSj5AuTWbnAn2BZtV24IkW2QKOKAbiLv2ArJjt4l9uQtu5zJY8dufJiQcsfj4mNvh4Qn7_Go-LlZ366-ldvd1fXqYlu6qhZTWUHlOO-dsq5plWidq9VSO66AW9u3otVVy0WneJshoQA7kD2KppKyUk0vxVFx_qb7MLcjdg7DRHYwD-RHS88mWm_-rQR_Z_bxyQAIqZRqssLpuwLFxxnTZEafHA6DDRjnZATXus73VTqjX_5D7-NMIe_3SjVQaZB1ps7eKEcxJcL-9zTAzeszzZ9nil-4Yo-n</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098129157</pqid></control><display><type>article</type><title>Enhancing Energy Storage Performance of 0.85Bi0.5Na0.5TiO3-0.15LaFeO3 Lead-Free Ferroelectric Ceramics via Buried Sintering</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Yixiao ; Jia, Yuchen ; Yang, Jian ; Feng, Zixuan ; Sun, Shuohan ; Zhu, Xiaolong ; Wang, Haotian ; Yan, Shiguang ; Zheng, Ming</creator><creatorcontrib>Zhang, Yixiao ; Jia, Yuchen ; Yang, Jian ; Feng, Zixuan ; Sun, Shuohan ; Zhu, Xiaolong ; Wang, Haotian ; Yan, Shiguang ; Zheng, Ming</creatorcontrib><description>Bismuth sodium titanate (Bi0.5Na0.5TiO3, BNT) ceramics are expected to replace traditional lead-based materials because of their excellent ferroelectric and piezoelectric characteristics, and they are widely used in the industrial, military, and medical fields. However, BNT ceramics have a low breakdown field strength, which leads to unsatisfactory energy storage performance. In this work, 0.85Bi0.5Na0.5TiO3-0.15LaFeO3 ceramics are prepared by the traditional high-temperature solid-phase reaction method, and their energy storage performance is greatly enhanced by improving the process of buried sintering. The results show that the buried sintering method can inhibit the formation of oxygen vacancy, reduce the volatilization of Bi2O3, and greatly improve the breakdown field strength of the ceramics so that the energy storage performance can be significantly enhanced. The breakdown field strength increases from 210 kV/cm to 310 kV/cm, and the energy storage density increases from 1.759 J/cm3 to 4.923 J/cm3. In addition, the energy storage density and energy storage efficiency of these ceramics have good frequency stability and temperature stability. In this study, the excellent energy storage performance of the ceramics prepared by the buried sintering method provides an effective idea for the design of lead-free ferroelectric ceramics with high energy storage performance and greatly expands its application field.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17164019</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Bismuth titanate ; Bismuth trioxide ; Breakdown ; Ceramics ; Density ; Dielectric properties ; Efficiency ; Electric fields ; Energy storage ; Ferroelectric materials ; Ferroelectricity ; Field strength ; Frequency stability ; Grain size ; High temperature ; Lead free ; Medical materials ; Piezoelectricity ; Sintering ; Sodium titanate ; Solid phases ; Solid solutions ; Temperature</subject><ispartof>Materials, 2024-08, Vol.17 (16), p.4019</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-212c00fc6ac8b63bcc7649c0610aafb3b92b03d60b0fc361ed15fe38255268f53</cites><orcidid>0000-0001-9388-1430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356668/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356668/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids></links><search><creatorcontrib>Zhang, Yixiao</creatorcontrib><creatorcontrib>Jia, Yuchen</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Feng, Zixuan</creatorcontrib><creatorcontrib>Sun, Shuohan</creatorcontrib><creatorcontrib>Zhu, Xiaolong</creatorcontrib><creatorcontrib>Wang, Haotian</creatorcontrib><creatorcontrib>Yan, Shiguang</creatorcontrib><creatorcontrib>Zheng, Ming</creatorcontrib><title>Enhancing Energy Storage Performance of 0.85Bi0.5Na0.5TiO3-0.15LaFeO3 Lead-Free Ferroelectric Ceramics via Buried Sintering</title><title>Materials</title><description>Bismuth sodium titanate (Bi0.5Na0.5TiO3, BNT) ceramics are expected to replace traditional