Marine particle size-fractionation indicates organic matter is processed by differing microbial communities on depth-specific particles

Passive sinking flux of particulate organic matter in the ocean plays a central role in the biological carbon pump and carbon export to the ocean's interior. Particle-associated microbes colonize particulate organic matter, producing "hotspots" of microbial activity. We evaluated vari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISME Communications 2024-01, Vol.4 (1), p.ycae090
Hauptverfasser: Comstock, Jacqueline, Henderson, Lillian C, Close, Hilary G, Liu, Shuting, Vergin, Kevin, Worden, Alexandra Z, Wittmers, Fabian, Halewood, Elisa, Giovannoni, Stephen, Carlson, Craig A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page ycae090
container_title ISME Communications
container_volume 4
creator Comstock, Jacqueline
Henderson, Lillian C
Close, Hilary G
Liu, Shuting
Vergin, Kevin
Worden, Alexandra Z
Wittmers, Fabian
Halewood, Elisa
Giovannoni, Stephen
Carlson, Craig A
description Passive sinking flux of particulate organic matter in the ocean plays a central role in the biological carbon pump and carbon export to the ocean's interior. Particle-associated microbes colonize particulate organic matter, producing "hotspots" of microbial activity. We evaluated variation in particle-associated microbial communities to 500 m depth across four different particle size fractions (0.2-1.2, 1.2-5, 5-20, >20 μm) collected using pumps at the Bermuda Atlantic Time-series Study site. pump collections capture both sinking and suspended particles, complementing previous studies using sediment or gel traps, which capture only sinking particles. Additionally, the diagenetic state of size-fractionated particles was examined using isotopic signatures alongside microbial analysis. Our findings emphasize that different particle sizes contain distinctive microbial communities, and each size category experiences a similar degree of change in communities over depth, contradicting previous findings. The robust patterns observed in this study suggest that particle residence times may be long relative to microbial succession rates, indicating that many of the particles collected in this study may be slow sinking or neutrally buoyant. Alternatively, rapid community succession on sinking particles could explain the change between depths. Complementary isotopic analysis of particles revealed significant differences in composition between particles of different sizes and depths, indicative of organic particle transformation by microbial hydrolysis and metazoan grazing. Our results couple observed patterns in microbial communities with the diagenetic state of associated organic matter and highlight unique successional patterns in varying particle sizes across depth.
doi_str_mv 10.1093/ismeco/ycae090
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11334337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095173907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-5bbc863f654325d854f34cdd2d145d4d9abb237eb24147354b2527f03670abea3</originalsourceid><addsrcrecordid>eNpVkU1rHDEMhk1pSUKSa47Fx14msS17JnMqJfQLUnpJz8Yfmo3KzHhqewvbP9C_3Vl2E9KLJNCrR0IvY1dSXEvRww2VCUO62QWHohev2JnqQDStNPL1i_qUXZbyUwihjAQl5Qk7hV62Bnp9xv5-c5lm5IvLlcKIvNAfbIbsQqU0u33gNEcKrmLhKW_cTIFPrlbMnApfcgpYCkbudzzSMOCK2_CJQk6e3MhDmqbtTJX24zOPuNTHpiwYaFhBT2vLBXszuLHg5TGfsx-fPj7cfWnuv3_-evfhvgmqa2tjvA-3LQyt0aBMvDV6AB1iVFFqE3XsnfcKOvRKS92B0V4Z1Q0C2k44jw7O2fsDd9n6CWPAuWY32iXT5PLOJkf2_85Mj3aTflspATRAtxLeHQk5_dpiqXaiEnAc3YxpWyyI3sgOerGXXh-k6zNKyTg875HC7h20Bwft0cF14O3L657lT37BP80Pnig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095173907</pqid></control><display><type>article</type><title>Marine particle size-fractionation indicates organic matter is processed by differing microbial communities on depth-specific particles</title><source>Nature Open Access</source><source>Springer Nature OA Free Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Comstock, Jacqueline ; Henderson, Lillian C ; Close, Hilary G ; Liu, Shuting ; Vergin, Kevin ; Worden, Alexandra Z ; Wittmers, Fabian ; Halewood, Elisa ; Giovannoni, Stephen ; Carlson, Craig A</creator><creatorcontrib>Comstock, Jacqueline ; Henderson, Lillian C ; Close, Hilary G ; Liu, Shuting ; Vergin, Kevin ; Worden, Alexandra Z ; Wittmers, Fabian ; Halewood, Elisa ; Giovannoni, Stephen ; Carlson, Craig A</creatorcontrib><description>Passive sinking flux of particulate organic matter in the ocean plays a central role in the biological carbon pump and carbon export to the ocean's interior. Particle-associated microbes colonize particulate organic matter, producing "hotspots" of microbial activity. We evaluated variation in particle-associated microbial communities to 500 m depth across four different particle size fractions (0.2-1.2, 1.2-5, 5-20, &gt;20 μm) collected using pumps at the Bermuda Atlantic Time-series Study site. pump collections capture both sinking and suspended particles, complementing previous studies using sediment or gel traps, which capture only sinking particles. Additionally, the diagenetic state of size-fractionated particles was examined