Quantitative Approach to Quality Review of Prenatal Ultrasound Examinations: Fetal Biometry
: To evaluate the quality of an ultrasound practice, both large-scale and focused audits are recommended by professional organizations, but such audits can be time-consuming, inefficient, and expensive. Our objective was to develop a time-efficient, quantitative, objective, large-scale method to eva...
Gespeichert in:
Veröffentlicht in: | Journal of clinical medicine 2024-08, Vol.13 (16), p.4860 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | : To evaluate the quality of an ultrasound practice, both large-scale and focused audits are recommended by professional organizations, but such audits can be time-consuming, inefficient, and expensive. Our objective was to develop a time-efficient, quantitative, objective, large-scale method to evaluate fetal biometry measurements for an entire practice, combined with a process for focused image review for personnel whose measurements are outliers.
: Ultrasound exam data for a full year are exported from commercial ultrasound reporting software to a statistical package. Fetal biometry measurements are converted to z-scores to standardize across gestational ages. For a large-scale audit, sonographer mean z-scores are compared using analysis of variance (ANOVA) with Scheffe multiple comparisons test. A focused image review is performed on a random sample of exams for sonographers whose mean z-scores differ significantly from the practice mean. A similar large-scale audit is performed, comparing physician mean z-scores.
: Using fetal abdominal circumference measurements as an example, significant differences between sonographer mean z-scores are readily identified by the ANOVA and Scheffe test. A method is described for the blinded image audit of sonographers with outlier mean z-scores. Examples are also given for the identification and interpretation of several types of systematic errors that are unlikely to be detectable by image review, including z-scores with large or small standard deviations and physicians with outlier mean z-scores.
: The large-scale quantitative analysis provides an overview of the biometry measurements of all the sonographers and physicians in a practice, so that image audits can be focused on those whose measurements are outliers. The analysis takes little time to perform after initial development and avoids the time, complexity, and expense of auditing providers whose measurements fall within the expected range. We encourage commercial software developers to include tools in their ultrasound reporting software to facilitate such quantitative reviews. |
---|---|
ISSN: | 2077-0383 2077-0383 |
DOI: | 10.3390/jcm13164860 |