Uncertainty Quantification of Fiber Orientation and Epicardial Activation

Predictive models and simulations of cardiac function require accurate representations of anatomy, often to the scale of local myocardial fiber structure. However, acquiring this information in a patient-specific manner is challenging. Moreover, the impact of physiological variability in fiber orien...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rupp, Lindsay C, Busatto, Anna, Bergquist, Jake A, Gillette, Karli, Narayan, Akil, Plank, Gernot, MacLeod, Rob S
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume 50
creator Rupp, Lindsay C
Busatto, Anna
Bergquist, Jake A
Gillette, Karli
Narayan, Akil
Plank, Gernot
MacLeod, Rob S
description Predictive models and simulations of cardiac function require accurate representations of anatomy, often to the scale of local myocardial fiber structure. However, acquiring this information in a patient-specific manner is challenging. Moreover, the impact of physiological variability in fiber orientation on simulations of cardiac activation is poorly understood. To explore these effects, we implemented bi-ventricular activation simulations using rule-based fiber algorithms and robust uncertainty quantification techniques to generate detailed maps of model variability. Specifically, we utilized polynomial chaos expansion, enabling efficient exploration with reduced computational demand through an emulator function approximating the underlying forward model. Our study focused on examining the epicardial activation sequences of the heart in response to six stimuli locations and five metrics of activation. Our findings revealed that physiological variability in fiber orientation does not significantly affect the location of activation features, but it does impact the overall spread of activation. We observed low variability near the earliest activation sites, but high variability across the rest of the epicardial surface. We conclude that the level of accuracy of myocardial fiber orientation required for simulation depends on the specific goals of the model and the related research or clinical goals.
doi_str_mv 10.22489/CinC.2023.137
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11349307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10364086</ieee_id><sourcerecordid>3097852881</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2717-29c0565f8bb9f16f46dab3e1d38aa0d56bc94b004b9069ef9fc5f5135e7aa52a3</originalsourceid><addsrcrecordid>eNpVkM1Lw0AQxVdRbKm9ehLJ0Uvq7k726yQltFooFMGCt7Cb7OpKuqn5KPS_N9hadC4zzPvx3jAI3RA8oTSR6iH1IZ1QTGFCQJyhsRJKAsMgKaPsHA0pUBZLKd4uTjMnAzRumk_cFxNScXmFBqCIgkTCEC3WIbd1q31o99FLp0Prnc9166sQVS6ae2PraFV7G9rDUocimm17pC68LqNp3vrdj3KNLp0uGzs-9hFaz2ev6XO8XD0t0uky9lQQEVOVY8aZk8YoR7hLeKENWFKA1BoXjJtcJQbjxCjMlXXK5cwxAswKrRnVMEKPB99tZza2yPvLal1m29pvdL3PKu2z_0rwH9l7tcsIgUQBFr3D_dGhrr4627TZxje5LUsdbNU1GWAlJKNSkh69-xt2Svl9YA_cHgBvrT3JBANPsOTwDQDGgM0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3097852881</pqid></control><display><type>conference_proceeding</type><title>Uncertainty Quantification of Fiber Orientation and Epicardial Activation</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Rupp, Lindsay C ; Busatto, Anna ; Bergquist, Jake A ; Gillette, Karli ; Narayan, Akil ; Plank, Gernot ; MacLeod, Rob S</creator><creatorcontrib>Rupp, Lindsay C ; Busatto, Anna ; Bergquist, Jake A ; Gillette, Karli ; Narayan, Akil ; Plank, Gernot ; MacLeod, Rob S</creatorcontrib><description>Predictive models and simulations of cardiac function require accurate representations of anatomy, often to the scale of local myocardial fiber structure. However, acquiring this information in a patient-specific manner is challenging. Moreover, the impact of physiological variability in fiber orientation on simulations of cardiac activation is poorly understood. To explore these effects, we implemented bi-ventricular activation simulations using rule-based fiber algorithms and robust uncertainty quantification techniques to generate detailed maps of model variability. Specifically, we utilized polynomial chaos expansion, enabling efficient exploration with reduced computational demand through an emulator function approximating the underlying forward model. Our study focused on examining the epicardial activation sequences of the heart in response to six stimuli locations and five metrics of activation. Our findings revealed that physiological variability in fiber orientation does not significantly affect the location of activation features, but it does impact the overall spread of activation. We observed low variability near the earliest activation sites, but high variability across the rest of the epicardial surface. We conclude that the level of accuracy of myocardial fiber orientation required for simulation depends on the specific goals of the model and the related research or clinical goals.