NF‐YC15 transcription factor activates ethylene biosynthesis and improves cassava disease resistance
Summary The nuclear factor Y (NF‐Y) transcription factors play important roles in plant development and physiological responses. However, the relationship between NF‐Y, plant hormone and plant stress resistance in tropical crops remains unclear. In this study, we identified MeNF‐YC15 gene in the NF‐...
Gespeichert in:
Veröffentlicht in: | Plant biotechnology journal 2024-09, Vol.22 (9), p.2424-2434 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2434 |
---|---|
container_issue | 9 |
container_start_page | 2424 |
container_title | Plant biotechnology journal |
container_volume | 22 |
creator | Zheng, Liyan Gao, Shuai Bai, Yujing Zeng, Hongqiu Shi, Haitao |
description | Summary
The nuclear factor Y (NF‐Y) transcription factors play important roles in plant development and physiological responses. However, the relationship between NF‐Y, plant hormone and plant stress resistance in tropical crops remains unclear. In this study, we identified MeNF‐YC15 gene in the NF‐Y family that significantly responded to Xanthomonas axonopodis pv. manihotis (Xam) treatment. Using MeNF‐YC15‐silenced and ‐overexpressed cassava plants, we elucidated that MeNF‐YC15 positively regulated disease resistance to cassava bacterial blight (CBB). Notably, we illustrated MeNF‐YC15 downstream genes and revealed the direct genetic relationship between MeNF‐YC15 and 1‐aminocyclopropane‐1‐carboxylic acid (ACC) oxidase (MeACO1)‐ethylene module in disease resistance, as evidenced by the rescued disease susceptibility of MeNF‐YC15 silenced cassava plants with ethylene treatment or overexpressing MeACO1. In addition, the physical interaction between 2C‐type protein phosphatase 1 (MePP2C1) and MeNF‐YC15 inhibited the transcriptional activation of MeACO1 by MeNF‐YC15. In summary, MePP2C1‐MeNF‐YC15 interaction modulates ethylene biosynthesis and cassava disease resistance, providing gene network for cassava genetic improvement. |
doi_str_mv | 10.1111/pbi.14355 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11331790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3037394623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4375-c8cbcf7feed88fe76bf9b67c67ab5e8e5d95b568acc17d3544870ace83d90be43</originalsourceid><addsrcrecordid>eNqF0c1uVCEYBmBiNLbWLrwBQ-JGF9PC8HtWjU7sT9JYF7roigDnOw7NGTiFM2Nm5yV4jV5JaadOtElTFkDCkzfAi9AbSg5oHYeDCweUMyGeoV3KpZooKabPt3vOd9CrUq4ImVIp5Eu0w7QkRBGxi7ovx39-_b6cUYHHbGPxOQxjSBF31o8p4zqHlR2hYBjn6x4iYBdSWcdxDiUUbGOLw2LIaVWJt6XYlcVtKGAL4HxLRhs9vEYvOtsX2L9f99D348_fZqeT84uTs9nH84nnTImJ1975TnUArdYdKOm6xknlpbJOgAbRNsIJqa33VLVMcK4VsR40axvigLM9dLTJHZZuAa2HWF_VmyGHhc1rk2ww_5_EMDc_0spQyhhVDakJ7-8TcrpeQhnNIhQPfW8jpGUxjAqmOJdUP00JU6zhcsoqffeAXqVljvUrqmo41ZxMm6o-bJTPqZQM3fbilJjbpk1t2tw1Xe3bf1-6lX-rreBwA36GHtaPJ5mvn842kTdug7YD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094184029</pqid></control><display><type>article</type><title>NF‐YC15 transcription factor activates ethylene biosynthesis and improves cassava disease resistance</title><source>MEDLINE</source><source>Wiley-Blackwell Open Access Titles</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zheng, Liyan ; Gao, Shuai ; Bai, Yujing ; Zeng, Hongqiu ; Shi, Haitao</creator><creatorcontrib>Zheng, Liyan ; Gao, Shuai ; Bai, Yujing ; Zeng, Hongqiu ; Shi, Haitao</creatorcontrib><description>Summary
