Crystal Lattice Recovery and Optical Activation of Yb Implanted into β-Ga2O3

β-Ga2O3 is an ultra-wide bandgap semiconductor (Eg~4.8 eV) of interest for many applications, including optoelectronics. Undoped Ga2O3 emits light in the UV range that can be tuned to the visible region of the spectrum by rare earth dopants. In this work, we investigate the crystal lattice recovery...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-08, Vol.17 (16), p.3979
Hauptverfasser: Sarwar, Mahwish, Ratajczak, Renata, Ivanov, Vitalii Yu, Gieraltowska, Sylwia, Wierzbicka, Aleksandra, Wozniak, Wojciech, Heller, René, Eisenwinder, Stefan, Guziewicz, Elżbieta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page 3979
container_title Materials
container_volume 17
creator Sarwar, Mahwish
Ratajczak, Renata
Ivanov, Vitalii Yu
Gieraltowska, Sylwia
Wierzbicka, Aleksandra
Wozniak, Wojciech
Heller, René
Eisenwinder, Stefan
Guziewicz, Elżbieta
description β-Ga2O3 is an ultra-wide bandgap semiconductor (Eg~4.8 eV) of interest for many applications, including optoelectronics. Undoped Ga2O3 emits light in the UV range that can be tuned to the visible region of the spectrum by rare earth dopants. In this work, we investigate the crystal lattice recovery of (2¯01)-oriented β-Ga2O3 crystals implanted with Yb ions to the fluence of 1 ×1014 at/cm2. Post-implantation annealing at a range of temperature and different atmospheres was used to investigate the β-Ga2O3 crystal structure recovery and optical activation of Yb ions. Ion implantation is a renowned technique used for material doping, but in spite of its many advantages such as the controlled introduction of dopants in concentrations exceeding the solubility limits, it also causes damage to the crystal lattice, which strongly influences the optical response from the material. In this work, post-implantation defects in β-Ga2O3:Yb crystals, their transformation, and the recovery of the crystal lattice after thermal treatment have been investigated by channeling Rutherford backscattering spectrometry (RBS/c) supported by McChasy simulations, and the optical response was tested. It has been shown that post-implantation annealing at temperatures of 700–900 °C results in partial crystal lattice recovery, but it is accompanied by the out-diffusion of Yb ions toward the surface if the annealing temperature and time exceed 800 °C and 10 min, respectively. High-temperature implantation at 500–900 °C strongly limits post-implantation damage to the crystal lattice, but it does not cause the intense luminescence of Yb ions. This suggests that the recovery of the crystal lattice is not a sufficient condition for strong rare-earth photoluminescence at room temperature and that oxygen annealing is beneficial for intense infrared luminescence compared to other tested environments.
doi_str_mv 10.3390/ma17163979
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11356592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3098135640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-1f76a0e1f85ef12a1c27c05913f5b7689f12624cf5c468ead7cc13504dec0b683</originalsourceid><addsrcrecordid>eNpdkd9KwzAUh4MoOKY3PkHAGxGqSdOmzZWMoXMwGYheeBXSNNGMtqlJNthr-SA-kykb_stNwu98fJyTA8AZRleEMHTdClxgSljBDsAIM0YTzLLs8Nf7GJx6v0LxEILLlI3Aw9RtfRANXIgQjFTwUUm7UW4LRVfDZR-zWJzIYDYiGNtBq-FLBedt34guqBqaLlj4-ZHMRLokJ-BIi8ar0_09Bs93t0_T-2SxnM2nk0Ui04KEBOuCCqSwLnOlcSpwjCXKGSY6rwpashjSNJM6lxktlagLKTHJUVYriSpakjG42Xn7ddWqWqouONHw3plWuC23wvC_lc688Ve74ThqaM7SaLjYG5x9XysfeGu8VE2cStm15wSx-I-EZQN6_g9d2bXr4nwDVQ7GDEXqckdJZ713Sn93gxEf1sN_1kO-ACUOggQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098135640</pqid></control><display><type>article</type><title>Crystal Lattice Recovery and Optical Activation of Yb Implanted into β-Ga2O3</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sarwar, Mahwish ; Ratajczak, Renata ; Ivanov, Vitalii Yu ; Gieraltowska, Sylwia ; Wierzbicka, Aleksandra ; Wozniak, Wojciech ; Heller, René ; Eisenwinder, Stefan ; Guziewicz, Elżbieta</creator><creatorcontrib>Sarwar, Mahwish ; Ratajczak, Renata ; Ivanov, Vitalii Yu ; Gieraltowska, Sylwia ; Wierzbicka, Aleksandra ; Wozniak, Wojciech ; Heller, René ; Eisenwinder, Stefan ; Guziewicz, Elżbieta</creatorcontrib><description>β-Ga2O3 is an ultra-wide bandgap semiconductor (Eg~4.8 eV) of interest for many applications, including optoelectronics. Undoped Ga2O3 emits light in the