Unveiling the crucial role of betaine: modulation of GABA homeostasis via SLC6A1 transporter (GAT1)
Betaine is an endogenous osmolyte that exhibits therapeutic potential by mitigating various neurological disorders. However, the underlying cellular and molecular mechanisms responsible for its neuroprotective effects remain puzzling.In this study, we describe a possible mechanism behind the positiv...
Gespeichert in:
Veröffentlicht in: | Cellular and molecular life sciences : CMLS 2024-06, Vol.81 (1), p.269 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 269 |
container_title | Cellular and molecular life sciences : CMLS |
container_volume | 81 |
creator | Bhatt, Manan Lazzarin, Erika Alberto-Silva, Ana Sofia Domingo, Guido Zerlotti, Rocco Gradisch, Ralph Bazzone, Andre Sitte, Harald H. Stockner, Thomas Bossi, Elena |
description | Betaine is an endogenous osmolyte that exhibits therapeutic potential by mitigating various neurological disorders. However, the underlying cellular and molecular mechanisms responsible for its neuroprotective effects remain puzzling.In this study, we describe a possible mechanism behind the positive impact of betaine in preserving neurons from excitotoxicity. Here we demonstrate that betaine at low concentration modulates the GABA uptake by GAT1 (slc6a1), the predominant GABA transporter in the central nervous system. This modulation occurs through the temporal inhibition of the transporter, wherein prolonged occupancy by betaine impedes the swift transition of the transporter to the inward conformation. Importantly, the modulatory effect of betaine on GAT1 is reversible, as the blocking of GAT1 disappears with increased extracellular GABA. Using electrophysiology, mass spectroscopy, radiolabelled cellular assay, and molecular dynamics simulation we demonstrate that betaine has a dual role in GAT1: at mM concentration acts as a slow substrate, and at µM as a temporal blocker of GABA, when it is below its K
0.5
. Given this unique modulatory characteristic and lack of any harmful side effects, betaine emerges as a promising neuromodulator of the inhibitory pathways improving GABA homeostasis via GAT1, thereby conferring neuroprotection against excitotoxicity. |
doi_str_mv | 10.1007/s00018-024-05309-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11335192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3068943477</sourcerecordid><originalsourceid>FETCH-LOGICAL-p313t-85938085830c48c819edce39b9f56d46ffc7b31af687cec97a3503f907ed6ee43</originalsourceid><addsrcrecordid>eNpdkU1PGzEQhq2qqEDaP9BDZakXOCzY611_cEFL1AakSD0UpN4sx5lNjHbt1N4N6r_HadIPOHnkeeadd_Qi9JGSC0qIuEyEECoLUlYFqRlRxdMbdEKrkhSKCPr2UHNZ_jhGpyk9ZrqWJX-HjpmUshKKniD74LfgOudXeFgDtnG0znQ4hg5waPECBuM8XOE-LMfODC743fesuWnwOvQQ0mCSS3jrDP4-n_KG4iEanzYhDhDx2ay5p-fv0VFrugQfDu8EPXz9cj-9LebfZnfTZl5sGGVDIWvFJJG1ZMRW0kqqYGmBqYVqa76seNtasWDUtFwKC1YJw2rC2nwrLDlAxSboeq-7GRf9btZnL53eRNeb-EsH4_TLjndrvQpbTSljNVVlVjg7KMTwc4Q06N4lC11nPIQxaUa4oqLmee8EfX6FPoYx-nzfjpKqYpUQmfr0v6W_Xv4EkAG2B1Ju-RXEfzKU6F3Meh-zzjHr3zHrJ_YMlEGX-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3068943477</pqid></control><display><type>article</type><title>Unveiling the crucial role of betaine: modulation of GABA homeostasis via SLC6A1 transporter (GAT1)</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Bhatt, Manan ; Lazzarin, Erika ; Alberto-Silva, Ana Sofia ; Domingo, Guido ; Zerlotti, Rocco ; Gradisch, Ralph ; Bazzone, Andre ; Sitte, Harald H. ; Stockner, Thomas ; Bossi, Elena</creator><creatorcontrib>Bhatt, Manan ; Lazzarin, Erika ; Alberto-Silva, Ana Sofia ; Domingo, Guido ; Zerlotti, Rocco ; Gradisch, Ralph ; Bazzone, Andre ; Sitte, Harald H. ; Stockner, Thomas ; Bossi, Elena</creatorcontrib><description>Betaine is an endogenous osmolyte that exhibits therapeutic potential by mitigating various neurological disorders. However, the underlying cellular and molecular mechanisms responsible for its neuroprotective effects remain puzzling.In this study, we describe a possible mechanism behind the positive impact of betaine in preserving neurons from excitotoxicity. Here we demonstrate that betaine at low concentration modulates the GABA uptake by GAT1 (slc6a1), the