The nuclear factor Y (NF‐Y) transcription factors play important roles in plant development and physiological responses. However, the relationship between NF‐Y, plant hormone and plant stress resistance in tropical crops remains unclear. In this study, we identified MeNF‐YC15 gene in the NF‐Y family that significantly responded to Xanthomonas axonopodis pv. manihotis (Xam) treatment. Using MeNF‐YC15‐silenced and ‐overexpressed cassava plants, we elucidated that MeNF‐YC15 positively regulated disease resistance to cassava bacterial blight (CBB). Notably, we illustrated MeNF‐YC15 downstream genes and revealed the direct genetic relationship between MeNF‐YC15 and 1‐aminocyclopropane‐1‐carboxylic acid (ACC) oxidase (MeACO1)‐ethylene module in disease resistance, as evidenced by the rescued disease susceptibility of MeNF‐YC15 silenced cassava plants with ethylene treatment or overexpressing MeACO1. In addition, the physical interaction between 2C‐type protein phosphatase 1 (MePP2C1) and MeNF‐YC15 inhibited the transcriptional activation of MeACO1 by MeNF‐YC15. In summary, MePP2C1‐MeNF‐YC15 interaction modulates ethylene biosynthesis and cassava disease resistance, providing gene network for cassava genetic improvement.</description><identifier>ISSN: 1467-7644</identifier><identifier>ISSN: 1467-7652</identifier><identifier>EISSN: 1467-7652</identifier><identifier>DOI: 10.1111/pbi.14355</identifier><identifier>PMID: 38600705</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>1-aminocyclopropane-1-carboxylic acid ; 1‐aminocyclopropane‐1‐carboxylate oxidase ; 2C protein phosphatase 1 ; Abscisic acid ; Amino Acid Oxidoreductases - genetics ; Amino Acid Oxidoreductases - metabolism ; Biosynthesis ; biotechnology ; Blight ; Carboxylic acids ; Cassava ; Crop diseases ; Disease resistance ; Disease Resistance - genetics ; disease susceptibility ; Ethylene ; ethylene production ; Ethylenes - metabolism ; family ; Gene Expression Regulation, Plant ; Genes ; genetic improvement ; Genetic relationship ; genetic relationships ; Hormones ; Infections ; Manihot - genetics ; Manihot - metabolism ; Manihot - microbiology ; Nuclear Factor‐Y ; oxidoreductases ; Pathogens ; Phosphoprotein phosphatase ; Physiological effects ; Physiological responses ; plant development ; Plant diseases ; Plant Diseases - genetics ; Plant Diseases - immunology ; Plant Diseases - microbiology ; Plant hormones ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant resistance ; Plant stress ; Plants, Genetically Modified ; Protein phosphatase ; Proteins ; Resistance factors ; Rice ; Seeds ; Signal transduction ; stress tolerance ; Transcription activation ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism ; transcriptional activation ; Xanthomonas axonopodis ; Xanthomonas axonopodis - pathogenicity ; Xanthomonas campestris pv. manihotis</subject><ispartof>Plant biotechnology journal, 2024-09, Vol.22 (9), p.2424-2434</ispartof><rights>2024 The Authors. published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>2024 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.</rights><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4375-c8cbcf7feed88fe76bf9b67c67ab5e8e5d95b568acc17d3544870ace83d90be43</cites><orcidid>0000-0003-2944-8039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpbi.14355$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpbi.14355$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38600705$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Liyan</creatorcontrib><creatorcontrib>Gao, Shuai</creatorcontrib><creatorcontrib>Bai, Yujing</creatorcontrib><creatorcontrib>Zeng, Hongqiu</creatorcontrib><creatorcontrib>Shi, Haitao</creatorcontrib><title>NF‐YC15 transcription factor activates ethylene biosynthesis and improves cassava disease resistance</title><title>Plant biotechnology journal</title><addtitle>Plant Biotechnol J</addtitle><description>Summary
