Enhancing Energy Storage Performance of 0.85Bi0.5Na0.5TiO3-0.15LaFeO3 Lead-Free Ferroelectric Ceramics via Buried Sintering
Bismuth sodium titanate (Bi0.5Na0.5TiO3, BNT) ceramics are expected to replace traditional lead-based materials because of their excellent ferroelectric and piezoelectric characteristics, and they are widely used in the industrial, military, and medical fields. However, BNT ceramics have a low break...
Gespeichert in:
Veröffentlicht in: | Materials 2024-08, Vol.17 (16), p.4019 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | 4019 |
container_title | Materials |
container_volume | 17 |
creator | Zhang, Yixiao Jia, Yuchen Yang, Jian Feng, Zixuan Sun, Shuohan Zhu, Xiaolong Wang, Haotian Yan, Shiguang Zheng, Ming |
description | Bismuth sodium titanate (Bi0.5Na0.5TiO3, BNT) ceramics are expected to replace traditional lead-based materials because of their excellent ferroelectric and piezoelectric characteristics, and they are widely used in the industrial, military, and medical fields. However, BNT ceramics have a low breakdown field strength, which leads to unsatisfactory energy storage performance. In this work, 0.85Bi0.5Na0.5TiO3-0.15LaFeO3 ceramics are prepared by the traditional high-temperature solid-phase reaction method, and their energy storage performance is greatly enhanced by improving the process of buried sintering. The results show that the buried sintering method can inhibit the formation of oxygen vacancy, reduce the volatilization of Bi2O3, and greatly improve the breakdown field strength of the ceramics so that the energy storage performance can be significantly enhanced. The breakdown field strength increases from 210 kV/cm to 310 kV/cm, and the energy storage density increases from 1.759 J/cm3 to 4.923 J/cm3. In addition, the energy storage density and energy storage efficiency of these ceramics have good frequency stability and temperature stability. In this study, the excellent energy storage performance of the ceramics prepared by the buried sintering method provides an effective idea for the design of lead-free ferroelectric ceramics with high energy storage performance and greatly expands its application field. |
doi_str_mv | 10.3390/ma17164019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11356668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3099794469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-212c00fc6ac8b63bcc7649c0610aafb3b92b03d60b0fc361ed15fe38255268f53</originalsourceid><addsrcrecordid>eNpdkd9LHDEQx5dioaK-9C8I9EWEvWY2l-zmSfS4s8LRK2ifQzY7e0Z2E53sCuI_34jSX_MwMzAfvvOrKD4DXwih-dfRQg1qyUF_KA5Ba1WCXi4P_so_FScp3fNsQkBT6cPiZR3ubHA-7Nk6IO2f2c0Uye6R_UDqI425iCz2jC8aeen5Qn632d36nSj5AuTWbnAn2BZtV24IkW2QKOKAbiLv2ArJjt4l9uQtu5zJY8dufJiQcsfj4mNvh4Qn7_Go-LlZ366-ldvd1fXqYlu6qhZTWUHlOO-dsq5plWidq9VSO66AW9u3otVVy0WneJshoQA7kD2KppKyUk0vxVFx_qb7MLcjdg7DRHYwD-RHS88mWm_-rQR_Z_bxyQAIqZRqssLpuwLFxxnTZEafHA6DDRjnZATXus73VTqjX_5D7-NMIe_3SjVQaZB1ps7eKEcxJcL-9zTAzeszzZ9nil-4Yo-n</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098129157</pqid></control><display><type>article</type><title>Enhancing Energy Storage Performance of 0.85Bi0.5Na0.5TiO3-0.15LaFeO3 Lead-Free Ferroelectric Ceramics via Buried Sintering</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Yixiao ; Jia, Yuchen ; Yang, Jian ; Feng, Zixuan ; Sun, Shuohan ; Zhu, Xiaolong ; Wang, Haotian ; Yan, Shiguang ; Zheng, Ming</creator><creatorcontrib>Zhang, Yixiao ; Jia, Yuchen ; Yang, Jian ; Feng, Zixuan ; Sun, Shuohan ; Zhu, Xiaolong ; Wang, Haotian ; Yan, Shiguang ; Zheng, Ming</creatorcontrib><description>Bismuth sodium titanate (Bi0.5Na0.5TiO3, BNT) ceramics are expected to replace traditional lead-based materials because of their excellent ferroelectric and piezoelectric characteristics, and they are widely used in the industrial, military, and medical fields. However, BNT ceramics have a low breakdown field strength, which leads to unsatisfactory energy storage performance. In this work, 0.85Bi0.5Na0.5TiO3-0.15LaFeO3 ceramics are prepared by the traditional high-temperature solid-phase reaction method, and their energy storage performance is greatly enhanced by improving the process of buried sintering. The results show that the buried sintering method can inhibit the formation of oxygen vacancy, reduce the volatilization of Bi2O3, and greatly improve the breakdown field strength of the ceramics so that the energy storage performance can be significantly enhanced. The breakdown field strength increases from 210 kV/cm to 310 kV/cm, and the energy storage density increases from 1.759 J/cm3 to 4.923 J/cm3. In addition, the energy storage density and energy storage efficiency of these ceramics have good frequency stability and temperature stability. In this study, the excellent energy storage performance of the ceramics prepared by the buried sintering method provides an effective idea for the design of lead-free ferroelectric ceramics with high energy storage performance and greatly expands its application field.