Crystal Lattice Recovery and Optical Activation of Yb Implanted into β-Ga2O3
β-Ga2O3 is an ultra-wide bandgap semiconductor (Eg~4.8 eV) of interest for many applications, including optoelectronics. Undoped Ga2O3 emits light in the UV range that can be tuned to the visible region of the spectrum by rare earth dopants. In this work, we investigate the crystal lattice recovery...
Gespeichert in:
Veröffentlicht in: | Materials 2024-08, Vol.17 (16), p.3979 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | 3979 |
container_title | Materials |
container_volume | 17 |
creator | Sarwar, Mahwish Ratajczak, Renata Ivanov, Vitalii Yu Gieraltowska, Sylwia Wierzbicka, Aleksandra Wozniak, Wojciech Heller, René Eisenwinder, Stefan Guziewicz, Elżbieta |
description | β-Ga2O3 is an ultra-wide bandgap semiconductor (Eg~4.8 eV) of interest for many applications, including optoelectronics. Undoped Ga2O3 emits light in the UV range that can be tuned to the visible region of the spectrum by rare earth dopants. In this work, we investigate the crystal lattice recovery of (2¯01)-oriented β-Ga2O3 crystals implanted with Yb ions to the fluence of 1 ×1014 at/cm2. Post-implantation annealing at a range of temperature and different atmospheres was used to investigate the β-Ga2O3 crystal structure recovery and optical activation of Yb ions. Ion implantation is a renowned technique used for material doping, but in spite of its many advantages such as the controlled introduction of dopants in concentrations exceeding the solubility limits, it also causes damage to the crystal lattice, which strongly influences the optical response from the material. In this work, post-implantation defects in β-Ga2O3:Yb crystals, their transformation, and the recovery of the crystal lattice after thermal treatment have been investigated by channeling Rutherford backscattering spectrometry (RBS/c) supported by McChasy simulations, and the optical response was tested. It has been shown that post-implantation annealing at temperatures of 700–900 °C results in partial crystal lattice recovery, but it is accompanied by the out-diffusion of Yb ions toward the surface if the annealing temperature and time exceed 800 °C and 10 min, respectively. High-temperature implantation at 500–900 °C strongly limits post-implantation damage to the crystal lattice, but it does not cause the intense luminescence of Yb ions. This suggests that the recovery of the crystal lattice is not a sufficient condition for strong rare-earth photoluminescence at room temperature and that oxygen annealing is beneficial for intense infrared luminescence compared to other tested environments. |
doi_str_mv | 10.3390/ma17163979 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11356592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3098135640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-1f76a0e1f85ef12a1c27c05913f5b7689f12624cf5c468ead7cc13504dec0b683</originalsourceid><addsrcrecordid>eNpdkd9KwzAUh4MoOKY3PkHAGxGqSdOmzZWMoXMwGYheeBXSNNGMtqlJNthr-SA-kykb_stNwu98fJyTA8AZRleEMHTdClxgSljBDsAIM0YTzLLs8Nf7GJx6v0LxEILLlI3Aw9RtfRANXIgQjFTwUUm7UW4LRVfDZR-zWJzIYDYiGNtBq-FLBedt34guqBqaLlj4-ZHMRLokJ-BIi8ar0_09Bs93t0_T-2SxnM2nk0Ui04KEBOuCCqSwLnOlcSpwjCXKGSY6rwpashjSNJM6lxktlagLKTHJUVYriSpakjG42Xn7ddWqWqouONHw3plWuC23wvC_lc688Ve74ThqaM7SaLjYG5x9XysfeGu8VE2cStm15wSx-I-EZQN6_g9d2bXr4nwDVQ7GDEXqckdJZ713Sn93gxEf1sN_1kO-ACUOggQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3098135640</pqid></control><display><type>article</type><title>Crystal Lattice Recovery and Optical Activation of Yb Implanted into β-Ga2O3</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sarwar, Mahwish ; Ratajczak, Renata ; Ivanov, Vitalii Yu ; Gieraltowska, Sylwia ; Wierzbicka, Aleksandra ; Wozniak, Wojciech ; Heller, René ; Eisenwinder, Stefan ; Guziewicz, Elżbieta</creator><creatorcontrib>Sarwar, Mahwish ; Ratajczak, Renata ; Ivanov, Vitalii Yu ; Gieraltowska, Sylwia ; Wierzbicka, Aleksandra ; Wozniak, Wojciech ; Heller, René ; Eisenwinder, Stefan ; Guziewicz, Elżbieta</creatorcontrib><description>β-Ga2O3 is an ultra-wide bandgap semiconductor (Eg~4.8 eV) of interest for many applications, including optoelectronics. Undoped Ga2O3 emits light in the UV range that can be tuned to the visible region of the spectrum by rare earth dopants. In this work, we investigate the crystal