predominant GABA transporter in the central nervous system. This modulation occurs through the temporal inhibition of the transporter, wherein prolonged occupancy by betaine impedes the swift transition of the transporter to the inward conformation. Importantly, the modulatory effect of betaine on GAT1 is reversible, as the blocking of GAT1 disappears with increased extracellular GABA. Using electrophysiology, mass spectroscopy, radiolabelled cellular assay, and molecular dynamics simulation we demonstrate that betaine has a dual role in GAT1: at mM concentration acts as a slow substrate, and at µM as a temporal blocker of GABA, when it is below its K
0.5
. Given this unique modulatory characteristic and lack of any harmful side effects, betaine emerges as a promising neuromodulator of the inhibitory pathways improving GABA homeostasis via GAT1, thereby conferring neuroprotection against excitotoxicity.</description><identifier>ISSN: 1420-682X</identifier><identifier>ISSN: 1420-9071</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-024-05309-w</identifier><identifier>PMID: 38884791</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Animals ; Betaine ; Betaine - metabolism ; Betaine - pharmacology ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Central nervous system ; Conformation ; Electrophysiology ; Excitotoxicity ; GABA Plasma Membrane Transport Proteins - metabolism ; gamma-Aminobutyric Acid - metabolism ; HEK293 Cells ; Homeostasis ; Homeostasis - drug effects ; Humans ; Life Sciences ; Mass spectroscopy ; Modulation ; Molecular dynamics ; Molecular Dynamics Simulation ; Molecular modelling ; Neurological diseases ; Neuromodulation ; Neurons - drug effects ; Neurons - metabolism ; Neuroprotection ; Neuroprotective Agents - metabolism ; Neuroprotective Agents - pharmacology ; Original ; Original Article ; Rats ; Side effects ; Substrates ; γ-Aminobutyric acid</subject><ispartof>Cellular and molecular life sciences : CMLS, 2024-06, Vol.81 (1), p.269</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p313t-85938085830c48c819edce39b9f56d46ffc7b31af687cec97a3503f907ed6ee43</cites><orcidid>0000-0002-9549-2153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11335192/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11335192/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38884791$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhatt, Manan</creatorcontrib><creatorcontrib>Lazzarin, Erika</creatorcontrib><creatorcontrib>Alberto-Silva, Ana Sofia</creatorcontrib><creatorcontrib>Domingo, Guido</creatorcontrib><creatorcontrib>Zerlotti, Rocco</creatorcontrib><creatorcontrib>Gradisch, Ralph</creatorcontrib><creatorcontrib>Bazzone, Andre</creatorcontrib><creatorcontrib>Sitte, Harald H.</creatorcontrib><creatorcontrib>Stockner, Thomas</creatorcontrib><creatorcontrib>Bossi, Elena</creatorcontrib><title>Unveiling the crucial role of betaine: modulation of GABA homeostasis via SLC6A1 transporter (GAT1)</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>Betaine is an endogenous osmolyte that exhibits therapeutic potential by mitigating various neurological disorders. However, the underlying cellular and molecular mechanisms responsible for its neuroprotective effects remain puzzling.In this study, we describe a possible mechanism behind the positive impact of betaine in preserving neurons from excitotoxicity. Here we demonstrate that betaine at low concentration modulates the GABA uptake by GAT1 (slc6a1), the predominant GABA transporter in the central nervous system. This modulation occurs through the temporal inhibition of the transporter, wherein prolonged occupancy by betaine impedes the swift transition of the transporter to the inward conformation. Importantly, the modulatory effect of betaine on GAT1 is reversible, as the blocking of GAT1 disappears with increased extracellular GABA. Using electrophysiology, mass spectroscopy, radiolabelled cellular assay, and molecular dynamics simulation we demonstrate that betaine has a dual role in GAT1: at mM concentration acts as a slow substrate, and at µM as a temporal blocker of GABA, when it is below its K
0.5