using isotopic signatures alongside microbial analysis. Our findings emphasize that different particle sizes contain distinctive microbial communities, and each size category experiences a similar degree of change in communities over depth, contradicting previous findings. The robust patterns observed in this study suggest that particle residence times may be long relative to microbial succession rates, indicating that many of the particles collected in this study may be slow sinking or neutrally buoyant. Alternatively, rapid community succession on sinking particles could explain the change between depths. Complementary isotopic analysis of particles revealed significant differences in composition between particles of different sizes and depths, indicative of organic particle transformation by microbial hydrolysis and metazoan grazing. Our results couple observed patterns in microbial communities with the diagenetic state of associated organic matter and highlight unique successional patterns in varying particle sizes across depth.</description><identifier>ISSN: 2730-6151</identifier><identifier>EISSN: 2730-6151</identifier><identifier>DOI: 10.1093/ismeco/ycae090</identifier><identifier>PMID: 39165394</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Original</subject><ispartof>ISME Communications, 2024-01, Vol.4 (1), p.ycae090</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of the International Society for Microbial Ecology.</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of the International Society for Microbial Ecology. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c276t-5bbc863f654325d854f34cdd2d145d4d9abb237eb24147354b2527f03670abea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334337/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334337/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39165394$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Comstock, Jacqueline</creatorcontrib><creatorcontrib>Henderson, Lillian C</creatorcontrib><creatorcontrib>Close, Hilary G</creatorcontrib><creatorcontrib>Liu, Shuting</creatorcontrib><creatorcontrib>Vergin, Kevin</creatorcontrib><creatorcontrib>Worden, Alexandra Z</creatorcontrib><creatorcontrib>Wittmers, Fabian</creatorcontrib><creatorcontrib>Halewood, Elisa</creatorcontrib><creatorcontrib>Giovannoni, Stephen</creatorcontrib><creatorcontrib>Carlson, Craig A</creatorcontrib><title>Marine particle size-fractionation indicates organic matter is processed by differing microbial communities on depth-specific particles</title><title>ISME Communications</title><addtitle>ISME Commun</addtitle><description>Passive sinking flux of particulate organic matter in the ocean plays a central role in the biological carbon pump and carbon export to the ocean's interior. Particle-associated microbes colonize particulate organic matter, producing "hotspots" of microbial activity. We evaluated variation in particle-associated microbial communities to 500 m depth across four different particle size fractions (0.2-1.2, 1.2-5, 5-20, &gt;20 μm) collected using pumps at the Bermuda Atlantic Time-series Study site. pump collections capture both sinking and suspended particles, complementing previous studies using sediment or gel traps, which capture only sinking particles. Additionally, the diagenetic state of size-fractionated particles was examined using isotopic signatures alongside microbial analysis. Our findings emphasize that different particle sizes contain distinctive microbial communities, and each size category experiences a similar degree of change in communities over depth, contradicting previous findings. The robust patterns observed in this study suggest that particle residence times may be long relative to microbial succession rates, indicating that many of the particles collected in this study may be slow sinking or neutrally buoyant. Alternatively, rapid community succession on sinking particles could explain the change between depths. Complementary isotopic analysis of particles revealed significant differences in composition between particles of different sizes and depths, indicative of organic particle transformation by microbial hydrolysis and metazoan grazing. Our results couple observed patterns in microbial communities with the diagenetic state of associated organic matter and highlight unique successional patterns in varying particle sizes across depth.