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17164019</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Bismuth titanate ; Bismuth trioxide ; Breakdown ; Ceramics ; Density ; Dielectric properties ; Efficiency ; Electric fields ; Energy storage ; Ferroelectric materials ; Ferroelectricity ; Field strength ; Frequency stability ; Grain size ; High temperature ; Lead free ; Medical materials ; Piezoelectricity ; Sintering ; Sodium titanate ; Solid phases ; Solid solutions ; Temperature</subject><ispartof>Materials, 2024-08, Vol.17 (16), p.4019</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-212c00fc6ac8b63bcc7649c0610aafb3b92b03d60b0fc361ed15fe38255268f53</cites><orcidid>0000-0001-9388-1430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356668/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356668/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids></links><search><creatorcontrib>Zhang, Yixiao</creatorcontrib><creatorcontrib>Jia, Yuchen</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Feng, Zixuan</creatorcontrib><creatorcontrib>Sun, Shuohan</creatorcontrib><creatorcontrib>Zhu, Xiaolong</creatorcontrib><creatorcontrib>Wang, Haotian</creatorcontrib><creatorcontrib>Yan, Shiguang</creatorcontrib><creatorcontrib>Zheng, Ming</creatorcontrib><title>Enhancing Energy Storage Performance of 0.85Bi0.5Na0.5TiO3-0.15LaFeO3 Lead-Free Ferroelectric Ceramics via Buried Sintering</title><title>Materials</title><description>Bismuth sodium titanate (Bi0.5Na0.5TiO3, BNT) ceramics are expected to replace traditional lead-based materials because of their excellent ferroelectric and piezoelectric characteristics, and they are widely used in the industrial, military, and medical fields. However, BNT ceramics have a low breakdown field strength, which leads to unsatisfactory energy storage performance. In this work, 0.85Bi0.5Na0.5TiO3-0.15LaFeO3 ceramics are prepared by the traditional high-temperature solid-phase reaction method, and their energy storage performance is greatly enhanced by improving the process of buried sintering. The results show that the buried sintering method can inhibit the formation of oxygen vacancy, reduce the volatilization of Bi2O3, and greatly improve the breakdown field strength of the ceramics so that the energy storage performance can be significantly enhanced. The breakdown field strength increases from 210 kV/cm to 310 kV/cm, and the energy storage density increases from 1.759 J/cm3 to 4.923 J/cm3. In addition, the energy storage density and energy storage efficiency of these ceramics have good frequency stability and temperature stability. In this study, the excellent energy storage performance of the ceramics prepared by the buried sintering method provides an effective idea for the design of lead-free ferroelectric ceramics with high energy storage performance and greatly expands its application field.</description><subject>Bismuth titanate</subject><subject>Bismuth trioxide</subject><subject>Breakdown</subject><subject>Ceramics</subject><subject>Density</subject><subject>Dielectric properties</subject><subject>Efficiency</subject><subject>Electric fields</subject><subject>Energy storage</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Field strength</subject><subject>Frequency stability</subject><subject>Grain size</subject><subject>High temperature</subject><subject>Lead free</subject><subject>Medical materials</subject><subject>Piezoelectricity</subject><subject>Sintering</subject><subject>Sodium titanate</subject><subject>Solid phases</subject><subject>Solid solutions</subject><subject>Temperature</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkd9LHDEQx5dioaK-9C8I9EWEvWY2l-zmSfS4s8LRK2ifQzY7e0Z2E53sCuI_34jSX_MwMzAfvvOrKD4DXwih-dfRQg1qyUF_KA5Ba1WCXi4P_so_FScp3fNsQkBT6cPiZR3ubHA-7Nk6IO2f2c0Uye6R_UDqI425iCz2jC8aeen5Qn632d36nSj5AuTWbnAn2BZtV24IkW2QKOKAbiLv2ArJjt4l9uQtu5zJY8dufJiQcsfj4mNvh4Qn7_Go-LlZ366-ldvd1fXqYlu6qhZTWUHlOO-dsq5plWidq9VSO66AW9u3otVVy0WneJshoQA7kD2KppKyUk0vxVFx_qb7MLcjdg7DRHYwD-RHS88mWm_-rQR_Z_bxyQAIqZRqssLpuwLFxxnTZEafHA6DDRjnZATXus73VTqjX_5D7-NMIe_3SjVQaZB1ps7eKEcxJcL-9zTAzeszzZ9nil-4Yo-n</recordid><startdate>20240813</startdate><enddate>20240813</enddate><creator>Zhang, Yixiao</creator><creator>Jia, Yuchen</creator><creator>Yang, Jian</creator><creator>Feng, Zixuan</creator><creator>Sun, Shuohan</creator><creator>Zhu, Xiaolong</creator><creator>Wang, Haotian</creator><creator>Yan, Shiguang</creator><creator>Zheng, Ming</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9388-1430</orcidid></search><sort><creationdate>20240813</creationdate><title>Enhancing