Uncertainty Quantification of Fiber Orientation and Epicardial Activation
Predictive models and simulations of cardiac function require accurate representations of anatomy, often to the scale of local myocardial fiber structure. However, acquiring this information in a patient-specific manner is challenging. Moreover, the impact of physiological variability in fiber orien...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | 50 |
creator | Rupp, Lindsay C Busatto, Anna Bergquist, Jake A Gillette, Karli Narayan, Akil Plank, Gernot MacLeod, Rob S |
description | Predictive models and simulations of cardiac function require accurate representations of anatomy, often to the scale of local myocardial fiber structure. However, acquiring this information in a patient-specific manner is challenging. Moreover, the impact of physiological variability in fiber orientation on simulations of cardiac activation is poorly understood. To explore these effects, we implemented bi-ventricular activation simulations using rule-based fiber algorithms and robust uncertainty quantification techniques to generate detailed maps of model variability. Specifically, we utilized polynomial chaos expansion, enabling efficient exploration with reduced computational demand through an emulator function approximating the underlying forward model. Our study focused on examining the epicardial activation sequences of the heart in response to six stimuli locations and five metrics of activation. Our findings revealed that physiological variability in fiber orientation does not significantly affect the location of activation features, but it does impact the overall spread of activation. We observed low variability near the earliest activation sites, but high variability across the rest of the epicardial surface. We conclude that the level of accuracy of myocardial fiber orientation required for simulation depends on the specific goals of the model and the related research or clinical goals. |
doi_str_mv | 10.22489/CinC.2023.137 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11349307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10364086</ieee_id><sourcerecordid>3097852881</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2717-29c0565f8bb9f16f46dab3e1d38aa0d56bc94b004b9069ef9fc5f5135e7aa52a3</originalsourceid><addsrcrecordid>eNpVkM1Lw0AQxVdRbKm9ehLJ0Uvq7k726yQltFooFMGCt7Cb7OpKuqn5KPS_N9hadC4zzPvx3jAI3RA8oTSR6iH1IZ1QTGFCQJyhsRJKAsMgKaPsHA0pUBZLKd4uTjMnAzRumk_cFxNScXmFBqCIgkTCEC3WIbd1q31o99FLp0Prnc9166sQVS6ae2PraFV7G9rDUocimm17pC68LqNp3vrdj3KNLp0uGzs-9hFaz2ev6XO8XD0t0uky9lQQEVOVY8aZk8YoR7hLeKENWFKA1BoXjJtcJQbjxCjMlXXK5cwxAswKrRnVMEKPB99tZza2yPvLal1m29pvdL3PKu2z_0rwH9l7tcsIgUQBFr3D_dGhrr4627TZxje5LUsdbNU1GWAlJKNSkh69-xt2Svl9YA_cHgBvrT3JBANPsOTwDQDGgM0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3097852881</pqid></control><display><type>conference_proceeding</type><title>Uncertainty Quantification of Fiber Orientation and Epicardial Activation</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Rupp, Lindsay C ; Busatto, Anna ; Bergquist, Jake A ; Gillette, Karli ; Narayan, Akil ; Plank, Gernot ; MacLeod, Rob S</creator><creatorcontrib>Rupp, Lindsay C ; Busatto, Anna ; Bergquist, Jake A ; Gillette, Karli ; Narayan, Akil ; Plank, Gernot ; MacLeod, Rob S</creatorcontrib><description>Predictive models and simulations of cardiac function require accurate representations of anatomy, often to the scale of local myocardial fiber structure. However, acquiring this information in a patient-specific manner is challenging. Moreover, the impact of physiological variability in fiber orientation on simulations of cardiac activation is poorly understood. To explore these effects, we implemented bi-ventricular activation simulations using rule-based fiber algorithms and robust uncertainty quantification techniques to generate detailed maps of model variability. Specifically, we utilized polynomial chaos expansion, enabling efficient exploration with reduced computational demand through an emulator function approximating the underlying forward model. Our study focused on examining the epicardial activation sequences of the heart in response to six stimuli locations and five metrics of activation. Our findings revealed that physiological variability in fiber orientation does not significantly affect the location of activation features, but it does impact the overall spread of activation. We observed low variability near the earliest activation sites, but high variability across the rest of the epicardial surface. We conclude that the level of accuracy of myocardial fiber orientation required for simulation depends on the specific goals of the model and the related research or clinical goals.