UV range that can be tuned to the visible region of the spectrum by rare earth dopants. In this work, we investigate the crystal lattice recovery of (2¯01)-oriented β-Ga2O3 crystals implanted with Yb ions to the fluence of 1 ×1014 at/cm2. Post-implantation annealing at a range of temperature and different atmospheres was used to investigate the β-Ga2O3 crystal structure recovery and optical activation of Yb ions. Ion implantation is a renowned technique used for material doping, but in spite of its many advantages such as the controlled introduction of dopants in concentrations exceeding the solubility limits, it also causes damage to the crystal lattice, which strongly influences the optical response from the material. In this work, post-implantation defects in β-Ga2O3:Yb crystals, their transformation, and the recovery of the crystal lattice after thermal treatment have been investigated by channeling Rutherford backscattering spectrometry (RBS/c) supported by McChasy simulations, and the optical response was tested. It has been shown that post-implantation annealing at temperatures of 700–900 °C results in partial crystal lattice recovery, but it is accompanied by the out-diffusion of Yb ions toward the surface if the annealing temperature and time exceed 800 °C and 10 min, respectively. High-temperature implantation at 500–900 °C strongly limits post-implantation damage to the crystal lattice, but it does not cause the intense luminescence of Yb ions. This suggests that the recovery of the crystal lattice is not a sufficient condition for strong rare-earth photoluminescence at room temperature and that oxygen annealing is beneficial for intense infrared luminescence compared to other tested environments.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17163979</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Annealing ; Crystal defects ; Crystal lattices ; Crystal structure ; Damage ; Defect annealing ; Dopants ; Energy gap ; Fluence ; Gallium oxides ; Heat treatment ; High temperature ; Investigations ; Ion implantation ; Luminescence ; Monte Carlo simulation ; Optical properties ; Optoelectronics ; Phase transitions ; Photoluminescence ; Point defects ; Radiation ; Rare earth elements ; Recovery ; Room temperature ; Semiconductors ; Silicon nitride ; Temperature ; Thermal transformations ; Wide bandgap semiconductors ; Ytterbium</subject><ispartof>Materials, 2024-08, Vol.17 (16), p.3979</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-1f76a0e1f85ef12a1c27c05913f5b7689f12624cf5c468ead7cc13504dec0b683</cites><orcidid>0000-0001-6158-5258 ; 0000-0002-0126-5356 ; 0000-0001-8596-2230</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356592/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356592/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Sarwar, Mahwish</creatorcontrib><creatorcontrib>Ratajczak, Renata</creatorcontrib><creatorcontrib>Ivanov, Vitalii Yu</creatorcontrib><creatorcontrib>Gieraltowska, Sylwia</creatorcontrib><creatorcontrib>Wierzbicka, Aleksandra</creatorcontrib><creatorcontrib>Wozniak, Wojciech</creatorcontrib><creatorcontrib>Heller, René</creatorcontrib><creatorcontrib>Eisenwinder, Stefan</creatorcontrib><creatorcontrib>Guziewicz, Elżbieta</creatorcontrib><title>Crystal Lattice Recovery and Optical Activation of Yb Implanted into β-Ga2O3</title><title>Materials</title><description>β-Ga2O3 is an ultra-wide bandgap semiconductor (Eg~4.8 eV) of interest for many applications, including optoelectronics. Undoped Ga2O3 emits light in the UV range that can be tuned to the visible region of the spectrum by rare earth dopants. In this work, we investigate the crystal lattice recovery of (2¯01)-oriented β-Ga2O3 crystals implanted with Yb ions to the fluence of 1 ×1014 at/cm2. Post-implantation annealing at a range of temperature and different atmospheres was used to investigate the β-Ga2O3 crystal structure recovery and optical activation of Yb ions. Ion implantation is a renowned technique used for material doping, but in spite of its many advantages such as the controlled introduction of dopants in concentrations exceeding the solubility limits, it also causes damage to the crystal lattice, which strongly influences the optical response from the material. In this work, post-implantation defects in β-Ga2O3:Yb crystals, their transformation, and the recovery of the crystal lattice after