The nuclear factor Y (NF‐Y) transcription factors play important roles in plant development and physiological responses. However, the relationship between NF‐Y, plant hormone and plant stress resistance in tropical crops remains unclear. In this study, we identified MeNF‐YC15 gene in the NF‐Y family that significantly responded to Xanthomonas axonopodis pv. manihotis (Xam) treatment. Using MeNF‐YC15‐silenced and ‐overexpressed cassava plants, we elucidated that MeNF‐YC15 positively regulated disease resistance to cassava bacterial blight (CBB). Notably, we illustrated MeNF‐YC15 downstream genes and revealed the direct genetic relationship between MeNF‐YC15 and 1‐aminocyclopropane‐1‐carboxylic acid (ACC) oxidase (MeACO1)‐ethylene module in disease resistance, as evidenced by the rescued disease susceptibility of MeNF‐YC15 silenced cassava plants with ethylene treatment or overexpressing MeACO1. In addition, the physical interaction between 2C‐type protein phosphatase 1 (MePP2C1) and MeNF‐YC15 inhibited the transcriptional activation of MeACO1 by MeNF‐YC15. In summary, MePP2C1‐MeNF‐YC15 interaction modulates ethylene biosynthesis and cassava disease resistance, providing gene network for cassava genetic improvement.</description><subject>1-aminocyclopropane-1-carboxylic acid</subject><subject>1‐aminocyclopropane‐1‐carboxylate oxidase</subject><subject>2C protein phosphatase 1</subject><subject>Abscisic acid</subject><subject>Amino Acid Oxidoreductases - genetics</subject><subject>Amino Acid Oxidoreductases - metabolism</subject><subject>Biosynthesis</subject><subject>biotechnology</subject><subject>Blight</subject><subject>Carboxylic acids</subject><subject>Cassava</subject><subject>Crop diseases</subject><subject>Disease resistance</subject><subject>Disease Resistance - genetics</subject><subject>disease susceptibility</subject><subject>Ethylene</subject><subject>ethylene production</subject><subject>Ethylenes - metabolism</subject><subject>family</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>genetic improvement</subject><subject>Genetic relationship</subject><subject>genetic relationships</subject><subject>Hormones</subject><subject>Infections</subject><subject>Manihot - genetics</subject><subject>Manihot - metabolism</subject><subject>Manihot - microbiology</subject><subject>Nuclear Factor‐Y</subject><subject>oxidoreductases</subject><subject>Pathogens</subject><subject>Phosphoprotein phosphatase</subject><subject>Physiological effects</subject><subject>Physiological responses</subject><subject>plant development</subject><subject>Plant diseases</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - immunology</subject><subject>Plant Diseases - microbiology</subject><subject>Plant hormones</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant resistance</subject><subject>Plant stress</subject><subject>Plants, Genetically Modified</subject><subject>Protein phosphatase</subject><subject>Proteins</subject><subject>Resistance factors</subject><subject>Rice</subject><subject>Seeds</subject><subject>Signal transduction</subject><subject>stress tolerance</subject><subject>Transcription activation</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>transcriptional activation</subject><subject>Xanthomonas axonopodis</subject><subject>Xanthomonas axonopodis - pathogenicity</subject><subject>Xanthomonas campestris