</description><identifier>ISSN: 2325-8861</identifier><identifier>EISSN: 2325-887X</identifier><identifier>EISBN: 9798350382525</identifier><identifier>DOI: 10.22489/CinC.2023.137</identifier><identifier>PMID: 39193483</identifier><language>eng</language><publisher>United States: CinC</publisher><subject>Cardiac function ; Chaos ; Computational modeling ; Measurement ; Myocardium ; Predictive models ; Uncertainty</subject><ispartof>2023 Computing in Cardiology (CinC), 2023, Vol.50, p.1-4</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,780,784,789,790,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39193483$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rupp, Lindsay C</creatorcontrib><creatorcontrib>Busatto, Anna</creatorcontrib><creatorcontrib>Bergquist, Jake A</creatorcontrib><creatorcontrib>Gillette, Karli</creatorcontrib><creatorcontrib>Narayan, Akil</creatorcontrib><creatorcontrib>Plank, Gernot</creatorcontrib><creatorcontrib>MacLeod, Rob S</creatorcontrib><title>Uncertainty Quantification of Fiber Orientation and Epicardial Activation</title><title>2023 Computing in Cardiology (CinC)</title><addtitle>CINC</addtitle><addtitle>Comput Cardiol (2010)</addtitle><description>Predictive models and simulations of cardiac function require accurate representations of anatomy, often to the scale of local myocardial fiber structure. However, acquiring this information in a patient-specific manner is challenging. Moreover, the impact of physiological variability in fiber orientation on simulations of cardiac activation is poorly understood. To explore these effects, we implemented bi-ventricular activation simulations using rule-based fiber algorithms and robust uncertainty quantification techniques to generate detailed maps of model variability. Specifically, we utilized polynomial chaos expansion, enabling efficient exploration with reduced computational demand through an emulator function approximating the underlying forward model. Our study focused on examining the epicardial activation sequences of the heart in response to six stimuli locations and five metrics of activation. Our findings revealed that physiological variability in fiber orientation does not significantly affect the location of activation features, but it does impact the overall spread of activation. We observed low variability near the earliest activation sites, but high variability across the rest of the epicardial surface. We conclude that the level of accuracy of myocardial fiber orientation required for simulation depends on the specific goals of the model and the related research or clinical goals.</description><subject>Cardiac function</subject><subject>Chaos</subject><subject>Computational modeling</subject><subject>Measurement</subject><subject>Myocardium</subject><subject>Predictive models</subject><subject>Uncertainty</subject><issn>2325-8861</issn><issn>2325-887X</issn><isbn>9798350382525</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1Lw0AQxVdRbKm9ehLJ0Uvq7k726yQltFooFMGCt7Cb7OpKuqn5KPS_N9hadC4zzPvx3jAI3RA8oTSR6iH1IZ1QTGFCQJyhsRJKAsMgKaPsHA0pUBZLKd4uTjMnAzRumk_cFxNScXmFBqCIgkTCEC3WIbd1q31o99FLp0Prnc9166sQVS6ae2PraFV7G9rDUocimm17pC68LqNp3vrdj3KNLp0uGzs-9hFaz2ev6XO8XD0t0uky9lQQEVOVY8aZk8YoR7hLeKENWFKA1BoXjJtcJQbjxCjMlXXK5cwxAswKrRnVMEKPB99tZza2yPvLal1m29pvdL3PKu2z_0rwH9l7tcsIgUQBFr3D_dGhrr4627TZxje5LUsdbNU1GWAlJKNSkh69-xt2Svl9YA_cHgBvrT3JBANPsOTwDQDGgM0</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Rupp, Lindsay C</creator><creator>Busatto, Anna</creator><creator>Bergquist, Jake A</creator><creator>Gillette, Karli</creator><creator>Narayan, Akil</creator><creator>Plank, Gernot</creator><creator>MacLeod, Rob S</creator><general>CinC</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20231001</creationdate><title>Uncertainty