. Given this unique modulatory characteristic and lack of any harmful side effects, betaine emerges as a promising neuromodulator of the inhibitory pathways improving GABA homeostasis via GAT1, thereby conferring neuroprotection against excitotoxicity.</description><subject>Animals</subject><subject>Betaine</subject><subject>Betaine - metabolism</subject><subject>Betaine - pharmacology</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Central nervous system</subject><subject>Conformation</subject><subject>Electrophysiology</subject><subject>Excitotoxicity</subject><subject>GABA Plasma Membrane Transport Proteins - metabolism</subject><subject>gamma-Aminobutyric Acid - metabolism</subject><subject>HEK293 Cells</subject><subject>Homeostasis</subject><subject>Homeostasis - drug effects</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mass spectroscopy</subject><subject>Modulation</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular modelling</subject><subject>Neurological diseases</subject><subject>Neuromodulation</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Neuroprotection</subject><subject>Neuroprotective Agents - metabolism</subject><subject>Neuroprotective Agents - pharmacology</subject><subject>Original</subject><subject>Original Article</subject><subject>Rats</subject><subject>Side effects</subject><subject>Substrates</subject><subject>γ-Aminobutyric acid</subject><issn>1420-682X</issn><issn>1420-9071</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU1PGzEQhq2qqEDaP9BDZakXOCzY611_cEFL1AakSD0UpN4sx5lNjHbt1N4N6r_HadIPOHnkeeadd_Qi9JGSC0qIuEyEECoLUlYFqRlRxdMbdEKrkhSKCPr2UHNZ_jhGpyk9ZrqWJX-HjpmUshKKniD74LfgOudXeFgDtnG0znQ4hg5waPECBuM8XOE-LMfODC743fesuWnwOvQQ0mCSS3jrDP4-n_KG4iEanzYhDhDx2ay5p-fv0VFrugQfDu8EPXz9cj-9LebfZnfTZl5sGGVDIWvFJJG1ZMRW0kqqYGmBqYVqa76seNtasWDUtFwKC1YJw2rC2nwrLDlAxSboeq-7GRf9btZnL53eRNeb-EsH4_TLjndrvQpbTSljNVVlVjg7KMTwc4Q06N4lC11nPIQxaUa4oqLmee8EfX6FPoYx-nzfjpKqYpUQmfr0v6W_Xv4EkAG2B1Ju-RXEfzKU6F3Meh-zzjHr3zHrJ_YMlEGX-w</recordid><startdate>20240617</startdate><enddate>20240617</enddate><creator>Bhatt, Manan</creator><creator>Lazzarin, Erika</creator><creator>Alberto-Silva, Ana Sofia</creator><creator>Domingo, Guido</creator><creator>Zerlotti, Rocco</creator><creator>Gradisch, Ralph</creator><creator>Bazzone, Andre</creator><creator>Sitte, Harald H.</creator><creator>Stockner, Thomas</creator><creator>Bossi, Elena</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9549-2153</orcidid></search><sort><creationdate>20240617</creationdate><title>Unveiling the crucial role of betaine: modulation of GABA homeostasis via SLC6A1 transporter (GAT1)</title><author>Bhatt, Manan ; Lazzarin, Erika ; Alberto-Silva, Ana Sofia ; Domingo, Guido ; Zerlotti, Rocco ; Gradisch, Ralph ; Bazzone, Andre ; Sitte, Harald H. ; Stockner, Thomas ; Bossi, Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p313t-85938085830c48c819edce39b9f56d46ffc7b31af687cec97a3503f907ed6ee43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Betaine</topic><topic>Betaine - metabolism</topic><topic>Betaine - pharmacology</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Central nervous system</topic><topic>Conformation</topic><topic>Electrophysiology</topic><topic>Excitotoxicity</topic><topic>GABA Plasma Membrane Transport Proteins - metabolism</topic><topic>gamma-Aminobutyric Acid - metabolism</topic><topic>HEK293 Cells</topic><topic>Homeostasis</topic><topic>Homeostasis - drug effects</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mass spectroscopy</topic><topic>Modulation</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular modelling</topic><topic>Neurological diseases</topic><topic>Neuromodulation</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Neuroprotection</topic><topic>Neuroprotective Agents - metabolism</topic><topic>Neuroprotective Agents - pharmacology</topic><topic>Original</topic><topic>Original Article</topic><topic>Rats</topic><topic>Side effects</topic><topic>Substrates</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhatt, Manan</creatorcontrib><creatorcontrib>Lazzarin, Erika</creatorcontrib><creatorcontrib>Alberto-Silva, Ana Sofia</creatorcontrib><creatorcontrib>Domingo, Guido</creatorcontrib><creatorcontrib>Zerlotti, Rocco</creatorcontrib><creatorcontrib>Gradisch, Ralph</creatorcontrib><creatorcontrib>Bazzone, Andre</creatorcontrib><creatorcontrib>Sitte, Harald H.