Energy Storage Performance of 0.85Bi0.5Na0.5TiO3-0.15LaFeO3 Lead-Free Ferroelectric Ceramics via Buried Sintering</title><author>Zhang, Yixiao ; Jia, Yuchen ; Yang, Jian ; Feng, Zixuan ; Sun, Shuohan ; Zhu, Xiaolong ; Wang, Haotian ; Yan, Shiguang ; Zheng, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-212c00fc6ac8b63bcc7649c0610aafb3b92b03d60b0fc361ed15fe38255268f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bismuth titanate</topic><topic>Bismuth trioxide</topic><topic>Breakdown</topic><topic>Ceramics</topic><topic>Density</topic><topic>Dielectric properties</topic><topic>Efficiency</topic><topic>Electric fields</topic><topic>Energy storage</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Field strength</topic><topic>Frequency stability</topic><topic>Grain size</topic><topic>High temperature</topic><topic>Lead free</topic><topic>Medical materials</topic><topic>Piezoelectricity</topic><topic>Sintering</topic><topic>Sodium titanate</topic><topic>Solid phases</topic><topic>Solid solutions</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yixiao</creatorcontrib><creatorcontrib>Jia, Yuchen</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Feng, Zixuan</creatorcontrib><creatorcontrib>Sun, Shuohan</creatorcontrib><creatorcontrib>Zhu, Xiaolong</creatorcontrib><creatorcontrib>Wang, Haotian</creatorcontrib><creatorcontrib>Yan, Shiguang</creatorcontrib><creatorcontrib>Zheng, Ming</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yixiao</au><au>Jia, Yuchen</au><au>Yang, Jian</au><au>Feng, Zixuan</au><au>Sun, Shuohan</au><au>Zhu, Xiaolong</au><au>Wang, Haotian</au><au>Yan, Shiguang</au><au>Zheng, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Energy Storage Performance of 0.85Bi0.5Na0.5TiO3-0.15LaFeO3 Lead-Free Ferroelectric Ceramics via Buried Sintering</atitle><jtitle>Materials</jtitle><date>2024-08-13</date><risdate>2024</risdate><volume>17</volume><issue>16</issue><spage>4019</spage><pages>4019-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Bismuth sodium titanate (Bi0.5Na0.5TiO3, BNT) ceramics are expected to replace traditional lead-based materials because of their excellent ferroelectric and piezoelectric characteristics, and they are widely used in the industrial, military, and medical fields. However, BNT ceramics have a low breakdown field strength, which leads to unsatisfactory energy storage performance. In this work, 0.85Bi0.5Na0.5TiO3-0.15LaFeO3 ceramics are prepared by the traditional high-temperature solid-phase reaction method, and their energy storage performance is greatly enhanced by improving the process of buried sintering. The results show that the buried sintering method can inhibit the formation of oxygen vacancy, reduce the volatilization of Bi2O3, and greatly improve the breakdown field strength of the ceramics so that the energy storage performance can be significantly enhanced. The breakdown field strength increases from 210 kV/cm to 310 kV/cm, and the energy storage density increases from 1.759 J/cm3 to 4.923 J/cm3. In addition, the energy storage density and energy storage efficiency of these ceramics have good frequency stability and temperature stability. In this study, the excellent energy storage performance of the ceramics prepared by the buried sintering method provides an effective idea for the design of lead-free ferroelectric ceramics with high energy storage performance and greatly expands its application field.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ma17164019</doi><orcidid>https://orcid.org/0000-0001-9388-1430</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-08, Vol.17 (16), p.4019 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11356668 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Bismuth titanate Bismuth trioxide Breakdown Ceramics Density Dielectric properties Efficiency Electric fields Energy storage Ferroelectric materials Ferroelectricity Field strength Frequency stability Grain size High temperature Lead free Medical materials Piezoelectricity Sintering Sodium titanate Solid phases Solid solutions Temperature |
title | Enhancing Energy Storage Performance of 0.85Bi0.5Na0.5TiO3-0.15LaFeO3 Lead-Free Ferroelectric Ceramics via Buried Sintering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Energy%20Storage%20Performance%20of%200.85Bi0.5Na0.5TiO3-0.15LaFeO3%20Lead-Free%20Ferroelectric%20Ceramics%20via%20Buried%20Sintering&rft.jtitle=Materials&rft.au=Zhang,%20Yixiao&rft.date=2024-08-13&rft.volume=17&rft.issue=16&rft.spage=4019&rft.pages=4019-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17164019&rft_dat=%3Cproquest_pubme%3E3099794469%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3098129157&rft_id=info:pmid/&rfr_iscdi=true |