lattice recovery of (2¯01)-oriented β-Ga2O3 crystals implanted with Yb ions to the fluence of 1 ×1014 at/cm2. Post-implantation annealing at a range of temperature and different atmospheres was used to investigate the β-Ga2O3 crystal structure recovery and optical activation of Yb ions. Ion implantation is a renowned technique used for material doping, but in spite of its many advantages such as the controlled introduction of dopants in concentrations exceeding the solubility limits, it also causes damage to the crystal lattice, which strongly influences the optical response from the material. In this work, post-implantation defects in β-Ga2O3:Yb crystals, their transformation, and the recovery of the crystal lattice after thermal treatment have been investigated by channeling Rutherford backscattering spectrometry (RBS/c) supported by McChasy simulations, and the optical response was tested. It has been shown that post-implantation annealing at temperatures of 700–900 °C results in partial crystal lattice recovery, but it is accompanied by the out-diffusion of Yb ions toward the surface if the annealing temperature and time exceed 800 °C and 10 min, respectively. High-temperature implantation at 500–900 °C strongly limits post-implantation damage to the crystal lattice, but it does not cause the intense luminescence of Yb ions. This suggests that the recovery of the crystal lattice is not a sufficient condition for strong rare-earth photoluminescence at room temperature and that oxygen annealing is beneficial for intense infrared luminescence compared to other tested environments.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17163979</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Annealing ; Crystal defects ; Crystal lattices ; Crystal structure ; Damage ; Defect annealing ; Dopants ; Energy gap ; Fluence ; Gallium oxides ; Heat treatment ; High temperature ; Investigations ; Ion implantation ; Luminescence ; Monte Carlo simulation ; Optical properties ; Optoelectronics ; Phase transitions ; Photoluminescence ; Point defects ; Radiation ; Rare earth elements ; Recovery ; Room temperature ; Semiconductors ; Silicon nitride ; Temperature ; Thermal transformations ; Wide bandgap semiconductors ; Ytterbium</subject><ispartof>Materials, 2024-08, Vol.17 (16), p.3979</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-1f76a0e1f85ef12a1c27c05913f5b7689f12624cf5c468ead7cc13504dec0b683</cites><orcidid>0000-0001-6158-5258 ; 0000-0002-0126-5356 ; 0000-0001-8596-2230</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356592/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11356592/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Sarwar, Mahwish</creatorcontrib><creatorcontrib>Ratajczak, Renata</creatorcontrib><creatorcontrib>Ivanov, Vitalii Yu</creatorcontrib><creatorcontrib>Gieraltowska, Sylwia</creatorcontrib><creatorcontrib>Wierzbicka, Aleksandra</creatorcontrib><creatorcontrib>Wozniak, Wojciech</creatorcontrib><creatorcontrib>Heller, René</creatorcontrib><creatorcontrib>Eisenwinder, Stefan</creatorcontrib><creatorcontrib>Guziewicz, Elżbieta</creatorcontrib><title>Crystal Lattice Recovery and Optical Activation of Yb Implanted into β-Ga2O3</title><title>Materials</title><description>β-Ga2O3 is an ultra-wide bandgap semiconductor (Eg~4.8 eV) of interest for many applications, including optoelectronics. Undoped Ga2O3 emits light in the UV range that can be tuned to the visible region of the spectrum by rare earth dopants. In this work, we investigate the crystal lattice recovery of (2¯01)-oriented β-Ga2O3 crystals implanted with Yb ions to the fluence of 1 ×1014 at/cm2. Post-implantation annealing at a range of temperature and different atmospheres was used to investigate the β-Ga2O3 crystal structure recovery and optical activation of Yb ions. Ion implantation is a renowned technique used for material doping, but in spite of its many advantages such as the controlled introduction of dopants in concentrations exceeding the solubility limits, it also causes damage to the crystal lattice, which strongly influences the optical response from the material. In this work, post-implantation defects in β-Ga2O3:Yb crystals, their transformation, and the recovery of the crystal lattice after thermal treatment have been investigated by channeling Rutherford backscattering