</description><identifier>ISSN: 2325-8861</identifier><identifier>EISSN: 2325-887X</identifier><identifier>EISBN: 9798350382525</identifier><identifier>DOI: 10.22489/CinC.2023.137</identifier><identifier>PMID: 39193483</identifier><language>eng</language><publisher>United States: CinC</publisher><subject>Cardiac function ; Chaos ; Computational modeling ; Measurement ; Myocardium ; Predictive models ; Uncertainty</subject><ispartof>2023 Computing in Cardiology (CinC), 2023, Vol.50, p.1-4</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,780,784,789,790,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39193483$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rupp, Lindsay C</creatorcontrib><creatorcontrib>Busatto, Anna</creatorcontrib><creatorcontrib>Bergquist, Jake A</creatorcontrib><creatorcontrib>Gillette, Karli</creatorcontrib><creatorcontrib>Narayan, Akil</creatorcontrib><creatorcontrib>Plank, Gernot</creatorcontrib><creatorcontrib>MacLeod, Rob S</creatorcontrib><title>Uncertainty Quantification of Fiber Orientation and Epicardial Activation</title><title>2023 Computing in Cardiology (CinC)</title><addtitle>CINC</addtitle><addtitle>Comput Cardiol (2010)</addtitle><description>Predictive models and simulations of cardiac function require accurate representations of anatomy, often to the scale of local myocardial fiber structure. However, acquiring this information in a patient-specific manner is challenging. Moreover, the impact of physiological variability in fiber orientation on simulations of cardiac activation is poorly understood. To explore these effects, we implemented bi-ventricular activation simulations using rule-based fiber algorithms and robust uncertainty quantification techniques to generate detailed maps of model variability. Specifically, we utilized polynomial chaos expansion, enabling efficient exploration with reduced computational demand through an emulator function approximating the underlying forward model. Our study focused on examining the epicardial activation sequences of the heart in response to six stimuli locations and five metrics of activation. Our findings revealed that physiological variability in fiber orientation does not significantly affect the location of activation features, but it does impact the overall spread of activation. We observed low variability near the earliest activation sites, but high variability across the rest of the epicardial surface. We conclude that the level of accuracy of myocardial fiber orientation required for simulation depends on the specific goals of the model and the related research or clinical goals.</description><subject>Cardiac function</subject><subject>Chaos</subject><subject>Computational modeling</subject><subject>Measurement</subject><subject>Myocardium</subject><subject>Predictive models</subject><subject>Uncertainty</subject><issn>2325-8861</issn><issn>2325-887X</issn><isbn>9798350382525</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1Lw0AQxVdRbKm9ehLJ0Uvq7k726yQltFooFMGCt7Cb7OpKuqn5KPS_N9hadC4zzPvx3jAI3RA8oTSR6iH1IZ1QTGFCQJyhsRJKAsMgKaPsHA0pUBZLKd4uTjMnAzRumk_cFxNScXmFBqCIgkTCEC3WIbd1q31o99FLp0Prnc9166sQVS6ae2PraFV7G9rDUocimm17pC68LqNp3vrdj3KNLp0uGzs-9hFaz2ev6XO8XD0t0uky9lQQEVOVY8aZk8YoR7hLeKENWFKA1BoXjJtcJQbjxCjMlXXK5cwxAswKrRnVMEKPB99tZza2yPvLal1m29pvdL3PKu2z_0rwH9l7tcsIgUQBFr3D_dGhrr4627TZxje5LUsdbNU1GWAlJKNSkh69-xt2Svl9YA_cHgBvrT3JBANPsOTwDQDGgM0</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Rupp, Lindsay C</creator><creator>Busatto, Anna</creator><creator>Bergquist, Jake A</creator><creator>Gillette, Karli</creator><creator>Narayan, Akil</creator><creator>Plank, Gernot</creator><creator>MacLeod, Rob