thermal treatment have been investigated by channeling Rutherford backscattering spectrometry (RBS/c) supported by McChasy simulations, and the optical response was tested. It has been shown that post-implantation annealing at temperatures of 700–900 °C results in partial crystal lattice recovery, but it is accompanied by the out-diffusion of Yb ions toward the surface if the annealing temperature and time exceed 800 °C and 10 min, respectively. High-temperature implantation at 500–900 °C strongly limits post-implantation damage to the crystal lattice, but it does not cause the intense luminescence of Yb ions. This suggests that the recovery of the crystal lattice is not a sufficient condition for strong rare-earth photoluminescence at room temperature and that oxygen annealing is beneficial for intense infrared luminescence compared to other tested environments.</description><subject>Annealing</subject><subject>Crystal defects</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>Damage</subject><subject>Defect annealing</subject><subject>Dopants</subject><subject>Energy gap</subject><subject>Fluence</subject><subject>Gallium oxides</subject><subject>Heat treatment</subject><subject>High temperature</subject><subject>Investigations</subject><subject>Ion implantation</subject><subject>Luminescence</subject><subject>Monte Carlo simulation</subject><subject>Optical properties</subject><subject>Optoelectronics</subject><subject>Phase transitions</subject><subject>Photoluminescence</subject><subject>Point defects</subject><subject>Radiation</subject><subject>Rare earth elements</subject><subject>Recovery</subject><subject>Room temperature</subject><subject>Semiconductors</subject><subject>Silicon nitride</subject><subject>Temperature</subject><subject>Thermal transformations</subject><subject>Wide bandgap semiconductors</subject><subject>Ytterbium</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkd9KwzAUh4MoOKY3PkHAGxGqSdOmzZWMoXMwGYheeBXSNNGMtqlJNthr-SA-kykb_stNwu98fJyTA8AZRleEMHTdClxgSljBDsAIM0YTzLLs8Nf7GJx6v0LxEILLlI3Aw9RtfRANXIgQjFTwUUm7UW4LRVfDZR-zWJzIYDYiGNtBq-FLBedt34guqBqaLlj4-ZHMRLokJ-BIi8ar0_09Bs93t0_T-2SxnM2nk0Ui04KEBOuCCqSwLnOlcSpwjCXKGSY6rwpashjSNJM6lxktlagLKTHJUVYriSpakjG42Xn7ddWqWqouONHw3plWuC23wvC_lc688Ve74ThqaM7SaLjYG5x9XysfeGu8VE2cStm15wSx-I-EZQN6_g9d2bXr4nwDVQ7GDEXqckdJZ713Sn93gxEf1sN_1kO-ACUOggQ</recordid><startdate>20240810</startdate><enddate>20240810</enddate><creator>Sarwar, Mahwish</creator><creator>Ratajczak, Renata</creator><creator>Ivanov, Vitalii Yu</creator><creator>Gieraltowska, Sylwia</creator><creator>Wierzbicka, Aleksandra</creator><creator>Wozniak, Wojciech</creator><creator>Heller, René</creator><creator>Eisenwinder, Stefan</creator><creator>Guziewicz, Elżbieta</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6158-5258</orcidid><orcidid>https://orcid.org/0000-0002-0126-5356</orcidid><orcidid>https://orcid.org/0000-0001-8596-2230</orcidid></search><sort><creationdate>20240810</creationdate><title>Crystal Lattice Recovery and Optical Activation of Yb Implanted into β-Ga2O3</title><author>Sarwar, Mahwish ; Ratajczak, Renata ; Ivanov, Vitalii Yu ; Gieraltowska, Sylwia ; Wierzbicka, Aleksandra ; Wozniak, Wojciech ; Heller, René ; Eisenwinder, Stefan ; Guziewicz, Elżbieta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-1f76a0e1f85ef12a1c27c05913f5b7689f12624cf5c468ead7cc13504dec0b683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annealing</topic><topic>Crystal defects</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>Damage</topic><topic>Defect annealing</topic><topic>Dopants</topic><topic>Energy gap</topic><topic>Fluence</topic><topic>Gallium oxides</topic><topic>Heat treatment</topic><topic>High temperature</topic><topic>Investigations</topic><topic>Ion implantation</topic><topic>Luminescence</topic><topic>Monte Carlo simulation</topic><topic>Optical properties</topic><topic>Optoelectronics</topic><topic>Phase transitions</topic><topic>Photoluminescence</topic><topic>Point defects</topic><topic>Radiation</topic><topic>Rare earth elements</topic><topic>Recovery</topic><topic>Room temperature</topic><topic>Semiconductors</topic><topic>Silicon nitride</topic><topic>Temperature</topic><topic>Thermal transformations</topic><topic>Wide bandgap semiconductors</topic><topic>Ytterbium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarwar, Mahwish</creatorcontrib><creatorcontrib>Ratajczak, Renata</creatorcontrib><creatorcontrib>Ivanov, Vitalii