spectrometry (RBS/c) supported by McChasy simulations, and the optical response was tested. It has been shown that post-implantation annealing at temperatures of 700–900 °C results in partial crystal lattice recovery, but it is accompanied by the out-diffusion of Yb ions toward the surface if the annealing temperature and time exceed 800 °C and 10 min, respectively. High-temperature implantation at 500–900 °C strongly limits post-implantation damage to the crystal lattice, but it does not cause the intense luminescence of Yb ions. This suggests that the recovery of the crystal lattice is not a sufficient condition for strong rare-earth photoluminescence at room temperature and that oxygen annealing is beneficial for intense infrared luminescence compared to other tested environments.</description><subject>Annealing</subject><subject>Crystal defects</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>Damage</subject><subject>Defect annealing</subject><subject>Dopants</subject><subject>Energy gap</subject><subject>Fluence</subject><subject>Gallium oxides</subject><subject>Heat treatment</subject><subject>High temperature</subject><subject>Investigations</subject><subject>Ion implantation</subject><subject>Luminescence</subject><subject>Monte Carlo simulation</subject><subject>Optical properties</subject><subject>Optoelectronics</subject><subject>Phase transitions</subject><subject>Photoluminescence</subject><subject>Point defects</subject><subject>Radiation</subject><subject>Rare earth elements</subject><subject>Recovery</subject><subject>Room temperature</subject><subject>Semiconductors</subject><subject>Silicon nitride</subject><subject>Temperature</subject><subject>Thermal transformations</subject><subject>Wide bandgap semiconductors</subject><subject>Ytterbium</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkd9KwzAUh4MoOKY3PkHAGxGqSdOmzZWMoXMwGYheeBXSNNGMtqlJNthr-SA-kykb_stNwu98fJyTA8AZRleEMHTdClxgSljBDsAIM0YTzLLs8Nf7GJx6v0LxEILLlI3Aw9RtfRANXIgQjFTwUUm7UW4LRVfDZR-zWJzIYDYiGNtBq-FLBedt34guqBqaLlj4-ZHMRLokJ-BIi8ar0_09Bs93t0_T-2SxnM2nk0Ui04KEBOuCCqSwLnOlcSpwjCXKGSY6rwpashjSNJM6lxktlagLKTHJUVYriSpakjG42Xn7ddWqWqouONHw3plWuC23wvC_lc688Ve74ThqaM7SaLjYG5x9XysfeGu8VE2cStm15wSx-I-EZQN6_g9d2bXr4nwDVQ7GDEXqckdJZ713Sn93gxEf1sN_1kO-ACUOggQ</recordid><startdate>20240810</startdate><enddate>20240810</enddate><creator>Sarwar, Mahwish</creator><creator>Ratajczak, Renata</creator><creator>Ivanov, Vitalii Yu</creator><creator>Gieraltowska, Sylwia</creator><creator>Wierzbicka, Aleksandra</creator><creator>Wozniak, Wojciech</creator><creator>Heller, René</creator><creator>Eisenwinder, Stefan</creator><creator>Guziewicz, Elżbieta</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6158-5258</orcidid><orcidid>https://orcid.org/0000-0002-0126-5356</orcidid><orcidid>https://orcid.org/0000-0001-8596-2230</orcidid></search><sort><creationdate>20240810</creationdate><title>Crystal Lattice Recovery and Optical Activation of Yb Implanted into β-Ga2O3</title><author>Sarwar, Mahwish ; Ratajczak, Renata ; Ivanov, Vitalii Yu ; Gieraltowska, Sylwia ; Wierzbicka, Aleksandra ; Wozniak, Wojciech ; Heller, René ; Eisenwinder, Stefan ; Guziewicz, Elżbieta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-1f76a0e1f85ef12a1c27c05913f5b7689f12624cf5c468ead7cc13504dec0b683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annealing</topic><topic>Crystal defects</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>Damage</topic><topic>Defect annealing</topic><topic>Dopants</topic><topic>Energy gap</topic><topic>Fluence</topic><topic>Gallium oxides</topic><topic>Heat treatment</topic><topic>High temperature</topic><topic>Investigations</topic><topic>Ion implantation</topic><topic>Luminescence</topic><topic>Monte Carlo simulation</topic><topic>Optical properties</topic><topic>Optoelectronics</topic><topic>Phase transitions</topic><topic>Photoluminescence</topic><topic>Point defects</topic><topic>Radiation</topic><topic>Rare earth elements</topic><topic>Recovery</topic><topic>Room temperature</topic><topic>Semiconductors</topic><topic>Silicon nitride</topic><topic>Temperature</topic><topic>Thermal transformations</topic><topic>Wide bandgap semiconductors</topic><topic>Ytterbium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarwar, Mahwish</creatorcontrib><creatorcontrib>Ratajczak, Renata</creatorcontrib><creatorcontrib>Ivanov, Vitalii