Quantification of Fiber Orientation and Epicardial Activation</title><author>Rupp, Lindsay C ; Busatto, Anna ; Bergquist, Jake A ; Gillette, Karli ; Narayan, Akil ; Plank, Gernot ; MacLeod, Rob S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2717-29c0565f8bb9f16f46dab3e1d38aa0d56bc94b004b9069ef9fc5f5135e7aa52a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cardiac function</topic><topic>Chaos</topic><topic>Computational modeling</topic><topic>Measurement</topic><topic>Myocardium</topic><topic>Predictive models</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Rupp, Lindsay C</creatorcontrib><creatorcontrib>Busatto, Anna</creatorcontrib><creatorcontrib>Bergquist, Jake A</creatorcontrib><creatorcontrib>Gillette, Karli</creatorcontrib><creatorcontrib>Narayan, Akil</creatorcontrib><creatorcontrib>Plank, Gernot</creatorcontrib><creatorcontrib>MacLeod, Rob S</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rupp, Lindsay C</au><au>Busatto, Anna</au><au>Bergquist, Jake A</au><au>Gillette, Karli</au><au>Narayan, Akil</au><au>Plank, Gernot</au><au>MacLeod, Rob S</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Uncertainty Quantification of Fiber Orientation and Epicardial Activation</atitle><btitle>2023 Computing in Cardiology (CinC)</btitle><stitle>CINC</stitle><addtitle>Comput Cardiol (2010)</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>50</volume><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2325-8861</issn><eissn>2325-887X</eissn><eisbn>9798350382525</eisbn><abstract>Predictive models and simulations of cardiac function require accurate representations of anatomy, often to the scale of local myocardial fiber structure. However, acquiring this information in a patient-specific manner is challenging. Moreover, the impact of physiological variability in fiber orientation on simulations of cardiac activation is poorly understood. To explore these effects, we implemented bi-ventricular activation simulations using rule-based fiber algorithms and robust uncertainty quantification techniques to generate detailed maps of model variability. Specifically, we utilized polynomial chaos expansion, enabling efficient exploration with reduced computational demand through an emulator function approximating the underlying forward model. Our study focused on examining the epicardial activation sequences of the heart in response to six stimuli locations and five metrics of activation. Our findings revealed that physiological variability in fiber orientation does not significantly affect the location of activation features, but it does impact the overall spread of activation. We observed low variability near the earliest activation sites, but high variability across the rest of the epicardial surface. We conclude that the level of accuracy of myocardial fiber orientation required for simulation depends on the specific goals of the model and the related research or clinical goals.</abstract><cop>United States</cop><pub>CinC</pub><pmid>39193483</pmid><doi>10.22489/CinC.2023.137</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2325-8861 |
ispartof | 2023 Computing in Cardiology (CinC), 2023, Vol.50, p.1-4 |
issn | 2325-8861 2325-887X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11349307 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Cardiac function Chaos Computational modeling Measurement Myocardium Predictive models Uncertainty |
title | Uncertainty Quantification of Fiber Orientation and Epicardial Activation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A58%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Uncertainty%20Quantification%20of%20Fiber%20Orientation%20and%20Epicardial%20Activation&rft.btitle=2023%20Computing%20in%20Cardiology%20(CinC)&rft.au=Rupp,%20Lindsay%20C&rft.date=2023-10-01&rft.volume=50&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2325-8861&rft.eissn=2325-887X&rft_id=info:doi/10.22489/CinC.2023.137&rft_dat=%3Cproquest_pubme%3E3097852881%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&rft.eisbn=9798350382525&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097852881&rft_id=info:pmid/39193483&rft_ieee_id=10364086&rfr_iscdi=true |