Marine particle size-fractionation indicates organic matter is processed by differing microbial communities on depth-specific particles
Passive sinking flux of particulate organic matter in the ocean plays a central role in the biological carbon pump and carbon export to the ocean's interior. Particle-associated microbes colonize particulate organic matter, producing "hotspots" of microbial activity. We evaluated vari...
Gespeichert in:
Veröffentlicht in: | ISME Communications 2024-01, Vol.4 (1), p.ycae090 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | ycae090 |
container_title | ISME Communications |
container_volume | 4 |
creator | Comstock, Jacqueline Henderson, Lillian C Close, Hilary G Liu, Shuting Vergin, Kevin Worden, Alexandra Z Wittmers, Fabian Halewood, Elisa Giovannoni, Stephen Carlson, Craig A |
description | Passive sinking flux of particulate organic matter in the ocean plays a central role in the biological carbon pump and carbon export to the ocean's interior. Particle-associated microbes colonize particulate organic matter, producing "hotspots" of microbial activity. We evaluated variation in particle-associated microbial communities to 500 m depth across four different particle size fractions (0.2-1.2, 1.2-5, 5-20, >20 μm) collected using
pumps at the Bermuda Atlantic Time-series Study site.
pump collections capture both sinking and suspended particles, complementing previous studies using sediment or gel traps, which capture only sinking particles. Additionally, the diagenetic state of size-fractionated particles was examined using isotopic signatures alongside microbial analysis. Our findings emphasize that different particle sizes contain distinctive microbial communities, and each size category experiences a similar degree of change in communities over depth, contradicting previous findings. The robust patterns observed in this study suggest that particle residence times may be long relative to microbial succession rates, indicating that many of the particles collected in this study may be slow sinking or neutrally buoyant. Alternatively, rapid community succession on sinking particles could explain the change between depths. Complementary isotopic analysis of particles revealed significant differences in composition between particles of different sizes and depths, indicative of organic particle transformation by microbial hydrolysis and metazoan grazing. Our results couple observed patterns in microbial communities with the diagenetic state of associated organic matter and highlight unique successional patterns in varying particle sizes across depth. |
doi_str_mv | 10.1093/ismeco/ycae090 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11334337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3095173907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-5bbc863f654325d854f34cdd2d145d4d9abb237eb24147354b2527f03670abea3</originalsourceid><addsrcrecordid>eNpVkU1rHDEMhk1pSUKSa47Fx14msS17JnMqJfQLUnpJz8Yfmo3KzHhqewvbP9C_3Vl2E9KLJNCrR0IvY1dSXEvRww2VCUO62QWHohev2JnqQDStNPL1i_qUXZbyUwihjAQl5Qk7hV62Bnp9xv5-c5lm5IvLlcKIvNAfbIbsQqU0u33gNEcKrmLhKW_cTIFPrlbMnApfcgpYCkbudzzSMOCK2_CJQk6e3MhDmqbtTJX24zOPuNTHpiwYaFhBT2vLBXszuLHg5TGfsx-fPj7cfWnuv3_-evfhvgmqa2tjvA-3LQyt0aBMvDV6AB1iVFFqE3XsnfcKOvRKS92B0V4Z1Q0C2k44jw7O2fsDd9n6CWPAuWY32iXT5PLOJkf2_85Mj3aTflspATRAtxLeHQk5_dpiqXaiEnAc3YxpWyyI3sgOerGXXh-k6zNKyTg875HC7h20Bwft0cF14O3L657lT37BP80Pnig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3095173907</pqid></control><display><type>article</type><title>Marine particle size-fractionation indicates organic matter is processed by differing microbial communities on depth-specific particles</title><source>Nature Open Access</source><source>Springer Nature OA Free Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Comstock, Jacqueline ; Henderson, Lillian C ; Close, Hilary G ; Liu, Shuting ; Vergin, Kevin ; Worden, Alexandra Z ; Wittmers, Fabian ; Halewood, Elisa ; Giovannoni, Stephen ; Carlson, Craig A</creator><creatorcontrib>Comstock, Jacqueline ; Henderson, Lillian C ; Close, Hilary G ; Liu, Shuting ; Vergin, Kevin ; Worden, Alexandra Z ; Wittmers, Fabian ; Halewood, Elisa ; Giovannoni, Stephen ; Carlson, Craig A</creatorcontrib><description>Passive sinking flux of particulate organic matter in the ocean plays a central role in the biological carbon pump and carbon export to the ocean's interior. Particle-associated microbes colonize particulate organic matter, producing "hotspots" of microbial activity. We evaluated variation in particle-associated microbial communities to 500 m depth across four different particle size fractions (0.2-1.2, 1.2-5, 5-20, >20 μm) collected using
pumps at the Bermuda Atlantic Time-series Study site.