Yu</creatorcontrib><creatorcontrib>Gieraltowska, Sylwia</creatorcontrib><creatorcontrib>Wierzbicka, Aleksandra</creatorcontrib><creatorcontrib>Wozniak, Wojciech</creatorcontrib><creatorcontrib>Heller, René</creatorcontrib><creatorcontrib>Eisenwinder, Stefan</creatorcontrib><creatorcontrib>Guziewicz, Elżbieta</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarwar, Mahwish</au><au>Ratajczak, Renata</au><au>Ivanov, Vitalii Yu</au><au>Gieraltowska, Sylwia</au><au>Wierzbicka, Aleksandra</au><au>Wozniak, Wojciech</au><au>Heller, René</au><au>Eisenwinder, Stefan</au><au>Guziewicz, Elżbieta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal Lattice Recovery and Optical Activation of Yb Implanted into β-Ga2O3</atitle><jtitle>Materials</jtitle><date>2024-08-10</date><risdate>2024</risdate><volume>17</volume><issue>16</issue><spage>3979</spage><pages>3979-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>β-Ga2O3 is an ultra-wide bandgap semiconductor (Eg~4.8 eV) of interest for many applications, including optoelectronics. Undoped Ga2O3 emits light in the UV range that can be tuned to the visible region of the spectrum by rare earth dopants. In this work, we investigate the crystal lattice recovery of (2¯01)-oriented β-Ga2O3 crystals implanted with Yb ions to the fluence of 1 ×1014 at/cm2. Post-implantation annealing at a range of temperature and different atmospheres was used to investigate the β-Ga2O3 crystal structure recovery and optical activation of Yb ions. Ion implantation is a renowned technique used for material doping, but in spite of its many advantages such as the controlled introduction of dopants in concentrations exceeding the solubility limits, it also causes damage to the crystal lattice, which strongly influences the optical response from the material. In this work, post-implantation defects in β-Ga2O3:Yb crystals, their transformation, and the recovery of the crystal lattice after thermal treatment have been investigated by channeling Rutherford backscattering spectrometry (RBS/c) supported by McChasy simulations, and the optical response was tested. It has been shown that post-implantation annealing at temperatures of 700–900 °C results in partial crystal lattice recovery, but it is accompanied by the out-diffusion of Yb ions toward the surface if the annealing temperature and time exceed 800 °C and 10 min, respectively. High-temperature implantation at 500–900 °C strongly limits post-implantation damage to the crystal lattice, but it does not cause the intense luminescence of Yb ions. This suggests that the recovery of the crystal lattice is not a sufficient condition for strong rare-earth photoluminescence at room temperature and that oxygen annealing is beneficial for intense infrared luminescence compared to other tested environments.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ma17163979</doi><orcidid>https://orcid.org/0000-0001-6158-5258</orcidid><orcidid>https://orcid.org/0000-0002-0126-5356</orcidid><orcidid>https://orcid.org/0000-0001-8596-2230</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-08, Vol.17 (16), p.3979
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11356592
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry
subjects Annealing
Crystal defects
Crystal lattices
Crystal structure
Damage
Defect annealing
Dopants
Energy gap
Fluence
Gallium oxides
Heat treatment
High temperature
Investigations
Ion implantation
Luminescence
Monte Carlo simulation
Optical properties
Optoelectronics
Phase transitions
Photoluminescence
Point defects
Radiation
Rare earth elements
Recovery
Room temperature
Semiconductors
Silicon nitride
Temperature
Thermal transformations
Wide bandgap semiconductors
Ytterbium
title Crystal Lattice Recovery and Optical Activation of Yb Implanted into β-Ga2O3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A12%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20Lattice%20Recovery%20and%20Optical%20Activation%20of%20Yb%20Implanted%20into%20%CE%B2-Ga2O3&rft.jtitle=Materials&rft.au=Sarwar,%20Mahwish&rft.date=2024-08-10&rft.volume=17&rft.issue=16&rft.spage=3979&rft.pages=3979-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17163979&rft_dat=%3Cproquest_pubme%3E3098135640%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3098135640&rft_id=info:pmid/&rfr_iscdi=true