</creatorcontrib><creatorcontrib>Stockner, Thomas</creatorcontrib><creatorcontrib>Bossi, Elena</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhatt, Manan</au><au>Lazzarin, Erika</au><au>Alberto-Silva, Ana Sofia</au><au>Domingo, Guido</au><au>Zerlotti, Rocco</au><au>Gradisch, Ralph</au><au>Bazzone, Andre</au><au>Sitte, Harald H.</au><au>Stockner, Thomas</au><au>Bossi, Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling the crucial role of betaine: modulation of GABA homeostasis via SLC6A1 transporter (GAT1)</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2024-06-17</date><risdate>2024</risdate><volume>81</volume><issue>1</issue><spage>269</spage><pages>269-</pages><issn>1420-682X</issn><issn>1420-9071</issn><eissn>1420-9071</eissn><abstract>Betaine is an endogenous osmolyte that exhibits therapeutic potential by mitigating various neurological disorders. However, the underlying cellular and molecular mechanisms responsible for its neuroprotective effects remain puzzling.In this study, we describe a possible mechanism behind the positive impact of betaine in preserving neurons from excitotoxicity. Here we demonstrate that betaine at low concentration modulates the GABA uptake by GAT1 (slc6a1), the predominant GABA transporter in the central nervous system. This modulation occurs through the temporal inhibition of the transporter, wherein prolonged occupancy by betaine impedes the swift transition of the transporter to the inward conformation. Importantly, the modulatory effect of betaine on GAT1 is reversible, as the blocking of GAT1 disappears with increased extracellular GABA. Using electrophysiology, mass spectroscopy, radiolabelled cellular assay, and molecular dynamics simulation we demonstrate that betaine has a dual role in GAT1: at mM concentration acts as a slow substrate, and at µM as a temporal blocker of GABA, when it is below its K
0.5
. Given this unique modulatory characteristic and lack of any harmful side effects, betaine emerges as a promising neuromodulator of the inhibitory pathways improving GABA homeostasis via GAT1, thereby conferring neuroprotection against excitotoxicity.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>38884791</pmid><doi>10.1007/s00018-024-05309-w</doi><orcidid>https://orcid.org/0000-0002-9549-2153</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-682X |
ispartof | Cellular and molecular life sciences : CMLS, 2024-06, Vol.81 (1), p.269 |
issn | 1420-682X 1420-9071 1420-9071 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11335192 |
source | MEDLINE; SpringerNature Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Betaine Betaine - metabolism Betaine - pharmacology Biochemistry Biomedical and Life Sciences Biomedicine Cell Biology Central nervous system Conformation Electrophysiology Excitotoxicity GABA Plasma Membrane Transport Proteins - metabolism gamma-Aminobutyric Acid - metabolism HEK293 Cells Homeostasis Homeostasis - drug effects Humans Life Sciences Mass spectroscopy Modulation Molecular dynamics Molecular Dynamics Simulation Molecular modelling Neurological diseases Neuromodulation Neurons - drug effects Neurons - metabolism Neuroprotection Neuroprotective Agents - metabolism Neuroprotective Agents - pharmacology Original Original Article Rats Side effects Substrates γ-Aminobutyric acid |
title | Unveiling the crucial role of betaine: modulation of GABA homeostasis via SLC6A1 transporter (GAT1) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A48%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20the%20crucial%20role%20of%20betaine:%20modulation%20of%20GABA%20homeostasis%20via%20SLC6A1%20transporter%20(GAT1)&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Bhatt,%20Manan&rft.date=2024-06-17&rft.volume=81&rft.issue=1&rft.spage=269&rft.pages=269-&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-024-05309-w&rft_dat=%3Cproquest_pubme%3E3068943477%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3068943477&rft_id=info:pmid/38884791&rfr_iscdi=true |