pump collections capture both sinking and suspended particles, complementing previous studies using sediment or gel traps, which capture only sinking particles. Additionally, the diagenetic state of size-fractionated particles was examined using isotopic signatures alongside microbial analysis. Our findings emphasize that different particle sizes contain distinctive microbial communities, and each size category experiences a similar degree of change in communities over depth, contradicting previous findings. The robust patterns observed in this study suggest that particle residence times may be long relative to microbial succession rates, indicating that many of the particles collected in this study may be slow sinking or neutrally buoyant. Alternatively, rapid community succession on sinking particles could explain the change between depths. Complementary isotopic analysis of particles revealed significant differences in composition between particles of different sizes and depths, indicative of organic particle transformation by microbial hydrolysis and metazoan grazing. Our results couple observed patterns in microbial communities with the diagenetic state of associated organic matter and highlight unique successional patterns in varying particle sizes across depth.</description><identifier>ISSN: 2730-6151</identifier><identifier>EISSN: 2730-6151</identifier><identifier>DOI: 10.1093/ismeco/ycae090</identifier><identifier>PMID: 39165394</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Original</subject><ispartof>ISME Communications, 2024-01, Vol.4 (1), p.ycae090</ispartof><rights>The Author(s) 2024. Published by Oxford University Press on behalf of the International Society for Microbial Ecology.</rights><rights>The Author(s) 2024. Published by Oxford University Press on behalf of the International Society for Microbial Ecology. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c276t-5bbc863f654325d854f34cdd2d145d4d9abb237eb24147354b2527f03670abea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334337/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11334337/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39165394$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Comstock, Jacqueline</creatorcontrib><creatorcontrib>Henderson, Lillian C</creatorcontrib><creatorcontrib>Close, Hilary G</creatorcontrib><creatorcontrib>Liu, Shuting</creatorcontrib><creatorcontrib>Vergin, Kevin</creatorcontrib><creatorcontrib>Worden, Alexandra Z</creatorcontrib><creatorcontrib>Wittmers, Fabian</creatorcontrib><creatorcontrib>Halewood, Elisa</creatorcontrib><creatorcontrib>Giovannoni, Stephen</creatorcontrib><creatorcontrib>Carlson, Craig A</creatorcontrib><title>Marine particle size-fractionation indicates organic matter is processed by differing microbial communities on depth-specific particles</title><title>ISME Communications</title><addtitle>ISME Commun</addtitle><description>Passive sinking flux of particulate organic matter in the ocean plays a central role in the biological carbon pump and carbon export to the ocean's interior. Particle-associated microbes colonize particulate organic matter, producing "hotspots" of microbial activity. We evaluated variation in particle-associated microbial communities to 500 m depth across four different particle size fractions (0.2-1.2, 1.2-5, 5-20, >20 μm) collected using
pumps at the Bermuda Atlantic Time-series Study site.
pump collections capture both sinking and suspended particles, complementing previous studies using sediment or gel traps, which capture only sinking particles. Additionally, the diagenetic state of size-fractionated particles was examined using isotopic signatures alongside microbial analysis. Our findings emphasize that different particle sizes contain distinctive microbial communities, and each size category experiences a similar degree of change in communities over depth, contradicting previous findings. The robust patterns observed in this study suggest that particle residence times may be long relative to microbial succession rates, indicating that many of the particles collected in this study may be slow sinking or neutrally buoyant. Alternatively, rapid community succession on sinking particles could explain the change between depths. Complementary isotopic analysis of particles revealed significant differences in composition between particles of different sizes and depths, indicative of organic particle transformation by microbial hydrolysis and metazoan grazing. Our results couple observed patterns in microbial communities with the diagenetic state of associated organic matter and highlight unique successional patterns in varying particle sizes across depth.