lead-based materials because of their excellent ferroelectric and piezoelectric characteristics, and they are widely used in the industrial, military, and medical fields. However, BNT ceramics have a low breakdown field strength, which leads to unsatisfactory energy storage performance. In this work, 0.85Bi0.5Na0.5TiO3-0.15LaFeO3 ceramics are prepared by the traditional high-temperature solid-phase reaction method, and their energy storage performance is greatly enhanced by improving the process of buried sintering. The results show that the buried sintering method can inhibit the formation of oxygen vacancy, reduce the volatilization of Bi2O3, and greatly improve the breakdown field strength of the ceramics so that the energy storage performance can be significantly enhanced. The breakdown field strength increases from 210 kV/cm to 310 kV/cm, and the energy storage density increases from 1.759 J/cm3 to 4.923 J/cm3. In addition, the energy storage density and energy storage efficiency of these ceramics have good frequency stability and temperature stability. In this study, the excellent energy storage performance of the ceramics prepared by the buried sintering method provides an effective idea for the design of lead-free ferroelectric ceramics with high energy storage performance and greatly expands its application field.</description><subject>Bismuth titanate</subject><subject>Bismuth trioxide</subject><subject>Breakdown</subject><subject>Ceramics</subject><subject>Density</subject><subject>Dielectric properties</subject><subject>Efficiency</subject><subject>Electric fields</subject><subject>Energy storage</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Field strength</subject><subject>Frequency stability</subject><subject>Grain size</subject><subject>High temperature</subject><subject>Lead free</subject><subject>Medical materials</subject><subject>Piezoelectricity</subject><subject>Sintering</subject><subject>Sodium titanate</subject><subject>Solid phases</subject><subject>Solid solutions</subject><subject>Temperature</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkd9LHDEQx5dioaK-9C8I9EWEvWY2l-zmSfS4s8LRK2ifQzY7e0Z2E53sCuI_34jSX_MwMzAfvvOrKD4DXwih-dfRQg1qyUF_KA5Ba1WCXi4P_so_FScp3fNsQkBT6cPiZR3ubHA-7Nk6IO2f2c0Uye6R_UDqI425iCz2jC8aeen5Qn632d36nSj5AuTWbnAn2BZtV24IkW2QKOKAbiLv2ArJjt4l9uQtu5zJY8dufJiQcsfj4mNvh4Qn7_Go-LlZ366-ldvd1fXqYlu6qhZTWUHlOO-dsq5plWidq9VSO66AW9u3otVVy0WneJshoQA7kD2KppKyUk0vxVFx_qb7MLcjdg7DRHYwD-RHS88mWm_-rQR_Z_bxyQAIqZRqssLpuwLFxxnTZEafHA6DDRjnZATXus73VTqjX_5D7-NMIe_3SjVQaZB1ps7eKEcxJcL-9zTAzeszzZ9nil-4Yo-n</recordid><startdate>20240813</startdate><enddate>20240813</enddate><creator>Zhang, Yixiao</creator><creator>Jia, Yuchen</creator><creator>Yang, Jian</creator><creator>Feng, Zixuan</creator><creator>Sun, Shuohan</creator><creator>Zhu, Xiaolong</creator><creator>Wang, Haotian</creator><creator>Yan, Shiguang</creator><creator>Zheng, Ming</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9388-1430</orcidid></search><sort><creationdate>20240813</creationdate><title>Enhancing Energy Storage Performance of 0.85Bi0.5Na0.5TiO3-0.15LaFeO3 Lead-Free Ferroelectric Ceramics via Buried Sintering</title><author>Zhang, Yixiao ; Jia, Yuchen ; Yang, Jian ; Feng, Zixuan ; Sun, Shuohan ; Zhu, Xiaolong ; Wang, Haotian ; Yan, Shiguang ; Zheng, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-212c00fc6ac8b63bcc7649c0610aafb3b92b03d60b0fc361ed15fe38255268f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bismuth titanate</topic><topic>Bismuth trioxide</topic><topic>Breakdown</topic><topic>Ceramics</topic><topic>Density</topic><topic>Dielectric properties</topic><topic>Efficiency</topic><topic>Electric fields</topic><topic>Energy storage</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Field strength</topic><topic>Frequency stability</topic><topic>Grain size</topic><topic>High temperature</topic><topic>Lead