pv. manihotis</subject><issn>1467-7644</issn><issn>1467-7652</issn><issn>1467-7652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0c1uVCEYBmBiNLbWLrwBQ-JGF9PC8HtWjU7sT9JYF7roigDnOw7NGTiFM2Nm5yV4jV5JaadOtElTFkDCkzfAi9AbSg5oHYeDCweUMyGeoV3KpZooKabPt3vOd9CrUq4ImVIp5Eu0w7QkRBGxi7ovx39-_b6cUYHHbGPxOQxjSBF31o8p4zqHlR2hYBjn6x4iYBdSWcdxDiUUbGOLw2LIaVWJt6XYlcVtKGAL4HxLRhs9vEYvOtsX2L9f99D348_fZqeT84uTs9nH84nnTImJ1975TnUArdYdKOm6xknlpbJOgAbRNsIJqa33VLVMcK4VsR40axvigLM9dLTJHZZuAa2HWF_VmyGHhc1rk2ww_5_EMDc_0spQyhhVDakJ7-8TcrpeQhnNIhQPfW8jpGUxjAqmOJdUP00JU6zhcsoqffeAXqVljvUrqmo41ZxMm6o-bJTPqZQM3fbilJjbpk1t2tw1Xe3bf1-6lX-rreBwA36GHtaPJ5mvn842kTdug7YD</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Zheng, Liyan</creator><creator>Gao, Shuai</creator><creator>Bai, Yujing</creator><creator>Zeng, Hongqiu</creator><creator>Shi, Haitao</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2944-8039</orcidid></search><sort><creationdate>202409</creationdate><title>NF‐YC15 transcription factor activates ethylene biosynthesis and improves cassava disease resistance</title><author>Zheng, Liyan ; Gao, Shuai ; Bai, Yujing ; Zeng, Hongqiu ; Shi, Haitao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4375-c8cbcf7feed88fe76bf9b67c67ab5e8e5d95b568acc17d3544870ace83d90be43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>1-aminocyclopropane-1-carboxylic acid</topic><topic>1‐aminocyclopropane‐1‐carboxylate oxidase</topic><topic>2C protein phosphatase 1</topic><topic>Abscisic acid</topic><topic>Amino Acid Oxidoreductases - genetics</topic><topic>Amino Acid Oxidoreductases - metabolism</topic><topic>Biosynthesis</topic><topic>biotechnology</topic><topic>Blight</topic><topic>Carboxylic acids</topic><topic>Cassava</topic><topic>Crop diseases</topic><topic>Disease resistance</topic><topic>Disease Resistance - genetics</topic><topic>disease susceptibility</topic><topic>Ethylene</topic><topic>ethylene production</topic><topic>Ethylenes - metabolism</topic><topic>family</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>genetic improvement</topic><topic>Genetic relationship</topic><topic>genetic relationships</topic><topic>Hormones</topic><topic>Infections</topic><topic>Manihot - genetics</topic><topic>Manihot - metabolism</topic><topic>Manihot - microbiology</topic><topic>Nuclear Factor‐Y</topic><topic>oxidoreductases</topic><topic>Pathogens</topic><topic>Phosphoprotein phosphatase</topic><topic>Physiological effects</topic><topic>Physiological responses</topic><topic>plant development</topic><topic>Plant diseases</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - immunology</topic><topic>Plant Diseases - microbiology</topic><topic>Plant hormones</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant resistance</topic><topic>Plant stress</topic><topic>Plants, Genetically Modified</topic><topic>Protein phosphatase</topic><topic>Proteins</topic><topic>Resistance factors</topic><topic>Rice</topic><topic>Seeds</topic><topic>Signal transduction</topic><topic>stress tolerance</topic><topic>Transcription activation</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>transcriptional activation</topic><topic>Xanthomonas axonopodis</topic><topic>Xanthomonas axonopodis - pathogenicity</topic><topic>Xanthomonas campestris pv. manihotis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Liyan</creatorcontrib><creatorcontrib>Gao, Shuai</creatorcontrib><creatorcontrib>Bai, Yujing</creatorcontrib><creatorcontrib>Zeng, Hongqiu</creatorcontrib><creatorcontrib>Shi, Haitao</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant biotechnology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Liyan</au><au>Gao, Shuai</au><au>Bai, Yujing</au><au>Zeng, Hongqiu</au><au>Shi, Haitao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NF‐YC15 transcription factor activates ethylene biosynthesis and improves cassava disease resistance</atitle><jtitle>Plant biotechnology journal</jtitle><addtitle>Plant Biotechnol J</addtitle><date>2024-09</date><risdate>2024</risdate><volume>22</volume><issue>9</issue><spage>2424</spage><epage>2434</epage><pages>2424-2434</pages><issn>1467-7644</issn><issn>1467-7652</issn><eissn>1467-7652</eissn><abstract>Summary