</description><subject>Original</subject><issn>2730-6151</issn><issn>2730-6151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkU1rHDEMhk1pSUKSa47Fx14msS17JnMqJfQLUnpJz8Yfmo3KzHhqewvbP9C_3Vl2E9KLJNCrR0IvY1dSXEvRww2VCUO62QWHohev2JnqQDStNPL1i_qUXZbyUwihjAQl5Qk7hV62Bnp9xv5-c5lm5IvLlcKIvNAfbIbsQqU0u33gNEcKrmLhKW_cTIFPrlbMnApfcgpYCkbudzzSMOCK2_CJQk6e3MhDmqbtTJX24zOPuNTHpiwYaFhBT2vLBXszuLHg5TGfsx-fPj7cfWnuv3_-evfhvgmqa2tjvA-3LQyt0aBMvDV6AB1iVFFqE3XsnfcKOvRKS92B0V4Z1Q0C2k44jw7O2fsDd9n6CWPAuWY32iXT5PLOJkf2_85Mj3aTflspATRAtxLeHQk5_dpiqXaiEnAc3YxpWyyI3sgOerGXXh-k6zNKyTg875HC7h20Bwft0cF14O3L657lT37BP80Pnig</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Comstock, Jacqueline</creator><creator>Henderson, Lillian C</creator><creator>Close, Hilary G</creator><creator>Liu, Shuting</creator><creator>Vergin, Kevin</creator><creator>Worden, Alexandra Z</creator><creator>Wittmers, Fabian</creator><creator>Halewood, Elisa</creator><creator>Giovannoni, Stephen</creator><creator>Carlson, Craig A</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>202401</creationdate><title>Marine particle size-fractionation indicates organic matter is processed by differing microbial communities on depth-specific particles</title><author>Comstock, Jacqueline ; Henderson, Lillian C ; Close, Hilary G ; Liu, Shuting ; Vergin, Kevin ; Worden, Alexandra Z ; Wittmers, Fabian ; Halewood, Elisa ; Giovannoni, Stephen ; Carlson, Craig A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-5bbc863f654325d854f34cdd2d145d4d9abb237eb24147354b2527f03670abea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Original</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Comstock, Jacqueline</creatorcontrib><creatorcontrib>Henderson, Lillian C</creatorcontrib><creatorcontrib>Close, Hilary G</creatorcontrib><creatorcontrib>Liu, Shuting</creatorcontrib><creatorcontrib>Vergin, Kevin</creatorcontrib><creatorcontrib>Worden, Alexandra Z</creatorcontrib><creatorcontrib>Wittmers, Fabian</creatorcontrib><creatorcontrib>Halewood, Elisa</creatorcontrib><creatorcontrib>Giovannoni, Stephen</creatorcontrib><creatorcontrib>Carlson, Craig A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ISME Communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Comstock, Jacqueline</au><au>Henderson, Lillian C</au><au>Close, Hilary G</au><au>Liu, Shuting</au><au>Vergin, Kevin</au><au>Worden, Alexandra Z</au><au>Wittmers, Fabian</au><au>Halewood, Elisa</au><au>Giovannoni, Stephen</au><au>Carlson, Craig A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Marine particle size-fractionation indicates organic matter is processed by differing microbial communities on depth-specific particles</atitle><jtitle>ISME Communications</jtitle><addtitle>ISME Commun</addtitle><date>2024-01</date><risdate>2024</risdate><volume>4</volume><issue>1</issue><spage>ycae090</spage><pages>ycae090-</pages><issn>2730-6151</issn><eissn>2730-6151</eissn><abstract>Passive sinking flux of particulate organic matter in the ocean plays a central role in the biological carbon pump and carbon export to the ocean's interior. Particle-associated microbes colonize particulate organic matter, producing "hotspots" of microbial activity. We evaluated variation in particle-associated microbial communities to 500 m depth across four different particle size fractions (0.2-1.2, 1.2-5, 5-20, >20 μm) collected using
pumps at the Bermuda Atlantic Time-series Study site.
pump collections capture both sinking and suspended particles, complementing previous studies using sediment or gel traps, which capture only sinking particles. Additionally, the diagenetic state of size-fractionated particles was examined using isotopic signatures alongside microbial analysis. Our findings emphasize that different particle sizes contain distinctive microbial communities, and each size category experiences a similar degree of change in communities over depth, contradicting previous findings. The robust patterns observed in this study suggest that particle residence times may be long relative to microbial succession rates, indicating that many of the particles collected in this study may be slow sinking or neutrally buoyant. Alternatively, rapid community succession on sinking particles could explain the change between depths. Complementary isotopic analysis of particles revealed significant differences in composition between particles of different sizes and depths, indicative of organic particle transformation by microbial hydrolysis and metazoan grazing. Our results couple observed patterns in microbial communities with the diagenetic state of associated organic matter and highlight unique successional patterns in varying particle sizes across depth.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>39165394</pmid><doi>10.1093/ismeco/ycae090</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2730-6151 |
ispartof | ISME Communications, 2024-01, Vol.4 (1), p.ycae090 |
issn | 2730-6151 2730-6151 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11334337 |
source | Nature Open Access; Springer Nature OA Free Journals; Oxford Journals Open Access Collection; PubMed Central |
subjects | Original |
title | Marine particle size-fractionation indicates organic matter is processed by differing microbial communities on depth-specific particles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A27%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Marine%20particle%20size-fractionation%20indicates%20organic%20matter%20is%20processed%20by%20differing%20microbial%20communities%20on%20depth-specific%20particles&rft.jtitle=ISME%20Communications&rft.au=Comstock,%20Jacqueline&rft.date=2024-01&rft.volume=4&rft.issue=1&rft.spage=ycae090&rft.pages=ycae090-&rft.issn=2730-6151&rft.eissn=2730-6151&rft_id=info:doi/10.1093/ismeco/ycae090&rft_dat=%3Cproquest_pubme%3E3095173907%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3095173907&rft_id=info:pmid/39165394&rfr_iscdi=true |