S</creator><general>CinC</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20231001</creationdate><title>Uncertainty Quantification of Fiber Orientation and Epicardial Activation</title><author>Rupp, Lindsay C ; Busatto, Anna ; Bergquist, Jake A ; Gillette, Karli ; Narayan, Akil ; Plank, Gernot ; MacLeod, Rob S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2717-29c0565f8bb9f16f46dab3e1d38aa0d56bc94b004b9069ef9fc5f5135e7aa52a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cardiac function</topic><topic>Chaos</topic><topic>Computational modeling</topic><topic>Measurement</topic><topic>Myocardium</topic><topic>Predictive models</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Rupp, Lindsay C</creatorcontrib><creatorcontrib>Busatto, Anna</creatorcontrib><creatorcontrib>Bergquist, Jake A</creatorcontrib><creatorcontrib>Gillette, Karli</creatorcontrib><creatorcontrib>Narayan, Akil</creatorcontrib><creatorcontrib>Plank, Gernot</creatorcontrib><creatorcontrib>MacLeod, Rob S</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rupp, Lindsay C</au><au>Busatto, Anna</au><au>Bergquist, Jake A</au><au>Gillette, Karli</au><au>Narayan, Akil</au><au>Plank, Gernot</au><au>MacLeod, Rob S</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Uncertainty Quantification of Fiber Orientation and Epicardial Activation</atitle><btitle>2023 Computing in Cardiology (CinC)</btitle><stitle>CINC</stitle><addtitle>Comput Cardiol (2010)</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>50</volume><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2325-8861</issn><eissn>2325-887X</eissn><eisbn>9798350382525</eisbn><abstract>Predictive models and simulations of cardiac function require accurate representations of anatomy, often to the scale of local myocardial fiber structure. However, acquiring this information in a patient-specific manner is challenging. Moreover, the impact of physiological variability in fiber orientation on simulations of cardiac activation is poorly understood. To explore these effects, we implemented bi-ventricular activation simulations using rule-based fiber algorithms and robust uncertainty quantification techniques to generate detailed maps of model variability. Specifically, we utilized polynomial chaos expansion, enabling efficient exploration with reduced computational demand through an emulator function approximating the underlying forward model. Our study focused on examining the epicardial activation sequences of the heart in response to six stimuli locations and five metrics of activation. Our findings revealed that physiological variability in fiber orientation does not significantly affect the location of activation features, but it does impact the overall spread of activation. We observed low variability near the earliest activation sites, but high variability across the rest of the epicardial surface. We conclude that the level of accuracy of myocardial fiber orientation required for simulation depends on the specific goals of the model and the related research or clinical goals.</abstract><cop>United States</cop><pub>CinC</pub><pmid>39193483</pmid><doi>10.22489/CinC.2023.137</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2325-8861
ispartof 2023 Computing in Cardiology (CinC), 2023, Vol.50, p.1-4
issn 2325-8861
2325-887X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11349307
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Cardiac function
Chaos
Computational modeling
Measurement
Myocardium
Predictive models
Uncertainty
title Uncertainty Quantification of Fiber Orientation and Epicardial Activation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A58%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Uncertainty%20Quantification%20of%20Fiber%20Orientation%20and%20Epicardial%20Activation&rft.btitle=2023%20Computing%20in%20Cardiology%20(CinC)&rft.au=Rupp,%20Lindsay%20C&rft.date=2023-10-01&rft.volume=50&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2325-8861&rft.eissn=2325-887X&rft_id=info:doi/10.22489/CinC.2023.137&rft_dat=%3Cproquest_pubme%3E3097852881%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&rft.eisbn=9798350382525&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3097852881&rft_id=info:pmid/39193483&rft_ieee_id=10364086&rfr_iscdi=true