</description><subject>Original</subject><issn>2730-6151</issn><issn>2730-6151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkU1rHDEMhk1pSUKSa47Fx14msS17JnMqJfQLUnpJz8Yfmo3KzHhqewvbP9C_3Vl2E9KLJNCrR0IvY1dSXEvRww2VCUO62QWHohev2JnqQDStNPL1i_qUXZbyUwihjAQl5Qk7hV62Bnp9xv5-c5lm5IvLlcKIvNAfbIbsQqU0u33gNEcKrmLhKW_cTIFPrlbMnApfcgpYCkbudzzSMOCK2_CJQk6e3MhDmqbtTJX24zOPuNTHpiwYaFhBT2vLBXszuLHg5TGfsx-fPj7cfWnuv3_-evfhvgmqa2tjvA-3LQyt0aBMvDV6AB1iVFFqE3XsnfcKOvRKS92B0V4Z1Q0C2k44jw7O2fsDd9n6CWPAuWY32iXT5PLOJkf2_85Mj3aTflspATRAtxLeHQk5_dpiqXaiEnAc3YxpWyyI3sgOerGXXh-k6zNKyTg875HC7h20Bwft0cF14O3L657lT37BP80Pnig</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Comstock, Jacqueline</creator><creator>Henderson, Lillian C</creator><creator>Close, Hilary G</creator><creator>Liu, Shuting</creator><creator>Vergin, Kevin</creator><creator>Worden, Alexandra Z</creator><creator>Wittmers, Fabian</creator><creator>Halewood, Elisa</creator><creator>Giovannoni, Stephen</creator><creator>Carlson, Craig A</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>202401</creationdate><title>Marine particle size-fractionation indicates organic matter is processed by differing microbial communities on depth-specific particles</title><author>Comstock, Jacqueline ; Henderson, Lillian C ; Close, Hilary G ; Liu, Shuting ; Vergin, Kevin ; Worden, Alexandra Z ; Wittmers, Fabian ; Halewood, Elisa ; Giovannoni, Stephen ; Carlson, Craig A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-5bbc863f654325d854f34cdd2d145d4d9abb237eb24147354b2527f03670abea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Original</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Comstock, Jacqueline</creatorcontrib><creatorcontrib>Henderson, Lillian C</creatorcontrib><creatorcontrib>Close, Hilary G</creatorcontrib><creatorcontrib>Liu, Shuting</creatorcontrib><creatorcontrib>Vergin, Kevin</creatorcontrib><creatorcontrib>Worden, Alexandra Z</creatorcontrib><creatorcontrib>Wittmers, Fabian</creatorcontrib><creatorcontrib>Halewood, Elisa</creatorcontrib><creatorcontrib>Giovannoni, Stephen</creatorcontrib><creatorcontrib>Carlson, Craig A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ISME Communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Comstock, Jacqueline</au><au>Henderson, Lillian C</au><au>Close, Hilary G</au><au>Liu, Shuting</au><au>Vergin, Kevin</au><au>Worden, Alexandra Z</au><au>Wittmers, Fabian</au><au>Halewood, Elisa</au><au>Giovannoni, Stephen</au><au>Carlson, Craig A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marine particle size-fractionation indicates organic matter is processed by differing microbial communities on depth-specific particles</atitle><jtitle>ISME Communications</jtitle><addtitle>ISME Commun</addtitle><date>2024-01</date><risdate>2024</risdate><volume>4</volume><issue>1</issue><spage>ycae090</spage><pages>ycae090-</pages><issn>2730-6151</issn><eissn>2730-6151</eissn><abstract>Passive sinking flux of particulate organic matter in the ocean plays a central role in the biological carbon pump and carbon export to the ocean's interior. Particle-associated microbes colonize particulate organic matter, producing "hotspots" of microbial activity. We evaluated variation in particle-associated microbial communities to 500 m depth across four different particle size fractions (0.2-1.2, 1.2-5, 5-20, &gt;20 μm) collected using pumps at the Bermuda Atlantic Time-series Study site. pump collections capture both sinking and suspended particles, complementing previous studies using sediment or gel traps, which capture only sinking particles. Additionally, the diagenetic state of size-fractionated particles was examined using isotopic signatures alongside microbial analysis. Our findings emphasize that different particle sizes contain distinctive microbial communities, and each size category experiences a similar degree of change in communities over depth, contradicting previous findings. The robust patterns observed in this study suggest that particle residence times may be long relative to microbial succession rates, indicating that many of the particles collected in this study may be slow sinking or neutrally buoyant. Alternatively, rapid community succession on sinking particles could explain the change between depths. Complementary isotopic analysis of particles revealed significant differences in composition between particles of different sizes and depths, indicative of organic particle transformation by microbial hydrolysis and metazoan grazing. Our results couple observed patterns in microbial communities with the diagenetic state of associated organic matter and highlight unique successional patterns in varying particle sizes across depth.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>39165394</pmid><doi>10.1093/ismeco/ycae090</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2730-6151
ispartof ISME Communications, 2024-01, Vol.4 (1), p.ycae090
issn 2730-6151
2730-6151
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11334337
source Nature Open Access; Springer Nature OA Free Journals; Oxford Journals Open Access Collection; PubMed Central
subjects Original
title Marine particle size-fractionation indicates organic matter is processed by differing microbial communities on depth-specific particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A27%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marine%20particle%20size-fractionation%20indicates%20organic%20matter%20is%20processed%20by%20differing%20microbial%20communities%20on%20depth-specific%20particles&rft.jtitle=ISME%20Communications&rft.au=Comstock,%20Jacqueline&rft.date=2024-01&rft.volume=4&rft.issue=1&rft.spage=ycae090&rft.pages=ycae090-&rft.issn=2730-6151&rft.eissn=2730-6151&rft_id=info:doi/10.1093/ismeco/ycae090&rft_dat=%3Cproquest_pubme%3E3095173907%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095173907&rft_id=info:pmid/39165394&rfr_iscdi=true