free</topic><topic>Medical materials</topic><topic>Piezoelectricity</topic><topic>Sintering</topic><topic>Sodium titanate</topic><topic>Solid phases</topic><topic>Solid solutions</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yixiao</creatorcontrib><creatorcontrib>Jia, Yuchen</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Feng, Zixuan</creatorcontrib><creatorcontrib>Sun, Shuohan</creatorcontrib><creatorcontrib>Zhu, Xiaolong</creatorcontrib><creatorcontrib>Wang, Haotian</creatorcontrib><creatorcontrib>Yan, Shiguang</creatorcontrib><creatorcontrib>Zheng, Ming</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yixiao</au><au>Jia, Yuchen</au><au>Yang, Jian</au><au>Feng, Zixuan</au><au>Sun, Shuohan</au><au>Zhu, Xiaolong</au><au>Wang, Haotian</au><au>Yan, Shiguang</au><au>Zheng, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Energy Storage Performance of 0.85Bi0.5Na0.5TiO3-0.15LaFeO3 Lead-Free Ferroelectric Ceramics via Buried Sintering</atitle><jtitle>Materials</jtitle><date>2024-08-13</date><risdate>2024</risdate><volume>17</volume><issue>16</issue><spage>4019</spage><pages>4019-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Bismuth sodium titanate (Bi0.5Na0.5TiO3, BNT) ceramics are expected to replace traditional lead-based materials because of their excellent ferroelectric and piezoelectric characteristics, and they are widely used in the industrial, military, and medical fields. However, BNT ceramics have a low breakdown field strength, which leads to unsatisfactory energy storage performance. In this work, 0.85Bi0.5Na0.5TiO3-0.15LaFeO3 ceramics are prepared by the traditional high-temperature solid-phase reaction method, and their energy storage performance is greatly enhanced by improving the process of buried sintering. The results show that the buried sintering method can inhibit the formation of oxygen vacancy, reduce the volatilization of Bi2O3, and greatly improve the breakdown field strength of the ceramics so that the energy storage performance can be significantly enhanced. The breakdown field strength increases from 210 kV/cm to 310 kV/cm, and the energy storage density increases from 1.759 J/cm3 to 4.923 J/cm3. In addition, the energy storage density and energy storage efficiency of these ceramics have good frequency stability and temperature stability. In this study, the excellent energy storage performance of the ceramics prepared by the buried sintering method provides an effective idea for the design of lead-free ferroelectric ceramics with high energy storage performance and greatly expands its application field.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ma17164019</doi><orcidid>https://orcid.org/0000-0001-9388-1430</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-08, Vol.17 (16), p.4019
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11356668
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Bismuth titanate
Bismuth trioxide
Breakdown
Ceramics
Density
Dielectric properties
Efficiency
Electric fields
Energy storage
Ferroelectric materials
Ferroelectricity
Field strength
Frequency stability
Grain size
High temperature
Lead free
Medical materials
Piezoelectricity
Sintering
Sodium titanate
Solid phases
Solid solutions
Temperature
title Enhancing Energy Storage Performance of 0.85Bi0.5Na0.5TiO3-0.15LaFeO3 Lead-Free Ferroelectric Ceramics via Buried Sintering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Energy%20Storage%20Performance%20of%200.85Bi0.5Na0.5TiO3-0.15LaFeO3%20Lead-Free%20Ferroelectric%20Ceramics%20via%20Buried%20Sintering&rft.jtitle=Materials&rft.au=Zhang,%20Yixiao&rft.date=2024-08-13&rft.volume=17&rft.issue=16&rft.spage=4019&rft.pages=4019-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17164019&rft_dat=%3Cproquest_pubme%3E3099794469%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3098129157&rft_id=info:pmid/&rfr_iscdi=true