Yu</creatorcontrib><creatorcontrib>Gieraltowska, Sylwia</creatorcontrib><creatorcontrib>Wierzbicka, Aleksandra</creatorcontrib><creatorcontrib>Wozniak, Wojciech</creatorcontrib><creatorcontrib>Heller, René</creatorcontrib><creatorcontrib>Eisenwinder, Stefan</creatorcontrib><creatorcontrib>Guziewicz, Elżbieta</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarwar, Mahwish</au><au>Ratajczak, Renata</au><au>Ivanov, Vitalii Yu</au><au>Gieraltowska, Sylwia</au><au>Wierzbicka, Aleksandra</au><au>Wozniak, Wojciech</au><au>Heller, René</au><au>Eisenwinder, Stefan</au><au>Guziewicz, Elżbieta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal Lattice Recovery and Optical Activation of Yb Implanted into β-Ga2O3</atitle><jtitle>Materials</jtitle><date>2024-08-10</date><risdate>2024</risdate><volume>17</volume><issue>16</issue><spage>3979</spage><pages>3979-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>β-Ga2O3 is an ultra-wide bandgap semiconductor (Eg~4.8 eV) of interest for many applications, including optoelectronics. Undoped Ga2O3 emits light in the UV range that can be tuned to the visible region of the spectrum by rare earth dopants. In this work, we investigate the crystal lattice recovery of (2¯01)-oriented β-Ga2O3 crystals implanted with Yb ions to the fluence of 1 ×1014 at/cm2. Post-implantation annealing at a range of temperature and different atmospheres was used to investigate the β-Ga2O3 crystal structure recovery and optical activation of Yb ions. Ion implantation is a renowned technique used for material doping, but in spite of its many advantages such as the controlled introduction of dopants in concentrations exceeding the solubility limits, it also causes damage to the crystal lattice, which strongly influences the optical response from the material. In this work, post-implantation defects in β-Ga2O3:Yb crystals, their transformation, and the recovery of the crystal lattice after thermal treatment have been investigated by channeling Rutherford backscattering spectrometry (RBS/c) supported by McChasy simulations, and the optical response was tested. It has been shown that post-implantation annealing at temperatures of 700–900 °C results in partial crystal lattice recovery, but it is accompanied by the out-diffusion of Yb ions toward the surface if the annealing temperature and time exceed 800 °C and 10 min, respectively. High-temperature implantation at 500–900 °C strongly limits post-implantation damage to the crystal lattice, but it does not cause the intense luminescence of Yb ions. This suggests that the recovery of the crystal lattice is not a sufficient condition for strong rare-earth photoluminescence at room temperature and that oxygen annealing is beneficial for intense infrared luminescence compared to other tested environments.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ma17163979</doi><orcidid>https://orcid.org/0000-0001-6158-5258</orcidid><orcidid>https://orcid.org/0000-0002-0126-5356</orcidid><orcidid>https://orcid.org/0000-0001-8596-2230</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-08, Vol.17 (16), p.3979 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11356592 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Annealing Crystal defects Crystal lattices Crystal structure Damage Defect annealing Dopants Energy gap Fluence Gallium oxides Heat treatment High temperature Investigations Ion implantation Luminescence Monte Carlo simulation Optical properties Optoelectronics Phase transitions Photoluminescence Point defects Radiation Rare earth elements Recovery Room temperature Semiconductors Silicon nitride Temperature Thermal transformations Wide bandgap semiconductors Ytterbium |
title | Crystal Lattice Recovery and Optical Activation of Yb Implanted into β-Ga2O3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A12%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20Lattice%20Recovery%20and%20Optical%20Activation%20of%20Yb%20Implanted%20into%20%CE%B2-Ga2O3&rft.jtitle=Materials&rft.au=Sarwar,%20Mahwish&rft.date=2024-08-10&rft.volume=17&rft.issue=16&rft.spage=3979&rft.pages=3979-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17163979&rft_dat=%3Cproquest_pubme%3E3098135640%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3098135640&rft_id=info:pmid/&rfr_iscdi=true |