The nuclear factor Y (NF‐Y) transcription factors play important roles in plant development and physiological responses. However, the relationship between NF‐Y, plant hormone and plant stress resistance in tropical crops remains unclear. In this study, we identified MeNF‐YC15 gene in the NF‐Y family that significantly responded to Xanthomonas axonopodis pv. manihotis (Xam) treatment. Using MeNF‐YC15‐silenced and ‐overexpressed cassava plants, we elucidated that MeNF‐YC15 positively regulated disease resistance to cassava bacterial blight (CBB). Notably, we illustrated MeNF‐YC15 downstream genes and revealed the direct genetic relationship between MeNF‐YC15 and 1‐aminocyclopropane‐1‐carboxylic acid (ACC) oxidase (MeACO1)‐ethylene module in disease resistance, as evidenced by the rescued disease susceptibility of MeNF‐YC15 silenced cassava plants with ethylene treatment or overexpressing MeACO1. In addition, the physical interaction between 2C‐type protein phosphatase 1 (MePP2C1) and MeNF‐YC15 inhibited the transcriptional activation of MeACO1 by MeNF‐YC15. In summary, MePP2C1‐MeNF‐YC15 interaction modulates ethylene biosynthesis and cassava disease resistance, providing gene network for cassava genetic improvement.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>38600705</pmid><doi>10.1111/pbi.14355</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2944-8039</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1467-7644 |
ispartof | Plant biotechnology journal, 2024-09, Vol.22 (9), p.2424-2434 |
issn | 1467-7644 1467-7652 1467-7652 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11331790 |
source | MEDLINE; Wiley-Blackwell Open Access Titles; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | 1-aminocyclopropane-1-carboxylic acid 1‐aminocyclopropane‐1‐carboxylate oxidase 2C protein phosphatase 1 Abscisic acid Amino Acid Oxidoreductases - genetics Amino Acid Oxidoreductases - metabolism Biosynthesis biotechnology Blight Carboxylic acids Cassava Crop diseases Disease resistance Disease Resistance - genetics disease susceptibility Ethylene ethylene production Ethylenes - metabolism family Gene Expression Regulation, Plant Genes genetic improvement Genetic relationship genetic relationships Hormones Infections Manihot - genetics Manihot - metabolism Manihot - microbiology Nuclear Factor‐Y oxidoreductases Pathogens Phosphoprotein phosphatase Physiological effects Physiological responses plant development Plant diseases Plant Diseases - genetics Plant Diseases - immunology Plant Diseases - microbiology Plant hormones Plant Proteins - genetics Plant Proteins - metabolism Plant resistance Plant stress Plants, Genetically Modified Protein phosphatase Proteins Resistance factors Rice Seeds Signal transduction stress tolerance Transcription activation Transcription factors Transcription Factors - genetics Transcription Factors - metabolism transcriptional activation Xanthomonas axonopodis Xanthomonas axonopodis - pathogenicity Xanthomonas campestris pv. manihotis |
title | NF‐YC15 transcription factor activates ethylene biosynthesis and improves cassava disease resistance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T18%3A12%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NF%E2%80%90YC15%20transcription%20factor%20activates%20ethylene%20biosynthesis%20and%20improves%20cassava%20disease%20resistance&rft.jtitle=Plant%20biotechnology%20journal&rft.au=Zheng,%20Liyan&rft.date=2024-09&rft.volume=22&rft.issue=9&rft.spage=2424&rft.epage=2434&rft.pages=2424-2434&rft.issn=1467-7644&rft.eissn=1467-7652&rft_id=info:doi/10.1111/pbi.14355&rft_dat=%3Cproquest_pubme%3E3037394623%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3094184029&rft_id=info:pmid/38600705&rfr_iscdi=true |